
Variable-length Path Query Evaluation based on
Worst-Case Optimal Joins

Mingdao Li
Hunan University
Changsha, China

limingdao@hnu.edu.cn

Peng Peng
Hunan University
Changsha, China

hnu16pp@hnu.edu.cn

Zheyuan Hu
Hunan University
Changsha, China

huzheyuan@hnu.edu.cn

Lei Zou
Peking University
Beijing, China

zoulei@pku.edu.cn

Zheng Qin
Hunan University
Changsha, China

zqin@hnu.edu.cn

Abstract—Variable-length path queries are essential for finding
paths in a graph that adhere to a specified length constraint,
utilizing only edges with labels from a restricted subset of the edge
labels. These queries play a crucial role in graph analytics and
are supported by practical graph query languages like Cypher
in property graph systems and SPARQL 1.1 in RDF graph
systems. In this paper, we present a novel solution for efficient
evaluation of variable-length path queries, based on worst-
case optimal joins. Our solution’s core relies on a jumping-like
worst-case optimal join technique, allowing us to select a query
vertex order that differs completely from existing graph systems
based on worst-case optimal joins. Furthermore, we introduce
a cost-based dynamic programming optimizer that combines
traditional and jumping-like worst-case optimal join techniques.
We also propose an optimization technique to leverage intra-
query parallelism during query evaluation. Through extensive
experiments conducted on numerous synthetic and real RDF and
property graphs, we demonstrate that the proposed technique
achieves excellent performance.

I. INTRODUCTION

As a general data structure, graphs have been widely used

in many fields including Internet, chemistry, biological in-

formation, social networks and so on. Resource Description

Framework (RDF) and property graphs are two well-known

ways to model graphs, and a number of graph systems have

been proposed to manage graphs in the two ways.

In this paper, we study a fundamental type of query in both

RDF and property graph systems, the problem of answering

variable-length path queries. This problem is to find pairs of

vertices in a graph connected by a path whose labels (i.e., the

labels of edges in the path) is in a subset of the user-specified

edge labels and length meets a range constraint.

The problem can be used in many real applications. For

example, in social networks, we may want to match possible

friends of friends and friends of friends of friends and return

them all in the same collection. Then, the query of finding

all the people that can be reached from other people by

a path between 2 and 3 occurrences of KNOWS can be

represented as the following queries in two well-known graph

query languages, Cypher and SPARQL.

Example 1.1: Neo4j [2] is a graph database system for

managing the property graph, and Cypher [12] is a declarative

graph query language to query the property graph proposed by

Neo4j. In Cypher, variable-length path queries are supported.

For example, the following query is to find all the people that

can be reached from other people by a path between 2 and 3

occurrences of KNOWS.

Match path = (x)−[: KNOWS∗2..3]− > (y) return path;

�
Example 1.2: RDF is a model that is widely used for

publishing data in the web, and SPARQL is the structural

query language. In the newest version of SPARQL, SPARQL

1.1, W3C propose a new way named property paths to extend

matching of triple pattern to arbitrary length paths. Many RDF

systems, like Jena [1] and Virtuoso [4], can also support the

variable-length path queries. For example, the following query

is to find all the people that can be reached from other people

by a path between 2 and 3 occurrences of foaf:knows.

SELECT ?x ?y WHERE {?x foaf : knows{2, 3} ?y}
�
Formally, a variable-length path query can be represented

P [m,n](LQE), where L
Q
E is the set of edge labels, and [m,n] is

the a range of path length constraint. Given a graph, a variable-

length path query P [m,n](LQE) is to find all paths, of which

the lengths are not larger than n and not smaller than m and

the edge labels in LQE .
In the context of variable-length path queries, existing graph

database systems, whether they are RDF graph systems [1],

[3], [4], [14], [30] or property graph systems [2], [16], treat

path queries as general queries without specifically optimizing

their characteristics. In the case of a variable-length path query,

all query edges are homogeneous, allowing for the reuse of

intermediate results obtained from fewer query edges, a feature

that is often overlooked in current optimization approaches.

Furthermore, except Jena-LFJ [14] and Graphflow [16],

most graph database systems do not incorporate the technique

of worst-case optimal joins into their frameworks. Worst-

case optimal join [23], [22] is a type of join technique that

can theoretically guarantee the query result size within an

AGM bound [8]. The most renowned worst-case optimal join

algorithms [23], [21] typically adopt a strategy where they

first establish a query vertex order and then evaluate the

query vertex by vertex. However, these algorithms tend to

assume that any prefix of the query vertex order is connected,

overlooking potential orders where some prefixes of the query
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vertex order might not be connected when we consider the

variable-length path queries.

In this paper, we introduce a novel approach for handling

variable-length path queries that does not require the construc-

tion of any dedicated indices while still ensuring worst-case

optimality. Specifically, for a given path query of length k, our
approach can also guarantee that there are at most |E|� k

2 �+1

results, where |E| represents the number of edges in the graph.

First, we propose a new jumping worst-case optimal join

technique. For a path query of n edges, our proposed join

technique can reuse the intermediate results of some path

queries of fewer edges and avoid generating the results of

some other path queries of fewer edges while guaranteeing

worst-case optimality. In other words, our method can pick a

query vertex order, where some prefixes of the query vertex

order is not connected. In contrast, because traditional worst-

case optimal join techniques tend to require that any prefix

of the query vertex order is connected, it needs to generate a

sequence of results for path queries from 1 to n− 1 edges to

obtain the results of a path query of n edges.

Then, to mix the basic and jumping worst-case optimal

join techniques, we design a cost-based optimizer. The cost

model behind our optimizer is based on the classic database

statistics, selectivity factor. We discuss how to estimate the

selectivity factors of both basic and jumping worst-case op-

timal join techniques. Then, based on the cost model, a

dynamic programming query plan generation algorithm is

proposed to determine the optimal query plan. The query plan

is represented as a directed acyclic graph (DAG). The DAG

of a query plan indicates the potential of parallelism. We can

find some parts in the DAG that are independent on each other,

and then exploit the intra-query parallelism to further improve

the performance of query evaluation.

To verify our proposed techniques, we embed them into

both a property graph system, Graphflow [16] and an RDF

graph system, gStore [30]. Then, we evaluate it across a large

number of synthetic and real graphs.

In summary, our main contributions are as follows:

• We conduct an analysis of the AGM bound concerning

variable-length path queries, and introduce a novel join

technique known as the jumping worst-case optimal join.
This technique can reuse intermediate results while en-

suring the worst-case optimality.

• To ascertain the optimal plan that integrates basic and

jumping worst-case optimal join techniques, we devise a

cost-based dynamic programming query plan generation

algorithm. The cost model is designed based on the

structural characteristics of input graphs.

• The devised query plan is represented as a Directed

Acyclic Graph (DAG), and we identify independent seg-

ments conducive to parallelism. Subsequently, we imple-

ment parallelism for the evaluation of these independent

components within the query plan.

• Our proposed methodologies are integrated into existing

property graph and RDF graph systems. Extensive ex-

periments is done on both synthetic and real graphs to

validate the effectiveness of our approaches.

II. RELATED WORK

Recently, there have been a lot of graph systems proposed

to store, process, and query graphs efficiently. They include

RDF graph systems, like Jena [1], Virtuoso [4], RDF4J [3]

and gStore [30], and property graph systems, like Neo4j [2],

TigerGraph [10], GraphScope [11], Graphflow [16] and Emp-

tyHeaded [5], [6]. Some of them support query languages like

SPARQL, Cypher and GSQL [20] that contain the operator

of variable-length path query, but few of them discuss how to

design optimizations for variable-length path query.

Worst-case optimal join techniques [23], [21] have recently

gained a lot of attention, which can guarantee the output size

of a database query in the worst case. A few graph systems,

like Jena-LFJ [14], EmptyHeaded [5], [6], Graphflow [16] and

PatMat [17] also implement the worst-case optimal join. The

main idea of the worst-case optimal join techniques in graph

systems is to process subgraph matching by matching vertices

in a query vertex order, and any prefixes of the query vertex

order used in existing worst-case optimal join techniques are

always connected. In this paper, we propose a jumping-like

worst-case optimal join technique for variable-length path

queries that can generate the query vertex order whose some

prefixes are disconnected.

There is no studies focused on optimizing variable-length

path queries. Existing studies primarily focus on label-

constraint reachability queries [15], [28], [31], [27], [26], [25],

[29], [9]. These studies are to determine the presence of a path

from a source vertex to a target vertex, using only edges with

labels within a predefined set. These studies do not consider

the path length constraints and always build some extra indices

for optimization. For example, Jin et al. [15] present a tree-

based index, which consists of a spanning tree and a partial

transitive closure of the graph; Zou et al. [28], [31] decompose

the input graph into strongly connected components (SCC)

and maintain the label sets in a SCC or among different

SCCs; Valstar et al. [27] propose a landmark-based index that

maintain the minimal label set connecting each landmark to

other vertices; Peng et al. [26], [25] design a label-constrained

2-hop indexing techniques with some pruning rules and order

strategies; Cai et al. [9] introduce two pruning techniques,

degree-one reduction and an unreachable query filter, to further

minimize the index size and expedite both index construction

and query processing. Zeng et al. [29] address the problem in

a distributed environment for processing large graphs.
III. PRELIMINARIES

A. Problem Definitions

Definition 3.1: (Graph) A graph G is denoted as

〈V (G), E(G), LE , f
G〉, where V (G) is a set of vertices,

E(G) ⊆ V (G) × V (G) is a set of directed edges, LE is a

set of edge labels and fG : E(G) → LE is a function that

assigns each edge with one label. �
For an edge of e = u

l−→ v ∈ E, it is considered to be

directed from u to v, where u is called the head, v is called
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the tail and l is called the label of the edge. For a vertex

v, the set of it incoming edges is called its set of incoming

neighbor edges and denoted as N−(v); the set of it outgoing

edges is called its set of outgoing neighbor edges and denoted

as N+(v).
We define a sequence π = v0e1v1, ..., vk−1ekvk to represent

a path of length k between two vertices v0 and vk, where
{v0, v1, ..., vk} ⊆ V and {e1, e2, ..., ek−1} ⊆ E.

Given a set of labels LQE ⊆ LE , the set of edges with a

property l (l ∈ LE) is denoted as E(LQE).
In this paper, the graph can be stored in all kinds of

graph-based data structures, including both adjacency list and

adjacency matrix. The only need is to support to find out all

matches of a query edge of a given label. Obviously, this need

is a very basic operator and can be efficiently supported by

all graph database systems.

Definition 3.2: (Variable-length Path Query) A variable-
length path query is represented P [m,n](LQE), where L

Q
E is

the set of edge labels, and [m,n] is the a range of path length

constraint.

Given a graph G, a variable-length path query P [m,n](LQE)
is to find all paths, of which the lengths are not larger than

n and not smaller than m and the edge labels in LQE . In this

paper, we stipulate that each returned path must be a simple

path, wherein no two vertices are the same.

The set of result paths for P [m,n](LQE) is denoted as

�P [m,n](LQE)�. �
A path query of a specific length constraint n is a special

kind of variable-length path query, where m = n. We simplify

it as Pn(LQE) and its results as �Pn(LQE)�.
Further, a path query without the length limit is denoted

as P [1,+∞](LQE) and its results as �P [1,+∞](LQE)�. This is an
extreme case of variable-length path query, which is widely

used as a wildcard on the edge label constraint.

B. Worst-Case Optimal Joins

A recent study of Atserias, Grohe, and Marx [8] showed

how to tightly bound the worst-case size of a join query using

a notion called a fractional edge cover. The bound is often

called the AGM bound.
To find the optimal join, the definition of hypergraph is also

needed.

Definition 3.3: (Hypergraph) A hypergraph is a pair

H = (V (H), E(H)), consisting of a nonempty set V (H) of

vertices, and a set E(H) of subsets of V (H), the hyperedges

of H .�
Definition 3.4: (Fractional Edge Cover) A fractional edge

cover of a hypergraph H = (V (H), E(H)) is a mapping ψ :
E → [0,+∞) such that

∑
e∈E,v∈e ψ(e) ≥ 1 for all v ∈ V .

The number ρ =
∑
e∈E ψ(e) is the weight of ψ.

The fractional edge cover number ρ∗(H) of H is the

minimum of the weights of all fractional edge covers of H ,

where the fractional edge cover corresponding to ρ∗(H) is

denoted as ψ∗.�
In particular, there is a direct correspondence between a

query and its hypergraph: there is a vertex for each attribute

of the query and a hyperedge for each relation. We will go

freely back and forth between the query and the hypergraph

that represents it.

AGM [8] showed that if ψ is feasible, then it forms an upper

bound of the query result size |OUT | as follows:
|OUT | ≤ Πe∈E(H)|Re|ψ

∗(e)

Generic Join [23], [21] is a worst-case optimal join al-

gorithm that evaluates queries one vertex at a time. It first

determines an query vertex order σ, and then matches the

query one vertex by one vertex according to the order σ. In
previous studies, they often assume the subquery induced by

the first k query vertices in σ is connected. Then, the algorithm

has the following two basic operators:

Scan: For the first two vertices in the order σ, they corre-

spond to a single query edge, and are evaluated with a SCAN

operator. The operator scans the data graph and find the edges

matching the labels of these two vertices and its corresponding

query edge. Last, the Scan operator outputs each matched edge

as a 2-match.

Extension/Intersection (E/I): After the subquery induced

by the first k (k > 2) vertices in the order σ have been

evaluated, the E/I operator takes matches of k vertices as

input and extends each match to one or more matches of

k + 1 vertices. Given a match μ of k vertices, let μ(i) be the

vertex matching the i-th vertex ?xi in σ (i ≤ k). We extend

μ by intersecting the forward adjacency list of μ(i) for each

?xi →?xk+1 in the query and the backward adjacency list of

μ(i) for each ?xk+1 →?xi in the query. Let the result of this

intersection be the extension set S of μ. The (k + 1)-matches

t0 produces are the Cartesian product of t0 with S.

C. Analysis of Variable-Length Path Query

Based on the AGM bound, we can prove that there are at

most |E(LQE)|�
n
2 �+1 solutions for a variable-length path query

Pn(LQE), which will serve as inspiration for the development

of the new jumping worst-case optimal join technique and

subsequent complexity analysis in the following section. To

prove this, we first prove the lemma as follows.

Lemma 3.1: Given a path π = v0e1v1, ..., vk−1ekvk and its

fractional edge cover ψ∗ corresponding to ρ∗(π), ψ∗(e1) =
ψ∗(ek) = 1.

Proof: Here, we assume that the fractional edge cover

corresponding to ρ∗(π) is ψ∗. According the definition of

fractional edge cover, for v0, it only have one adjacent edge

e1, so ψ
∗(e1) ≥ 1.

If ψ∗(e1) > 1, then we can find out another fractional edge

cover ψ′ as follows.

ψ′(ei) =
{

1, if i = 1,
ψ∗(ei), otherwise.

Obviously,
∑k
i=1 ψ

′(ei) is smaller than
∑k
i=1 ψ

∗(ei), which
conflicts with the fact that ρ∗(π) =

∑k
i=1 ψ

∗(ei) is the

minimum of the weights of all fractional edge covers. Hence,

ψ∗(e1) = 1.
Similarly, we can prove that ψ∗(ek) = 1.
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Then, we can obtain the fractional edge cover number of a

path with n edges as follows.

Theorem 1: Given a path π = v0e1v1, ..., vk−1ekvk, its

fractional edge cover number ρ∗(π) is �k2 �+ 1.
Proof: We first prove that the lower bound of ρ∗(π) is

�k2 �+1. Then, we prove that ρ∗(π) can reach �k2 �+1. Here, we
assume that the fractional edge cover corresponding to ρ∗(π)
is ψ∗.
In the first case, k is an odd number. For each vertex vi

(1 ≤ i ≤ k − 1), according the definition of fractional edge

cover, we have ψ∗(ei) + ψ∗(ei+1) ≥ 1. Thus, we have

k−1∑
i=1

(ψ∗(ei) + ψ∗(ei+1)) ≥ k − 1

⇒ ψ∗(e1) + ψ∗(ek) + 2×
k−1∑
i=2

ψ∗(ei) ≥ k − 1

According to Lemma 3.1, ψ∗(e1) = ψ∗(en) = 1. Thus,

ψ∗(e1)+ψ∗(ek)+2×
k−1∑
i=2

ψ∗(ei)+ψ∗(e1)+ψ∗(ek) ≥ k−1+2

⇒ 2×
k∑
i=1

ψ∗(ei) ≥ k + 1

According to Definition 3.4,
∑k
i=1 ψ

∗(ei) = ρ∗(π). Thus,

2× ρ∗(π) ≥ k + 1⇒ ρ∗(π) ≥ k + 1

2

Note that, since n is an odd number, k+1
2 = �k2 �+1. Therefore,

ρ∗(π) ≥ �k2 �+ 1.
Meanwhile, for an odd number k, to reach �k2 �+1, we can

define the mapping ψ∗ as follows.

ψ∗(ei) =
{

1, if i is an odd number,
0, otherwise.

In the second case, k is an even number. For each vertex

v2×i (1 ≤ i ≤ k−2
2 ), we have ψ∗(e2×i−1) + ψ∗(e2×i+1) ≥ 1.

Thus,

k−2
2∑
i=1

(ψ∗(e2×i−1) + ψ∗(e2×i+1)) ≥ k − 2

2

⇒
k−1∑
i=2

ψ∗(ei) ≥ k − 2

2

According to Lemma 3.1, ψ∗(e1) = ψ∗(ek) = 1. Thus,

k−1∑
i=2

ψ∗(ei) + ψ∗(e1) + ψ∗(ek) ≥ k − 2

2
+ 2

⇒
k∑
i=1

ψ∗(ei) ≥ k

2
+ 1

According to Definition 3.4,
∑k
i=1 ψ

∗(ei) = ρ∗(π). Thus,

ρ∗(π) ≥ k

2
+ 1

Fig. 1. An Extreme Example Graph

Note that, since k is an even number, k
2 + 1 = �k2 � + 1.

Therefore, ρ∗(π) ≥ �k2 �+ 1.
As well, for an even number k, we can reach �k2 � + 1 by

defining the mapping ψ∗ as follows.

ψ∗(ei) =
{

1, if i = 1 or i = k,
1
2 , otherwise.

Finally, we can prove the bound of a variable-length path

query Pn(LQE) as follows.
Theorem 2: Given a graph G = (V,E) and a variable-

length path query Pn(LQE), there are at most |E(LQE)|�
n
2 �+1

solutions.

Proof: As proved in Theorem 1, the fractional edge cover

number of Pn(LQE) is �n2 �+ 1, so the number of results for

Pn(LQE) is at most |E(LQE)|�
n
2 �+1 based on the conclusions

in [8].

IV. JUMPING WORST-CASE OPTIMAL JOINS

Let us first consider the path query P 3(LQE) of the length

constraint 3. To better show its execution, we expand it in the

following way.

?x1
LQ

E−→?x2
LQ

E−→?x3
LQ

E−→?x4 (1)

Existing worst-case optimal joins-based algorithms always

extend a connected subquery by one query vertex adjacent to at

least one vertex in the connected subquery. Thus, they always

generate the results of P 3(LQE) by extending the results of

P 2(LQE). However, according to Theorem 2, then the numbers

of query results for both P 3(LQE) and P 2(LQE) are at most

|E|2. Then, we find that the number of results of P 3(LQE) and

P 2(LQE) are asymptotically equivalent, but existing methods

extend the results of P 2(LQE) to obtain the results of P 3(LQE).
It indicates that there is much room for optimizations.

For example, let us consider an extreme graph as shown

in Fig. 1. For path query P 3({a}), we should first enumerate

the results of P 2(LQE), the number of which is more than

one million as illustrated in Fig. 2. However, most results of

P 2(LQE) are unnecessary and cannot contribute to final results

of P 3(LQE). There are only one thousand results for P 3(LQE).

However, we can evaluate P 3(LQE) in another way. We

can first do two scans for both query edges ?x1
LQ

E−→?x2 and

?x3
LQ

E−→?x4. Then, we create a hash table of all of the matches

of ?x3
LQ

E−→?x4 on the vertices matching query vertex ?x3.
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Fig. 2. Execution of Existing Worst-Case Optimal Join Technique

When we do extension from the matches of ?x1
LQ

E−→?x2 to

the vertices matching ?x3, if the vertices matching ?x3 are not

contained in the hash table for ?x3
LQ

E−→?x4, we can skip the

matches. This join technique is called the jumping worst-case
optimal join technique in this paper.

Note that, the above worst-case optimal join technique is

still a worst-case optimal join, because it still matches ?x3 at

a time using the intersection between all edges adjacent to ?x3.
Indeed, it is equivalent to evaluate the query using the query

plan σ =<?x1, ?x2, ?x4, ?x3 >. The technique can make

the query plan σ =<?x1, ?x2, ?x4, ?x3 > be more efficient

than existing worst-case optimal joins-based algorithms for the

variable-length path queries, especially for the data graphs that

contains many paths of two edges but few paths of three edges.

For the path query in Equation 1, existing worst-case

optimal joins-based algorithms rarely generate a plan as σ =<
?x1, ?x2, ?x4, ?x3 >. This is also understandable, because

for the query plan σ =<?x1, ?x2, ?x4, ?x3 > the previous

algorithms should extend from the candidate matches of ?x2
and ?x4 and do intersection over the adjacent lists of candidate

matches of ?x2 and ?x4. The candidate matches of ?x4 in this

plan can be any vertices in the graph.

Fig. 3 shows the execution of the jumping worst-case

optimal join technique for P 3({a}) over the data graph in

Fig. 1. Here, we first scan the data graph to get the matches

of ?x1
{a}−→?x2 and ?x3

{a}−→?x4. These two query edge are

the same, so they have the same set of matches and there are

about two thousand matches. Then, we build up a hash table

for the matches of ?x3
{a}−→?x4, where the keys are the vertices

matching ?x3 and the values are the matches of ?x3
{a}−→?x4.

The hash table does not contain v1001, v1002, ..., v1998 or v1999,
so we can avoid the intermediate matches of two edges ending

with them.

In addition, the characteristic of the variable-length path

query can make the above technique be more useful. The

definition of the variable-length path query require that the

label of all edges in the matched paths should meet the same

label constraint, which ensure that the matches of both query

edges ?x1
LQ

E−→?x2 and ?x3
LQ

E−→?x4 are the same. Then, the

generation of matches of both query edges ?x1
LQ

E−→?x2 and

?x3
LQ

E−→?x4 can finish by scanning the graph at one time.

Finally, we give the formal description of our join technique,

Fig. 3. Execution of Our Jumping Worst-Case Optimal Join Technique

named jumping worst-case optimal join (J-WCO) (Algorithm

1), which extends the basic extension/intersection operator

in generic join for variable-length path queries. Given a

path query Pn(LQE) of n edges, it can be divided into two

subqueries, subquery P k(LQE) of first k edges and subquery

Pn−k−1(LQE) of last n − k − 1 edges (1 ≤ k ≤ n − 1). We

first evaluate P k(LQE) and P
n−k−1(LQE), and then build up a

hash table of results of Pn−k−1(LQE) (Lines 1-4 in Algorithm

1). Then, we extend from the adjacent list of the matches of

last variable in P k(LQE) to get matches of the first variable in

Pn−k−1(LQE) and check whether it is in the hash table (Lines

5-9 in Algorithm 1). The join technique skips one interval

edge to join the results of P k(LQE) and Pn−k−1(LQE) edges

to form the results of a path query of n edges.

Algorithm 1: Jumping Worst-Case Optimal Join Al-

gorithm

Input: Resuts of Two Subqueries P k(LQ
E) and

Pn−k−1(LQ
E) of P

n(LQ
E), �P k(LQ

E)� and

�Pn−k−1(LQ
E)�, and we assume that �Pn−k−1(LQ

E)�
is smaller than �Pn−k−1(LQ

E)�
Output: Results of Pn(LQ

E), �Pn(LQ
E)�

1 Recursively compute �P k(LQ
E)� and �Pn−k−1(LQ

E)�;

2 Initialize a hash map ResMap for �Pn−k−1(LQ
E)�;

3 for each match r in �Pn−k−1(LQ
E)� do

4 Insert a mapping in ResMap, where the key is the
match of the first variable r[1] and the value is r;

5 for each match r in �P k(LQ
E)� do

6 Extends r to matches of P k+1(LQ
E), denoted as

�P k+1(LQ
E)�r;

7 for each match r′ in �P k+1(LQ
E)�r do

8 if match of the last variable r′[k + 1] in r′ is in
ResMap then

9 Join r′ with ResMap(r′[k + 1]) and add

matches into �Pn(LQ
E)�;

10 Return �Pn(LQ
E)�;

Complexity Analysis. For space complexity, the jumping

join technique requires constructing a hash table for either the

results of P k(LQE) (�P
k(LQE)�) or the results of P

n−k−1(LQE)

(�Pn−k−1(LQE)�). In implementing the jumping join tech-

nique, we typically choose the smaller of �P k(LQE)� and

�Pn−k−1(LQE)� to construct the hash table, resulting in a

space cost of min{|�P k(LQE)�|, |�Pn−k−1(LQE)�|}. Regarding
time complexity, as discussed before, since the jumping join

technique is still a specialized form of worst-case optimal

3315

Authorized licensed use limited to: Peking University. Downloaded on August 26,2024 at 05:07:08 UTC from IEEE Xplore.  Restrictions apply. 



join, its time complexity is O(|E(LQE)|�
n
2 �+1), as discussed

in Theorem 2.

Difference from Hash Join. Although the jumping worst-

case optimal join technique looks like the hash join and also

utilizes the hash table, it is different from existing hash join

techniques. The hash join techniques is to join two relations

sharing some common variables and build up the hash table

using the matches of the join variables. However, in the

jumping worst-case optimal join technique, there is indeed no

common variables between P k(LQE) and Pn−k−1(LQE). Our
join technique is to integrate the extension operator with the

intersection operator using a hash table.
V. COST MODEL & EXECUTION PLAN

In this section, we discuss how to model the cost of

different join techniques and propose a dynamic programming

optimization to find the optimal execution plan. Note that, in

this paper, our primary focus lies in extending existing worst-

case optimal join techniques. Thus, our discussions are just

about integrating the proposed jumping worst-case optimal

join with other worst-case optimal join techniques. For the

combination of our jumping worst-case optimal join and other

join techniques, we can still use some previous methods [21].

A. Cost Model

Learning from the techniques in relational database systems

[24], we can use simple formulas for estimating the cardinali-

ties of the results of the join operator, based on its selectivity.

The selectivity factor of an operator, that is, the proportion of

tuples of an operand relation that participate in the result of

that operation, is denoted by SF . It is a real value between

0 and 1, where a low value corresponds to a good (or high)

selectivity and a high value to a bad (or low) selectivity. Thus,

the cardinality of join is as follows.

card(R �� S) = SF × card(R)× card(S) (2)

Then, the key issue to formulate the cost models of generic

join and our jumping worst-case optimal join technique is how

to estimate their selectivity factors. Based on Equation 2, the

formula for estimating the selectivity factors is as follows.

SF =
card(R �� S)

card(R)× card(S) (3)

Here, we first use the basic situation of generic join and

our jumping worst-case optimal join technique to estimate the

selectivity factors. For generic join, the basic situation is to

extend the match of P 1(LQE) to P
2(LQE). For our jumping join

technique, because a path query Pn(LQE) should be divided

into two subqueries P k(LQE) and Pn−k−1(LQE) (k ≤ 1), the

basic situation is P 3(LQE) which can be divided into two

subqueries of P 1(LQE). For P
2(LQE) and P

3(LQE), the numbers

of query results are both |E(LQE)|2 as discussed in Theorem

2, so the divisors in the formula for estimating their selectivity

factors are |E(LQE)|2.
For generic join, if a partial match of P 1(LQE) can be

extended to the match of P 2(LQE), the last vertex in the partial

match should be a vertex that is the heads of another edges

Fig. 4. Example Hub Vertices

in E(LQE). Meanwhile, it is obvious that the last vertex in

the partial match is the tails of some edges in E(LQE). This

indicates that the cardinality of P 2(LQE) highly depends on the

set of vertices which can be both heads of some edges and

tails of some other edges. We call the vertices hub vertices
and denote them as VH(LQE).

VH(LQE) = {v | ∃w1, w1 → v ∈ E∧∃w2, v → w2 ∈ E(G[LQE ])}
For example, we highlight the two hub vertices v and v2000 in

our extreme example graph in Fig. 4. v is tail of edges from

v1, ..., v1000 and head of edges to v1001, ..., v2000, while v2000
is tail of edge from v and head of edges to v′.
The above discussion concerning hub vertices can also be

extended to queries of other lengths. If a match of P k(LQE)

can be extended to a match of P k+1(LQE), the final vertex in

the match of P k(LQE) should be a hub vertex, serving as the

heads of other edges in E(LQE). Consequently, the distribution
of edges adjacent to hub vertices becomes crucial for generic

join to extend matches of P k(LQE) to matches of P k+1(LQE).
Here, we assume that the distribution of edges adjacent

to hub vertices is uniform, and all edges are independent,

meaning that the edges adjacent to one hub vertex does

not affect other edges adjacent to any hub vertex. We use

N−(VH(LQE)) and N+(VH(LQE)) to denote the in-edges and

out-edges of hub vertices. Then, the number of matches of

P 2(LQE) that can be extended from matches of P 2(LQE) is
(|N+(VH(LQ

E))|×|N−(VH(LQ
E))|)

|VH(LQ
E)| .

Hence, we can estimate the selectivity factor SFGJ for

generic join as follows.

SFGJ =
(|N+(VH(LQE))| × |N−(VH(LQE))|)/|VH(LQE)|

|E(LQE)|2
(4)

In contrast, for our jumping worst-case optimal join tech-

nique, if a partial match of P 1(LQE) can be extended and

intersected with the partial match of P 1(LQE), the last vertex

in the partial match of P 1(LQE) should be a vertex that is the

heads of another edges in E(LQE) and the first vertex in the

partial match of P 1(LQE) should be the tails of some edges

in E(LQE). This indicates that the join cost of our technique

highly depends on the set of edges where their heads are tails

of some other edges or their tails are heads of some other

edges, which is denoted as EH(LQE).

EH(LQE) = {u→ v | ∃w1, w1 → u ∈ E∧∃w2, v → w2 ∈ E(LQE)}
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Fig. 5. Example Hub Edges

For example, we highlight the hub edge v
{a}−→ v2000 in our

extreme example graph in Fig. 5. v is tail of edges from

v1, ..., v1000 and v2000 is head of edges to v′.
The above discussion concerning hub edges can also be

extended to queries of other lengths. For a variable-length path

query Pn(LQE), if a match of P k(LQE) (k < n − 1) can be

extended and intersected with the match of Pn−k−1(LQE), the

final vertex in the match of P k(LQE) should be connected to

the first vertex in the match of Pn−k−1(LQE) via a hub edge.

Consequently, the distribution of edges adjacent to hub edges

becomes crucial for jumping worst-case optimal join to join

matches of P k(LQE) with matches of Pn−k−1(LQE).
Similar to generic join, we also assume that the distribution

of edges adjacent to hub edges is uniform, and all edges are

independent, meaning that the edges adjacent to one hub edge

does not affect other edges adjacent to any hub edge. We use

N−(EH(LQE)) and N+(EH(LQE)) to denote the in-edges of

hub edges’ heads and out-edges of hub edges’ tails. Then,

the number of matches of P 3(LQE) that can be generated by

jumping worst-case optimal joins of matches of P 1(LQE) is
(|N+(EH(LQ

E))|×|N−(EH(LQ
E))|)

|EH(LQ
E)| .

Thus, we can estimate the selectivity factor SFJ−WCO for

our jumping worst-case optimal join technique as follows.

SFJ−WCO =
(|N+(EH(LQE))| × |N−(EH(LQE))|)/|EH(LQE)|

|E(LQE)|2
(5)

To estimate the selectivity factors SFGJ and SFJ−WCO, we

need to compute the numbers of edges adjacent to hub vertices

and edges of each edge label. This can be computed in both

online and offline. For both generic join and our jumping join,

the first step is to evaluate the path query of a single query edge

with a SCAN operator. It is easy for us to compute the edges

adjacent to hub vertices and edges by scanning the results of

the SCAN operator once. We can also compute and maintain

the selectivity factors for each edge label offline. Given a set

of edges with labels in LQE , since we just need to scan the

edges to compute the selectivity factors, the time complexity

is O(|E(LQE)|).

B. Dynamic Programming Query Plan Generation

For each n-edge path query Pn(LQE), its lowest cost query
plan can be in two different ways:

• It extends Pn−1(LQE) through the Extension/Intersection

operator in Generic Join;

(a) (b)

Fig. 6. Query Plans for P 3({a})

• It merges P k(LQE) and Pn−k−1(LQE) (1 ≤ k ≤ n − 2)
through our jumping worst-case optimal join technique;

Then, based on the selectivity factors of SFGJ and

SFJ−WCO, the costs of query plans generated in the above

two ways can satisfy the following recurrence.

card(Pn(LQE)) =

min
1≤k≤n−2

{SFGJ × card(Pn−1(LQE))× card(P 1(LQE)),

SFJ−WCO × card(P k(LQE))× card(Pn−k−1(LQE))}
(6)

Here, a query plan of Pn(LQE) can be represented as a

directed acyclic graph (DAG), denoted as QP (Pn(LQE)). Each

vertex vp in QP (Pn(LQE)) corresponds to the plan of path

query P k(LQE) (1 ≤ k ≤ n), and there are at most two

edges pointing to vp. If a path query P k(LQE) is extended

to P k+1(LQE) through Generic Join, the vertex of P k(LQE)
has an edge labelled with Generic Join (GJ) to the vertex of

P k+1(LQE); if two path queries P k1(LQE) and P k2(LQE) join

together through our join technique, their vertices have edges

labelled with our jumping worst-case optimal join technique

(J-WCO) to the vertex of P k1+k2+1(LQE). For example, there

are two possible query plans for P 3({a}) and their corre-

sponding DAGs are shown in Fig. 6.

It is obvious that there is only one vertex that has no in-

coming edges from other vertices in the DAG for a query plan

and corresponds to P 1(LQE). P
1(LQE) is computed through the

Scan operator but not the extension or join operator. For a path

query Pn(LQE) of a single constraint, there is also only one

vertex that has no outgoing edges and corresponds to Pn(LQE).

Based on the recurrence in Equation 6, we can design a

dynamic programming algorithm that evaluates the recurrence

to find the optimal query plan, as described in Algorithm 2.

The input to the algorithm is a set of queries expressed as

a path query of n edges, Pn(LQE). Initially, we create a map,

QPCMap, to maintain the path query and its corresponding

cardinality (Line 1 in Algorithm 2). The cardinality of P 1(LQE)
can be obtained firstly by using a SCAN operator in both

generic join and our jumping join, so it is directly added into

QPCMap (Line 2 in Algorithm 2). We also initialize the

query plan of QP (P i(LQE)) with a vertex corresponding to

P 1(LQE) (Line 3 in Algorithm 2). Then, starting from i = 3
up to n, for each path query of i edges, we find the lowest

cost plan to compute P i(LQE) in two different ways (Lines

4-10 in Algorithm 2): the query plan of P i(LQE) is extended

from the results of P i(LQE) by the E/I operator in generic

join; or the query plan of P i(LQE) is get from the results of

P k(LQE) and P
i−k−1(LQE) by our jumping join technique. The

cardinality of P i(LQE) is also added into QPCMap (Line 11

in Algorithm 2). Last, we generate the DAG of the optimal
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(a) (b)

Fig. 7. Query Plans for P 5({a})

query plan according to the way of computing the lowest cost

plan (Lines 12-16 in Algorithm 2).

Algorithm 2: Dynamic Programming Query Plan Gen-

eration

Input: A Path Query of n Edges, Pn(LQ
E)

Output: The Optimal Query Plan QP (Pn(LQ
E))

1 Initialize a map QPCMap;

2 Add P 1(LQ
E) and its cardinality in QPCMap;

3 Initialize a vertex in QP (Pn(LQ
E)) corresponding to

P 1(LQ
E);

4 for i = 2 to n do
5 minC ← SFGJ ×QPCMap(P i−1(LQ

E))×
QPCMap(P 1(LQ

E));
6 k ← 0;
7 for j = 1 to i− 1 do
8 if minC > SFJ−WCO ×QPCMap(P j(LQ

E))×
QPCMap(P i−j−1(LQ

E)) then
9 minC ← SFJ−WCO ×QPCMap(P j(LQ

E)×
QPCMap(P i−j−1(LQ

E)));
10 k ← j;

11 QPCMap(P i(LQ
E)← minC;

12 Initialize a vertex in QP (Pn(LQ
E)) corresponding to

P i(LQ
E);

13 if k = 0 then
14 Add an edge with label Generic Join in

QP (Pn(LQ
E)) from P i−1(LQ

E) to P i(LQ
E);

15 else
16 Add two edges with label jumping Join in

QP (Pn(LQ
E)) from P k(LQ

E) and P i−k−1(LQ
E) to

P i(LQ
E);

17 Remove the vertices without outgoing edges in

QP (Pn(LQ
E)) except the vertex of Pn(LQ

E);
18 Return QP (Pn(LQ

E));

Here, we should note that the above algorithm does not

guarantee the worst-case optimality. For example, if the query

plan for P 5({a}) in Fig. 7(a) is selected where the results

of two P 2({a}) are joined through our jumping worst-case

optimal join technique, then the number of results for P 5({a})
becomes at most O(|E(LQE)|5). This is because the number of

results for P 2({a}) can be at most O(|E(LQE)|2) and the limit

of SFJ−WCO can be 1. However, this query plan probably

cannot be selected as the optimal plan, if the number of results

for P 2({a}) is so large. We can select the query plan in Fig.

7(b) as the optimal one, which can guarantee the worst-case

optimality.

1) Extension to Path Query with Range Constraint: Here,

we discuss how to extend our plan generation method to

generate the query plan of a path query with range constraints

P [m,n](LQE).

Given a path query P [m,n](LQE), it can be deemed as m−

(a) QP (P 6({a})) (b) QP (P 7({a}))

Fig. 8. Query Plans QP (P 6({a})) and QP (P 7({a}))
n+1 path queries from Pm(LQE) to P

n(LQE). In our dynamic

programming query plan generation algorithm (Algorithm 2),

when we compute the optimal query plan for Pn(LQE), we
enumerate and maintain the optimal query plan for path query

of any length k (1 ≤ k ≤ n). Thus, the query plans from

Pm(LQE) to Pn(LQE) can be generated after our query plan

generation. We can merge these query plans together to get

the query plan of P [m,n](LQE).
Then, different from the query plan for a path query of

single constraint, there may be multiple vertices that have

no outgoing edges and correspond to the query plans from

Pm(LQE) to P
n(LQE).

For example, let us consider P [6,7]({a}). We can directly

use our query plan generation algorithm (Algorithm 2) to find

out the query plans of both P 6({a}) and P 7({a}) during

generating the query plan of P 7({a}). Here, we assume that

the query plans for P 6({a}) and P 7({a}) are shown in Figures
8(a) and 8(b). Then, they can be merged with the plan of

P [6,7]{a}) as shown in Fig. 9.

VI. PARALLELISM

To further improve the performance of path query evalu-

ation, we discuss how to exploit the intra-query parallelism

within the query evaluation, which can break a single path

query plan into some pieces and execute them in parallel.

For a path query, its results can be computed by joining two

path queries of smaller lengths via our jumping-like worst-

case optimal join technique. If the two path queries of smaller

lengths are independent on each other, they can be evaluated

in parallel. For example, for the query plan for QP (P 6({a}))
in Figure 8(a), P 6({a}) are computed by joining the results

of P 2({a}) and P 3({a}), while P 2({a}) and P 3({a}) can be

evaluated independently. Thus, we can first compute the results

of P 2({a}) and P 3({a}) in parallel, and then join their results

to obtain the final results.

Concretely, given the DAG QP (P [m,n](LQE)) of the query

plan for the path query P [m,n](LQE), if there is no a path

from P i(LQE) to P j(LQE) and P j(LQE) to P i(LQE), then

P i(LQE) and P j(LQE) can be evaluated independently. Thus,

we can find all independent path queries of smaller lengths in

QP (P [m,n](LQE)) to schedule and parallelize the evaluation of

P [m,n](LQE).
In this paper, we propose a parallel query execution al-

gorithm in Algorithm 3, which parallelize the queries in

QP (P [m,n](LQE)) layer by layer. The algorithm is an iterative
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Fig. 9. Query Plan QP (P [6,7]({a}))
algorithm. At each iteration, we find a set S of path queries in

QP (P [m,n](LQE)) which have no incoming edges (Lines 3-4 in

Algorithm 3). Then, we evaluate these path queries of smaller

lengths in parallel (Line 5 in Algorithm 3), and remove these

queries and all its outgoing edges in QP (P [m,n](LQE)) (Line

6-7 in Algorithm 3).

Algorithm 3: Parallel Query Execution

Input: QP (P [m,n](LQ
E))

Output: �P [m,n](LQ
E)�

1 S ← ∅;
2 while QP (P [m,n](LQ

E)) is not empty do
3 for each vertex P i(LQ

E) without incoming edges in
QP (P [m,n](LQ

E)) do
4 Add P i(LQ

E) into S;
5 Execute all path queries in S in parallel;

6 for each vertex P i(LQ
E) in S do

7 Remove P i(LQ
E) and all its outgoing edges in

QP (P [m,n](LQ
E));

8 if m ≤ i ≤ n then
9 Add �P i(LQ

E)� into �P [m,n](LQ
E)�;

10 S ← ∅;
11 Return �P [m,n](LQ

E)�;

For example, let us consider the query plan of

QP (P [6,7]({a})) in Figure 9. At the first iteration, the only

one vertex without incoming edge in QP (P [6,7]({a})) is

P 1({a}). It is added to S for execution and all its outgoing

edges are removed. Then, at the second iteration, there are two

vertices without incoming edge P 2({a}) and P 3({a}). These
two queries are added into S and executed in parallel. After

P 2({a}) and P 3({a}) are removed in QP (P [6,7]({a})), there
are two remaining vertices without incoming edge P 6({a})
and P 7({a}). They are executed in parallel, and the results

are added to the set of final results to return.

VII. EXTENSION FOR PATH QUERIES WITHOUT LENGTH

LIMIT

In real query logs, we find that a more widely used kind

of query is the query with a wildcard, which corresponds to

the path query without the length limit, i.e. P [1,+∞](LQE).
Since the kind of query do not limit the length, paths of any

lengths between two variables should be returned. Thus, we

can incrementally generate the query plans from 1 to infinity

and merge these plans together. Note that, the query plan

generation and query execution can be parallelized. If the

results of all subqueries used to be joined to the results of

a query have been found out, we directly initialize a thread to

Fig. 10. Query Plan QP (P [1,+∞]({a}))
execute the join. Figure 10 shows a query plan for the path

query without the length limit.
VIII. SYSTEM IMPLEMENTATION

We implement our new techniques on top of a property

graph system, Graphflow [16], and an RDF graph system,

gStore [30] . We release our extensions on both Graphflow1

and gStore2.

Graphflow is a single machine, multi-threaded, main mem-

ory graph DBMS implemented in Java. The system supports

a subset of the Cypher language [12]. Graphflow indexes both

the forward and backward adjacency lists and store them in

sorted vertex ID order. Although Cypher supports variable-

length path queries, the original version of Graphflow does not

support variable-length path queries. We seamlessly integrate

our proposed methods into Graphflow by implementing a

jumping worst-case optimal join operator. Specifically, when

handling a variable-length path query, we initially utilize

Graphflow’s Scan function to fetch edges that satisfy the label

constraints. Then, leveraging the retrieved edges, we calculate

the selectivity factors of hub vertices and edges, followed by

employing our dynamic programming algorithm to generate

the query plan. Finally, guided by the query plan, we use both

Graphflow’s worst-case optimal join operator and our jumping

worst-case optimal join operator to obtain the final results.

gStore is a disk-based RDF graph system which stores and

retrieves RDF graphs from a graph database perspective. It

follows the “filter-and-join” framework. In the offline phase,

it first designs a vertex signature encoding method and build

up an index named VS*-tree. In online phase, gStore first use

the index to filter the candidates of each query vertex and

then join them together to form the final results. As well,

although SPARQL 1.1 supports variable-length path queries,

the original version of gStore does not support variable-length

queries. We embed our proposed techniques during joining

the candidates of query vertices. In gStore, we implement

a class named JumpingLikeJoin for our jumping worst-case

optimal join technique. Initially, we retrieve the edges with

the specified labels to initialize the JumpingLikeJoin class,

utilizing the KV-store interface provided by gStore. Then, we

calculate the selectivity factors of hub vertices and edges and

formulate the query plan accordingly. Lastly, we implement

the execution of the query plan to obtain the final results.
IX. EXPERIMENTAL RESULTS

We evaluate our approach on a range of different graph

datasets, including both synthetic and real-world graphs. These

1https://github.com/15197580192/jumping-wco-join-graphflow
2https://github.com/15197580192/jumping-wco-join/
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TABLE I
STATISTICS OF PROPERTY GRAPHS

Dataset |V | |E| |L|
LDBC 2M 586,530 2,050,261 20

LDBC 12M 1,844,718 12,399,300 20
LDBC 26M 4,010,012 26,319,840 20

LiveJournal 4,847,571 68,993,773 80

TABLE II
STATISTICS OF RDF GRAPHS

Dataset |V | |E| |L|
DBpedia 100M 19,027,155 120,336,646 52,603
DBpedia 500M 65,588,189 512,213,528 73,444

DBpedia 1B 139,493,254 1,111,481,066 124,034

YAGO2 21,073,153 284,417,966 98

datasets can be further classified into two models: property

graphs and RDF graphs. Tables I and II present the statistics

for these graph datasets.

For property graphs, we utilize a well-established bench-

mark, LDBC [7], to generate three datasets of edges ranging

from 2 million to 20 million for assessing the scalability of

the system. Additionally, we download a real-world property

graph LiveJournal, through SNAP [19], which lacks edge

labels. We randomly assign edge labels to them and vary the

number of labels from 20 to 100, in increments of 20, to study

the impact of the number of labels. By default, the number of

labels is 80.

For RDF graphs, we utilize DBpedia [18] to get three

datasets for evaluating the scalability of the system. DBpedia

is a project that extracts RDF data from Wikipedia, and

multiple versions of DBpedia are available, regularly updated

to reflect changes in Wikipedia content. For our experiments,

we use three versions of DBpedia containing 100 million,

500 million, and 1 billion triples, denoted as DBpedia 100M,

DBpedia 500M, and DBpedia 1B, respectively. DBpedia 100M

is derived from DBpedia version 3.4, DBpedia 500M is from

version 3.8, and DBpedia 1B is from version 2014. By default,

we use the DBpedia 100M dataset. Additionally, we test our

methods on another real RDF graph dataset, YAGO2 [13].

For LiveJournal, we randomly select edge labels to construct

5 queries. However, for LDBC, DBpedia, and YAGO2, where

edge labels are not randomly assigned and only a limited

number of edge labels exhibit transitivity, we are only able

to formulate one transitive edge label query for each dataset.

Subsequently, we execute each query multiple times and report

the average query response time. Specifically, for LDBC, we

employ one of the LDBC benchmark queries named IS2 as a

template, systematically generating queries with length limits;

for DBpedia, we use the property KNOWS; for DBpedia, we
use the property influencedBy; for YAGO2, our selection is

the property hasInternalWikipediaLinkTo.

Our extensions of gStore and Graphflow are denoted as

GraphflowP and gStoreP , of which the implementation de-

tails are in Section VIII. For property graphs, we compare

GraphflowP with the most well-known disk-based property

graph system, Neo4j [2], and the original version of Graphflow

[16]. For RDF graphs, we compare gStoreP with a disk-based

RDF graph system supporting the worst-case optimal join,

Jena-LFJ [14], and the original version of gStore [30]. We
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Fig. 11. Efficiency Test of the Proposed Techniques on Property Graphs

also implement a baseline that processes a variable-length

path query by traversing the graph from the query vertex

candidates, denoted as Graphflow-Search and gStore-Search.

Further, when evaluating our proposed parallel optimization,

we add a baseline processing a variable-length path query by

executing each length as a join query and then taking the

union, denoted as Graphflow-UNION and gStore-UNION.

All experiments are conducted on a single core of an

CentOS 8.4 computer, with 32 CPUs, 313GB RAM and 2TB

magnetic disk.

A. Experiments on Property Graphs

1) Efficiency Test: In this experiment, we assess the ef-

fectiveness of the proposed techniques on different property

graphs, using queries with length limits from 3 to infinity.

Fig. 11 shows the results of the experiments conducted on

both LDBC and LiveJournal. Note that, queries with length

limits exceeding 7 result in an excessive number of results in

LiveJournal, causing query response times to surpass the time

limit. As a result, we only present the results for queries with

length limits exceeding 7 in LDBC.

In general, GraphflowP consistently demonstrates a capacity

to reduce query response times across different graphs when

compared to the other three systems. This efficacy is primarily

attributed to the reduction in the number of intermediate re-

sults facilitated by our jumping worst-case optimal technique.

Particularly noteworthy is the observation that, for variable-

length path queries with lengths of 6 and 7 on LiveJournal,

GraphflowP can outperform Graphflow by a factor of two.

2) Scalability Test: In this section, we employ the LDBC

dataset to assess the scalability of our method by varying

the dataset sizes. Additionally, we leverage the LiveJournal

dataset to evaluate scalability by varying the number of labels

in both data graphs and queries, since only the labels in the

LiveJournal dataset are randomly assigned. Last, we also use

LiveJournal to assess performance while varying the number

of cores for parallelism.

a) Varying Graph Size: In this experiment, we utilize

LDBC to examine the influence of dataset size on our

techniques. We systematically explore the impact of varying

dataset sizes, generating three LDBC graphs with edges rang-

ing from 2million to 26million. The outcomes of this analysis,

varying the number of length limits from 3 to 7, are presented
in Fig. 12(a).
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Fig. 12. Scalability Test on Property Graphs

Broadly, as the dataset size increases, there is a discernible

rise in the number of intermediate results, leading to an associ-

ated increase in query response times. This trend is consistent

with the expected behavior of systems handling larger datasets,

highlighting the importance of scalability considerations in the

deployment of our techniques.

b) Varying Number of Labels on Graphs: In this ex-

periment, we analyze the influence of the number of labels

using LiveJournal, given its randomly assigned labels. We

systematically vary the number of labels from 20 to 80, in
increments of 30, and present the outcomes in Fig. 12(b).

Broadly speaking, a reduced number of labels on graphs

implies that a query edge maps to a larger pool of candidates.

Consequently, the same variable-length path query becomes

more selective within a graph characterized by fewer labels.

This heightened selectivity leads to a decrease in the number

of matches, resulting in fewer computations and, consequently,

improved performance for the proposed method.

c) Varying Number of Labels on Queries: In this exper-

iment, we use LiveJournal to test the influence of the number

of labels on queries, given its randomly assigned labels. We

vary the number of labels from 1 to 5 and test queries of the

length limit from 3 to 7. The results are shown in Fig. 12(c).

Generally speaking, with an increase in the number of labels

on queries, each query edge tends to map to a larger pool of

candidates. Thus, the variable-length path query becomes less

selective, leading to a higher number of matches. This tends

to result in longer query response times.

d) Varying Number of Cores: In this experiment, we also

use LiveJournal to evaluate performance while varying the

number of cores for parallelism. We explore a range of 1 to

3 cores with each core corresponding to one thread and test

queries with length limits from 3 to 7. The results are depicted
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Fig. 13. Efficiency Test of Parallelism on Property Graphs

in Fig. 12(d).

Generally speaking, as the number of cores increases,

so does the level of parallelism in evaluating a variable-

length path query. This effect is particularly pronounced due

to our parallelism optimization, which enables intra-query

parallelism by processing different segments of the query

simultaneously. Thus, a larger number of cores tends to yield

shorter query response times.

3) Evaluation of Our Proposed Optimizations: In this ex-

periment, we employ the LiveJournal dataset to investigate the

impact of the parallelism optimization discussed in Section

VI. The results of this experiment are presented in Fig. 13.

Two baselines are compared, where the first one denoted as

GraphflowP -Serial does not our optimization of parallelism

and the second one denoted as Graphflow-UNION processes

a variable-length path query by executing each length as a join

query and then taking the union.

It is noteworthy that the parallelism technique outlined in

Section VI can only be employed when the length limit for a

variable-length path query is not smaller than 4. Therefore, in

this experiment, we specifically vary the length limit of queries

from 4 to 7. As depicted in Fig. 13, the optimization proposed

in Section VI consistently enhances query performance com-

pared to GraphflowP -Serial and Graphflow-UNION.

B. Experiments on RDF Graphs

1) Efficiency Test: In this experiment, we assess the opti-

mization techniques introduced in the paper on RDF graphs.

We also systematically vary the length limit for queries from 3
to infinity. Fig. 14 shows the results on different graphs. Note

that, queries with length limits exceeding 7 yield an excessive

number of results in YAGO2, causing query response times to

exceed the designated time limit. As a result, we solely report

the response times of queries with length limits exceeding 7
in DBpedia.

Analogous to the findings in the property graph experiment,

gStoreP consistently outperforms gStore and gStore-Search

when leveraging our techniques. Furthermore, gStoreP demon-

strates competitive efficiency with Jena-LFJ, where Jena-LFJ

supports worst-case optimal joins. This experiment under-

scores the significant performance enhancement achieved by

the optimized gStoreP system for variable-length path queries.

Notably, in YAGO2, when the query length is between 3 and

5, gStoreP exhibits a remarkable performance improvement,
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Fig. 15. Scalability Test of the Proposed Techniques on RDF Graphs

surpassing gStore by nearly 80% and outperforming Jena-LFJ

by one order of magnitude. This noteworthy enhancement

is attributed to the inherent selectivity of real RDF graphs

like DBpedia and YAGO2. As the path length increases,

the number of query results tends to decrease in most real

RDF graphs. A variable-length path query with a smaller

length limit maps to a larger set of results, leading to an

augmented presence of irrelevant intermediate results. Our

method efficiently circumvents the computationally intensive

matching process for these irrelevant results, contributing to

the observed performance gains.

2) Scalability Test: In this section, we utilize the DBpedia

dataset to evaluate the scalability of our method by systemat-

ically varying the dataset sizes. Notably, in real RDF graphs

and their logs such as DBpedia and YAGO2, properties are

not randomly assigned. Consequently, we do not conduct ex-

periments involving the variation of the number of properties.

a) Varying Graph Size: In this experiment, we assess the

impact of dataset size on our techniques within the domain of

RDF graphs. Using three DBpedia graphs with sizes from 10

million to 100 million edges, we study the scalability of our

method under varying dataset sizes. The results, considering

length limits ranging from 3 to 7, are depicted in Fig. 15.

The observed linear increase in query time across the

three datasets indicates that the method proposed in this

paper adeptly accommodates dataset expansion within the

same dataset type. Consequently, we deduce that the proposed

method consistently upholds robust query performance across

different scales of datasets belonging to the same type. This

finding underscores the scalability and adaptability of our

techniques in the context of RDF graphs.

3) Evaluation of Our Proposed Optimizations: In this ex-

periment, we employ the DBpedia 100M dataset to evaluate

the impact of the parallelism optimization discussed in Section
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Fig. 16. Efficiency Test of Parallelism on RDF Graphs

VI on RDF graphs. There are also two baselines for compar-

ison, The first one denoted as gStoreP -Serial does not our

optimization of parallelism and the second one denoted as

gStore-UNION processes the query by executing each length

as a join query and then taking the union.

The outcomes, depicted in Fig. 13, are similar to those

observed in property graphs. The optimization proposed in

Section VI consistently enhances query performance across

both RDF and property graphs.

X. CONCLUSION AND FUTURE WORK

In this paper, we present a novel worst-case optimal join

technique, called jumping worst-case optimal join, for pro-

cessing variable-length path queries. To integrate this proposed

join technique with existing join techniques, we develop a

cost model that enables us to devise a dynamic programming

optimization approach for finding the most efficient query

plan. Moreover, we introduce several optimizations to leverage

intra-query parallelism during the evaluation process. To show

the effectiveness of our techniques, we implement them in

two graph systems: Graphflow, a property graph system, and

gStore, an RDF graph system. Through extensive experiments,

we verify the superiority of our proposed techniques.

While jumping worst-case optimal join can be extended

to handle general queries or even queries on hybrid-type

databases, its superiority for them may not be as high as in

variable-length path queries. This extension necessitates the

presence of a substructure occurring multiple times within the

query. Then, this substructure is executed once and jumping

worst-case optimal join is employed to rapidly join the results.

In a variable-length path query, the substructure is typically

evident as an edge. However, in general queries or queries

on hybrid-type databases, the repeated occurrence of such a

substructure may not be guaranteed. Thus, the extension of

this technique requires further study.
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