
3600 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 7, JULY 2024

Vertex Encoding for Edge Nonexistence
Determination With SIMD Acceleration

Hangyu Zheng , Youhuan Li , Member, IEEE, Fang Xiong , Xiaosen Li , Lei Zou , Peifan Shi ,
and Zheng Qin

Abstract—We propose to design vertex encoding for determina-
tions of no-result edge queries that should not be executed. Edge
query is one of the core operations in mainstream graph databases,
which is to retrieve edges connecting two given vertices. Real-world
graphs may be too large to be stored in memory and frequently
accessing edge data on disk usually incurs much overhead. The
average degree of real-world graph tends to be much less than the
vertex number, and edges may not exist in most pairs of vertices.
Efficiently avoiding no-result edge query executions will certainly
improve the performance of graph database. In this article, we
propose a new and important problem for determining no-result
edge queries: vertex encoding for edge nonexistence determination
(VEND, for short). We build a low dimensional vertex encoding
for all vertices, and we can efficiently determine most vertex pairs
that are connected by no edges just with their corresponding codes.
The encoding can be efficiently adjusted when data updates hap-
pen. With VEND, we can utilize in-memory efficient operations
to filter no-result disk accesses for edge query. We also design
SIMD-oriented compression optimizations to further improve per-
formance. Extensive experiments on real-world datasets confirm
the effectiveness of our solution.

Index Terms—Edge query, graph database, vertex encoding.

I. INTRODUCTION

EDGE query is one of the fundamental operations in main
stream graph databases [1], [2], [3], [4], which is to retrieve

edges that connect two given vertices. It is frequently executed
in many important graph computations, such as relation retrieval
in knowledge graph [5], [6], clustering coefficient [7], triangle
counting [8], [9], [10] and subgraph matching [11]. However,

Manuscript received 3 March 2023; revised 16 September 2023; accepted 23
December 2023. Date of publication 9 January 2024; date of current version 10
June 2024. This work was supported in part by NSFC under Grant 62102142,
in part by the Hunan Provincial Natural Science Foundation of China under
Grant 2022JJ40093, and in part by the Aid program for Science and Technology
Innovative Research Team in Higher Educational Instituions of Hunan Province.
Recommended for acceptance by G. Wang PhD. (Corresponding authors:
Youhuan Li; Fang Xiong.)

Hangyu Zheng, Youhuan Li, Peifan Shi, and Zheng Qin are with the College
of Computer Science and Electricity Engineering, Hunan University, Chang-
sha 410082, China (e-mail: zhenghangyu@hnu.edu.cn; liyouhuan@hnu.edu.cn;
spf@hnu.edu.cn; zqin@hnu.edu.cn).

Fang Xiong is with Xiangya Hospital, Central South University, Changsha
410008, China (e-mail: Xiongf@csu.edu.cn).

Xiaosen Li is with the The Chinese University of Hong Kong, Hong Kong
999077, China (e-mail: pkuhansen@163.com).

Lei Zou is with Peking University, Beijing 100871, China (e-mail:
zoulei@pku.edu.cn).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TKDE.2024.3350919, provided by the authors.

Digital Object Identifier 10.1109/TKDE.2024.3350919

Fig. 1. Application scenario of VEND: assume that n · p edge queries are
no-result and n · p · p′ (0 ≤ p′ ≤ 1) of them can be detected by VEND.

most vertex pairs in real-world graphs are connected by no edges.
In fact, the average degree of a large real-world graph tends
to be much lower than the vertex count [12]. Therefore, for
each vertex, there are far fewer vertices adjacent to it than those
that are non-adjacent. It is just a waste of time to execute edge
queries over vertex pairs that are not adjacent. What’s more,
graph-structured data proliferated from mobile applications is
usually too large to be stored in memory [13], and executing edge
queries over them may result in time-consuming disk accesses.
Filtering no-result edge queries before they are evaluated over
graph storage can certainly improve the system performance of
graph databases.

In this article, we creatively propose a new and important
problem: vertex encoding for edge nonexistence determination
(VEND, for short) which could be used to filter no-result edge
queries. We design a mechanism (called as VEND solution) to
encode each vertex into a low-dimension vector, with which we
can efficiently detect and filter no-result edge queries as many
as possible. We require that both the space cost for a vertex
vector and the time cost for an edge nonexistence determina-
tion be linear to the dimension number. In this way, an edge
nonexistence determination costs only constant time and space,
which is much more efficient than executing an edge query
over a large graph that is stored on disk. Since vector of each
vertex is low-dimension, we can persist all vectors in memory.
Essentially, VEND is to utilize in-memory vertex encodings and
the corresponding constant time operations to filter no-result
disk accesses for edge data.

Fig. 1 demonstrates the application of VEND. We can see
that graph databases with VEND could reduce the executions

1041-4347 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Peking University. Downloaded on November 06,2024 at 02:46:20 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0009-0004-5972-2929
https://orcid.org/0000-0002-0650-0458
https://orcid.org/0009-0000-3192-1994
https://orcid.org/0009-0002-7131-0447
https://orcid.org/0000-0002-8586-4400
https://orcid.org/0009-0004-1763-148X
https://orcid.org/0000-0003-0877-3887
mailto:zhenghangyu@hnu.edu.cn
mailto:liyouhuan@hnu.edu.cn
mailto:spf@hnu.edu.cn
mailto:zqin@hnu.edu.cn
mailto:Xiongf@csu.edu.cn
mailto:pkuhansen@163.com
mailto:zoulei@pku.edu.cn
https://doi.org/10.1109/TKDE.2024.3350919

ZHENG et al.: VERTEX ENCODING FOR EDGE NONEXISTENCE DETERMINATION WITH SIMD ACCELERATION 3601

Algorithm 1: Edge Iterator based Triangle Counting.

of no-result edge queries. We can also see that VEND makes
no assumption on how an edge query is evaluated and works
independently over the underlying graph storage.

A VEND solution may not be able to detect every no-result
edge query. If an edge query can not be determined as no-result,
it should still be executed over database since the corresponding
edge existence is uncertain. A VEND solution should be updated
efficiently in dynamic scenarios, which is a must for database
consistency and efficiency. Additionally, it is reasonable that
VEND only considers edge nonexistence instead of existence.
In fact, if we apply an edge existence determination solution,
some vertex pairs connected by edges may not be detectable with
low-dimension vertex vectors. Hence, we need still conduct the
corresponding edge query execution to ensure the correctness
of computation. In this way, no edge queries can be filtered in
edge existence determination solutions.

A. Applications

1) Relation Retrieval: Relation retrieval over entities is the
most basic application of edge query, such as predicates search
over given subject and object in knowledge graph [5], [6].

2) Triangle Counting: We demonstrate how VEND could
accelerate state-of-the-art (SOTA) triangle counting methods. In
scenarios of VEND, graph is stored on disk and our discussions
focus on external-memory algorithms. Another application for
accelerating subgraph matching (Graphflow [14]) are presented
in Appendix (B).

Edge iterator based method is the SOTA in-memory triangle
counting solution utilizing ordered adjacent lists intersections.
We extend it into an external-memory version by organizing the
adjacent lists with Key-Value store on disk. Algorithm 1 presents
the corresponding framework. We can see that when a vertex i
is visited, for each edge (i, j) where j ∈ adj(i) and i < j, we
conduct VEND tests between j and every other vertex j′ (j < j ′)
in adj(i). If j is confirmed to be not adjacent to any such j′ in
adj(i) (Line 5 in Algorithm 1), then we need no disk access for
adjacent list of j (Line 7 in Algorithm 1). In this way, we save
one costly disk access (O(|adj(i)|)) with in-memory efficient
VEND tests (O(|adj(j)|)).

Trigon [15] is the SOTA disk-based framework for triangle
counting. It divides the range [0,maxID] into several consec-
utive intervals, where edges with destination id falling in the
same interval are grouped together into a partition that can be

Algorithm 2: Disked based Triangle Counting [15].

loaded into limited memory. For each partition P , Trigon builds
a companion file storing a series of triples < i, j,K > where
j ∈ adj(i) is a source vertex of at least one edge in P , and K
is the set of i’s neighbors within the range interval of P . In this
way, when P is loaded into memory, for each triple < i, j,K >
in the corresponding companion file, j’s adjacent edges in P
are already organized in memory and conducting intersection
betweenK and j’s neighbors inP could enumerates all triangles
containing i and j where the third vertex is within the range of
interval corresponding to P . VEND could accelerate Trigon by
reducing the number of triples in companion files. Specifically,
before we write a triple < i, j,K > into a companion file, we
can conduct VEND tests between j and vertices in K (Line
7 in Algorithm 2). If j is confirmed to be not adjacent to any
vertex in K, this triple can be discarded safely without incurring
incorrectness. Since companion files shrunk, Trigon saves the
I/O cost for writing/loading discarded triples (Lines 9 and 12
in Algorithm 2), as well as the corresponding intersections over
them.

B. Our Contributions

We summarize our contributions as follows:
� We are the first to propose and solve VEND problem to

avoid no-result edge query executions.
� We propose an effective VEND solution.

– We first design a partial solution which can perfectly
determine all no-result edge queries related to a subset
of vertices. We additionally design range based and hash
based baselines over the partial solution (Section IV).

– We propose a uniform hybrid VEND solution incorpo-
rating both range based ideas and hash based methods.
We as well design efficient update algorithms over the
hybrid version (Section V).

– We further optimize the hybrid version with SIMD-
oriented compression to enhance the encoding perfor-
mance. We also propose tree search strategy combining
SIMD mechanism to significantly improve decoding
efficiency (Section VI).

Authorized licensed use limited to: Peking University. Downloaded on November 06,2024 at 02:46:20 UTC from IEEE Xplore. Restrictions apply.

3602 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 7, JULY 2024

� We conduct various experiments to evaluate our solu-
tions and find that even the baseline could bring perfor-
mance improvements, which confirms the importance
and effectiveness of our VEND solutions.

II. RELATED WORK

To the best of our knowledge, this is the first work that
proposes to design vertex encoding for edge nonexistence deter-
mination. Let’s discuss some works that are semantically similar
to the proposed problem.

Graph Embedding: Graph embedding is to map each vertex
into a low-dimensional vector, which tries to preserve the con-
nection strength between vertices in the original graph [16], [17],
[18], [19], [20], [21], [22], [23], [24]. The key similarity between
graph embedding and VEND is that both of them build vertex
vectors. However, graph embeddings provide no guarantees on
the edge nonexistence, and graph embedding can not be used to
solve VEND problem.

Link Prediction: Link prediction focuses on how to predict
missing edges or future ones when the set of edges is only
partially given [25]. Existing works tend to compute heuristic
similarity between two vertices and predict the edge existence
with the similarity as likelihood, such as Common Neighbors
(CN) [26], [27] and Katz Index (KI) [28]. Although link predic-
tion methods pay close attention to the edge existence over a pair
of vertices, their determinations rely heavily on probabilities.
It is possible that a link prediction method makes a wrong
prediction and cause a false negative, which is not allowed in
VEND. Therefore, link prediction methods can not be applied
to VEND problems.

Bloom Filter: A possible alternative for reducing no-result
edge queries is Bloom filter, which is a space-efficient prob-
abilistic membership query solution with an acceptable false
positive rate [29]. We can build bits based Bloom filter (with
maximum hash slot) over all edges and conduct the corre-
sponding membership queries for edge existence determina-
tions. However, global Bloom filter is not easy to update since
a single deletion of edge would result in a total reconstruction
over entire edge set, which introduces huge update overhead.
In fact, there are also many variants of Bloom filter designed
for efficient element deletions [30], [31], [32], [33]. Counting
Bloom filter (CBF) [30] extends the bits based Bloom filter
by setting each position as a counter with multiple bits. In
this way, adjustment for inserting/deleting an element can be
done by increasing/decreasing the corresponding counters by 1.
However, with the hash slot of size many times smaller than
that of bit based Bloom filter, CBF suffers from much higher
false positive rate. Deletable Bloom filter (DBF) [31] only resets
collision-free bits for a deletion, and more and more bits would
remain to be 1 forever with element deletions happen. Hence,
DBF can not be applied to VEND scenarios. Ternary Bloom
filter (TBF) [32] improves the DBF by allocating two bits for
each counter. However, counters where collisions happen more
than twice may lead to false negatives, which are definitely
not allowed in VEND. Blocked Bloom filter (BBF) partitions
hash slot into multiple blocks, each of which is a small standard

Bloom filter. The first hash value of an element is used to select
a block, inside which additional hash values are then used to set
or test bits as usual. When deletion of an element happens, only
the corresponding block need to be reconstructed. However, we
need to hash every element in the entire set with the first hash
function to determine elements corresponding to the block for
reconstruction, which makes deletions quite inefficient.

We can see that existing methods of similar semantic can
hardly contribute to VEND and its maintenance. Since we are
the first that propose VEND problem and the corresponding
solution, our work is highly innovative and important.

III. PRELIMINARIES

In this section, we define the VEND. Before formally intro-
ducing the problem, we present some important concepts.

Definition 1 (Data Graph): A data graph G= (V,E), where
V denotes the vertex set and E is the edge set. Without loss of
generality, G is assumed to be an undirected and unweighted
simple graph, namely, there is no loop (edge that connects a
vertex to itself) and at most one edge connecting a pair of
vertices. We use NG(v) to denote the neighbor set of v in G. We
may use V (G) (E(G), resp.) to denote the vertex (edge, resp.)
set of G.

Definition 2 (Vertex Vector & Encoding Function f): Given a
graph G and a dimension number k, encoding function f is de-
fined over V (G), where for each vertex v, f(v) is a k-dimension
vector of integers and f(v)[i] denotes the i-th dimension.

We define vertex pair that is connected by no edges as NEpair.
For convenience, we regard NEpair as an equivalent concept to
no-result edge query.

Definition 3 (NEpair & NEneighbor): Given a graph G and
v1, v2 ∈ V (G), we say that (v1, v2) is an NEpair if v1 �= v2
and there is not edge connecting v1 and v2. We use NE(G) to
denotes the set of NEpairs in G, namely:

NE(G) = {(v1, v2) | v1 �= v2 ∧ (v1, v2) /∈ E}

Also, we say that v1 and v2 are NEneighbors of each other.
VEND is proposed to determine NEpairs as many as possible,

and determinations from VEND are required to be made just
based on vertex vectors. Let’s formally define the determination
function.

Definition 4 (NEpair Determination Function F): Given a
graph G = (V,E) and k-dimension encoding function f , an
NEpair determination function (NDF, for short) F is a boolean
function defined over f(V)× f(V) that satisfies the following
conditions: ∀v1, v2 ∈ V
� F (f(v1), f(v2)) = 1 only if (v1, v2) is an NEpair, that is,

when F (f(v1), f(v2)) = 1, (v1, v2) must be an NEpair.
While for the case when F (f(v1), f(v2)) = 0, there is no
guarantee on whether (v1, v2) is an NEpair.

� F (f(v1), f(v2)) can always be computed in O(k) time.
Apparently, the set {(v1, v2) | F (f(v1), f(v2)) = 1} must be

a subset of NE(G). Also, if F (f(v1), f(v2)) = 1, we say that
NE pair (v1, v2) is detectable by F . We use F (v1, v2) to denote
F (f(v1), f(v2)) when the context is clear.

Authorized licensed use limited to: Peking University. Downloaded on November 06,2024 at 02:46:20 UTC from IEEE Xplore. Restrictions apply.

ZHENG et al.: VERTEX ENCODING FOR EDGE NONEXISTENCE DETERMINATION WITH SIMD ACCELERATION 3603

A good NDF can detect NEpairs as many as possible. We
define an indicator, VEND score, to evaluate f and F .

Definition 5 (VEND Score): Given a graph G = (V,E), di-
mension number k, an encoding function f and an NDF F , the
VEND score over G is defined as the proportion of NEpairs that
can be detected by F . We use ScoreG,k(f, F) to denote the
corresponding VEND score, namely,

ScoreG,k(f, F) =
Σv1∈V,v2∈V (F (f(v1), f(v2)))

|NE(G)|
We useScore(f, F) to denote the VEND score when the context
is clear. Apparently, 0 ≤ Score(f, F) ≤ 1.

With the concepts as above, we formally define our problem.
Definition 6 (Problem Definition): Given a graph G and k,

VEND is to design an encoding function f and an NDF F such
that Score(f, F) is as high as possible, and meanwhile, f can
be updated efficiently when edge updates happen.

Note that we make no assumptions on the form of edge, since
we only consider the edge (non)existence of two given vertices
in this article. A case study in Appendix E.3 demonstrates that
our problem can be easily extended over directed graphs.

Framework: We discuss our method in Sections IV-VI. In
Section IV, we propose a partial VEND solution that can op-
timally encode a part of vertices in data graph such that all
NEpairs related to these encoded vertices can be efficiently
determined. In addition, we extend the partial VEND into two
full versions with range-based and hash-based encoding, re-
spectively. In Section V, we present our hybrid VEND solution
incorporating both range-based and hash-based methods, where
we also discuss how to maintain encoding when data updates
happen. In Section VI, we optimize the hybrid VEND solution
with the SIMD-oriented encoding and SIMD-accelerated de-
coding, which further improve the performance. We evaluate
our methods in Section VII and conclude in Section VIII.

IV. BASELINES WITH PARTIAL VEND SOLUTION

In this Section, we introduce a partial VEND solution, denoted
as (fα, Fα), over graph G with dimension number k. (fα, Fα)
can optimally encode a part of vertices inG such that all NEpairs
related to these encoded vertices can be efficiently determined.
We introduce the encoding function fα in Section IV-A and
NDF Fα in Section IV-B, after which we propose a range-based
VEND solution in Section IV-C and a hash-based VEND solu-
tion in Section IV-D.

A. Encoding Function fα

Given a graph G = (V,E), we construct fα as follows:
� Step 0: We initialize i = 1 and build a set of comparative

flag τi (∀i, τi < τi+1) that is distinguished from vertex ID.
For example, τi could be a negative integer.

� Step 1: For each vertex v of degree less than k, set fα(v)[0]
= τi and use the remaining k − 1 dimensions of fα(v) to
store all neighbors of v in Gi, i.e.,

fα(v) = [τi, v1, v2, . . . , v|NGi
(v)|] (1)

where v1, v2, . . . , v|NGi
(v)| are neighbors in NGi

(v).

Fig. 2. Data graph example and the core subgraph.

� Step 2: Remove all vertices with a degree less than k and
their corresponding adjacent edges from G. Update the
degree distribution of G after those removals. If there are
still vertices with a degree less than k, let i = i+ 1 and
repeat Steps 1 and 2; otherwise, terminate.

After constructing of fα(v), the remaining subgraph of G
is denoted as Ck

G, where V (Ck
G) and E(Ck

G) represent the
corresponding vertex set and edge set, respectively. We refer to
Ck

G as the core subgraph of G w.r.t. k, and in fact, the maximal
connected component ofCk

G is exactly k-Core ofG [34]. We use
V α
k to denote V \ V (Ck

G), which exactly contains all vertices
encoded in fα. For example in Fig. 2, let k = 3, then fα(5)
={τ1, 3} while fα(8) ={τ1, 3, 7}. The subgraph within the red
circle is exactly C3

G.

B. NDF in Partial Solution

Let’s discuss how to design the NDF Fα over fα. We know
that in each iteration of the construction, the remaining neighbors
of each vertex v with a degree less than k are fully encoded in
fα(v). Consider v1, v2 ∈ NG(v1). If v1 is in V α

k , then either
v1 is encoded in fα(v2) (when fα(v1)[0] > fα(v2)[0]) or v2 is
encoded in fα(v1). Also, if both v1 and v2 are not inV α

k , whether
(v1, v2) is an NEpair cannot be determined by fα. For example,
consider fα over the graph in Fig. 2. 8 ∈ V α

3 and fα(8) ={τ1, 3,
7}, hence, 1, 2, 4, 5, 6 can be determined to be NEneighbors of
8. With these observations, we formally present Fα as follows:
� If both v1 and v2 are encoded by fα, then

Fα(v1, v2) =

{
v2 /∈ fα(v1) if fα(v1)[0] ≤ fα(v2)[0]
v1 /∈ fα(v2) if fα(v1)[0] > fα(v2)[0]

(2)
� If only one of v1 and v2 are encoded by fα, assuming that
v1 is encoded, then

Fα(v1, v2) = (v2 /∈ fα(v1))

� For any other case, we set Fα(v1, v2) = 0 which means
(v1, v2) can not be determined to be NEpair by (fα, Fα).

Apparently, NEpairs related to vertices in V α
k (i.e., V \

V (Ck
G)) can be determined by Fα. Since fα does not encode

any vertex in V (Ck
G), when designing a full VEND solution

over a graph G, we can always safely use fα to encode vertices
in V α

k . We then need only focus on designing VEND solution
over Ck

G, namely, designing vertex encoding over V (Ck
G) and

the NDF over vertex pairs where the two adjacent vertices are
both in V (Ck

G).

Authorized licensed use limited to: Peking University. Downloaded on November 06,2024 at 02:46:20 UTC from IEEE Xplore. Restrictions apply.

3604 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 7, JULY 2024

C. Range-Based Encoding

Since vertices in V (Ck
G) may have degrees larger than k,

we cannot just encode all neighbor IDs into the vector. A
straightforward method is to set the encoding vector of each
vertex v with a subset of NCk

G
(v), leaving other neighbors not

recorded. For example, ∀ v in V (Ck
G), assuming that NCk

G
(v) =

{v1, v2, · · · , vt} where t≥ k and vi < vj for 1 ≤ i < j ≤ t, we
can set encoding vector of v with the smallest k neighbor IDs
in NCk

G
(v), i.e., [v1, v2, · · · , vk]. Thus, ∀ v′ ∈ V (Ck

G) where
v′ ≤ vk, either v′ is in the vector of v, or v′ is an NEneighbor of
v, based on which we can naturally build an NDF. Consider the
C3

G in red cycle in Fig. 2. The basic range encoding of vertex 6
is {1, 2, 4} and vertex 3 can be easily detected as an NEneighbor
of vertex 6 since 3 < 4 while 3 /∈ {1, 2, 4}.

Actually, intuition of the basic range encoding is to set each
vector with a consecutive block of the corresponding ordered
neighbor sequence. While, there are multiple blocks that can be
used for building encodings and different selections of block
may result in different performance of VEND. We formally
define the consecutive block as neighbor block in Definition 7,
and then we will discuss how to select and use these blocks for
constructing more efficient VEND solution.

Definition 7 (Neighbor Block): Given a graph G = (V,E), a
vertex v ∈ V (Ck

G). Assume that sequence s={−∞, v1, v2, · · · ,
v|NG(v)|, ∞ } where v1, v2, · · · , v|NG(v)| are all neighbors (IDs)
of v and vi < vj for 1 ≤ i < j ≤ |NG(v)|. Then:
� Each nonempty subsequence of s is called as a neighbor

block of v.A neighbor block is usually called as a block for
short, and we use B to denote a block.

� The size of B (i.e., |B|) is the number of items it con-
tains. There are |NG(v)|+ 3− k blocks of size k: {−∞,
v1, . . . , vk−1},· · · , {v|NG(v)|−k+2, · · · , v|NG(v)|,∞}.

� For a neighbor block B, we use B.head and B.tail to
denote the corresponding head and tail items, respectively.
And we define interval [B.head,B.tail] as the range of
B, denoted as R(B). For example, the range of the block
{−∞, v1, . . . , vk−1} is the interval (−∞, vk−1].

� We use BG(v) to denote the set of all blocks of v in G.
For a block B of v, the vertex within R(B) is either an item

in B or an NEneighbor of v, hence the larger R(B) is, the more
NEneighbors of v we tend to determine. We can encode a k-
size block B of v into a k-dimension vector to determine all
NEneighbors of v within range R(B). We propose to select the
block B where the range R(B) covers most NEneighbors of
v. For example, consider the block B = {−∞, v1, . . . , vk−1}
and the corresponding range R(B) = (−∞, vk−1]. There are
vk−1 vertices within R(B), and (vk−1 − (k − 1)) of them are
NEneighbors of v. Fig. 3 shows that this VEND version can
detect more NEpairs than that of basic range VEND. We use
(fR, FR) to denote this VEND version, specifically,
� fR : for each vertex v ∈ V ,

– if v ∈ V α
k , fR(v) = fα(v)

– if v ∈ V (Ck
G), f

R(v) = B ∈ BCk
G
(v), where B covers

most NEneighbors of v.
� FR(v1, v2): for vertex pair (v1, v2),

Fig. 3. Basic range VEND V.S. optimized range VEND.

– if v1 ∈ V α
k or v2 ∈ V α

k , FR(v1, v2) = Fα(v1, v2)
– if both v1 and v2 are in V (Ck

G), then:

FR(v1, v2) = (v1 ∈ R2 ∧ v1 /∈ fR(v2))

∨ (v2 ∈ R1 ∧ v2 /∈ fR(v1))

where R1 and R2 are the intervals bounded by head and
tail items in fR(v1) and fR(v2), respectively.

We call (fR, FR) as range version of VEND solution.

D. Hash-Based VEND

Another solution for encoding vertex v in V (Ck
G) is to hash

neighbor IDs into a k-dimension vector. We incorporate a
straightforward hash based VEND solution, denoted as (fhash,
Fhash), where we hash each neighbor ID into an integer hash
value within {0, 1, · · · , k − 1} and set fhash(v)[i] = 1 (0 ≤
i < k) if and only if there exists a neighbor v′ (of v) such that
v′%k= i; otherwise, fhash(v)[i] = 0. Then, vertex pair (v1, v2)
is an NEpair if both fhash(v1)[v2%k] and fhash(v2)[v1%k] are
0. Formally,

Fhash(v1, v2) = fhash(v1)[v2%k] = 0 ∧ fhash(v2)[v1%k] = 0

We call VEND (fhash,Fhash) as the hash version. For example,
fhash(6) is {1, 1, 0} for vertex 6 of C3

G in Fig. 2.
For each vertex v, value in each dimension of fhash(v) is

binary, namely, the value is either 1 or 0. It is easy to extent
(fhash, Fhash) into a bitset-based hash version, denoted as
(f bit, F bit), where we takek-dimension vector as an entire bitset
of size k · I . I is the number of bits for each dimension, which is
usually 32. We use b(v) to denote the corresponding bitset of v.
In this way, b(v)[i] = 1 if and only if there exists a neighbor v′

(of v) such that v′%(k · I) = i. We call bitset-based hash version
as bit-hash version for short.

V. HYRBID VEND SOLUTION

We now present our hybrid VEND solution, which incorpo-
rates range and hash based ideas. In hybrid VEND solution,
some dimensions of a vertex vector are used for range based
encoding while the remaining ones are taken together as a bitset
for hash based method. We present a hybrid VEND example
in Section V-A, based on which we discuss some important
extensions in Section V-B. We formally introduce our hybrid

Authorized licensed use limited to: Peking University. Downloaded on November 06,2024 at 02:46:20 UTC from IEEE Xplore. Restrictions apply.

ZHENG et al.: VERTEX ENCODING FOR EDGE NONEXISTENCE DETERMINATION WITH SIMD ACCELERATION 3605

VEND solution in Section V-C and discuss the corresponding
maintenance in Section V-D.

A. An Example for Hybrid VEND

Let’s start with an example hybrid VEND solution (f ′, F ′)
where we use two dimensions for range based encoding while
the remaining k − 2 for the hash based method.
� f ′: for each vertex v ∈ V ,

– if v ∈ V α
k , f ′(v) = fα(v)

– if v ∈ V (Ck
G) (i.e., v ∈ V − V α

k), assume that NCk
G
(v)

= { v1, · · · , v|N
Ck
G
(v)| }. We set the first two dimen-

sions of v’s vector as v1 and v2, i.e., f ′(v)[0] = v1 and
f ′(v)[1] = v2. We then build a bitset based hash slot
on the remaining k − 2 dimensions and hash neighbors
in NCk

G
(v)/{v1, v2} into the bitset as what we do in

hash-based version.
� F ′: for vertex pair (v1, v2),

– if v1 ∈ V α
k or v2 ∈ V α

k , F ′(v1, v2) = Fα(v1, v2)
– if neither v1 nor v2 is in V α

k (i.e., both v1 and v2
are in V (Ck

G)), let b(v1) and b(v2) denote the bitsets
over the last k − 2 dimensions of vectors of v1 and v2,
respectively, and h is the hash function, then F ′(v1, v2)
= 0 if and only if one of the following conditions holds:
1) v1 = f ′(v2)[0] or v1 = f ′(v2)[1];
2) v2 = f ′(v1)[0] or v2 = f ′(v1)[1];
3) (v1 > f ′(v2)[1]) ∧ (v2 > f ′(v1)[1])

∧ b(v2)[h(v1)] ∧ b(v1)[h(v2)], where b(v1) (b(v2),
resp.) is the bitset of v1 (v2, resp.).

Otherwise F ′(v1, v2) = 1.
Apparently, F ′ can be computed in O(k) time.
It is easy to understand that (f ′, F ′) incorporates both range

and hash ideas. We call f ′(v) as a 2-hybrid encoding for v under
parameter k. Formally, given 1 < k′ < k, the vertex encoding
with k′ dimensions for range based method while the remaining
k − k′ for hash based method is called as k′-hybrid encoding.

B. Extensions

We introduce a series important optimizations over the exam-
ple VEND, forming the hybrid VEND solution in Section V-C.

Dynamic selection of block: We can select a uniform k′ to
encoding vertex in V (Ck

G) by maximizing the VEND score as
much as possible. However, a uniform k′ may not be the best
choice for some vertices. Therefore, we extend the hybrid VEND
solution in a finer grained way: independently select k′ for each
vertex. To achieve this, we can take out log2(k) bits from the
hash slot to indicate the specific k′ for v. Actually, for each vertex
v, we can build different vectors with all possible selections of
block in BCk

G
(v) and choose one of them as the target vector.

More details on block selection are available in Section V-C3.
Encoding compression: Lots of methods can be used to

compress a block and reduce the corresponding overhead [35].
We need to find a compression strategy that will not cause too
much decompression overhead compared to NDF computation.
In fact, the number of bits for a vertex ID can be set as a
tunable parameter I ′ where �log2(|V |)� ≤ I ′ ≤ I (number of

bits in each dimension). In this way, there could be more bits
in the corresponding hash slot. We may need to adjust I ′ since
the vertex number would change, which will be discussed in
Section V-D on the maintenance of VEND.

Distinguish vertices in V α
k from those in V (Ck

G): Recall
the partial VEND solution (fα, Fα) where we use the first
dimension of fα(v) as a flag to indicate whether v is in V α

k

(See (1) in Section IV-A). In fact, we can just use one bit as
a flag to indicating whether a vertex v is in V α

k or not. In this
way, for the vertex v ∈ V α

k , the maximum number of neighbors
that can be encoded changes to (k · I − 1)/ I ′ from (k − 1).
We turn (2) into the following one to remove the dependency on
fα(v)[0]:

Fα(v1, v2) = v1 /∈ fα(v2) ∧ v2 /∈ fα(v1)

Indicating infinite flags with only two bits: For vertex v
in V (Ck

G), assume that NCk
G
(v) ={v1, v2, · · · , vx} where

x = |NCk
G
(v)|. There are (x+ 3− k) blocks of size k:

{−∞, v1, . . . , vk−1},· · · , {vx−k+2, · · · , vx,∞}. We can see that
there are 3 types of k-size blocks: the leftmost block containing
−∞, the rightmost block containing∞ and the remaining blocks
consisting of k neighbor IDs. Once a block containing infinite
flag (−∞ or ∞) is selected to be encoded, consuming I ′ for
each flag will be an obvious waste of bits, which should be
avoided. Therefore, we take 2 = �log2(3)� bits to indicate the
type of selected block. In this way we can enlarge the first block
{−∞, v1, . . . , vk−1} and the last block {vx−k+2, · · · , vx, ∞}
into {v1, · · · , vk} and {vx−k+1, · · · , vx}, respectively.

C. Formal Hybrid VEND Solution

Let’s formally introduce our hybrid VEND solution with those
optimizations in Section V-B. We use (fhyb, Fhyb) to denote our
hybrid version.

1) Encoding Function fhyb: We take each vertex vector as a
bitset of size k · I where I is the number of bits for storing an
integer in the system (I = 32 in the experiments). For simplicity,
we use k∗ to denote the maximum number of vertices that can be
encoded in a vector, i.e., k∗ = (k · I − 1)/I ′. V α

k∗+1 and Ck∗+1
G

can be computed according the construction of partial version
in Section IV. Every bit of each fhyb(v) is cleared as 0 before
we build the encoding. We use fhyb

[i] (v) to denote the i-th bit of

fhyb(v).
For each v ∈ V α

k∗+1, we set the first bit offhyb(v) as 0, namely,

fhyb
[0] (v)= 0. The remaining k · I − 1 bits will be used to encode

not more than k∗ neighbor IDs of v. Since v ∈ V α
k∗+1, at the time

when we encode v, the number of remaining neighbors of v must
be not more than k∗. We omit details on building fhyb(v) for
v ∈ V α

k∗+1 since they are quite similar to those in Section IV.
For each vertex v ∈ V (Ck∗+1

G), we set the first bit of fhyb(v)
as 1. The next two bits are used to indicate the type of encoded
block B (We will discuss block selection in Section V-C3). For
example, we can use ‘00’ to indicate the leftmost block, ‘11’ for
the rightmost while ‘01’ for those neither leftmost nor rightmost.
The further �log2(k∗)� bits will store the size of B, i.e., |B|.
Let x = 1 + 2 + �log2(k∗)�= �log2(k∗)�+ 3. The |B| · I ′ bits

Authorized licensed use limited to: Peking University. Downloaded on November 06,2024 at 02:46:20 UTC from IEEE Xplore. Restrictions apply.

3606 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 7, JULY 2024

starting from the (x+ 1)-th position to the right are used to store
|B| vertex IDs. Finally, the remaining (k · I − |B| · I ′ − x) bits
will be used as hash slot, where we will hash each vertex ID in
N

Ck∗+1
G

(v) \B by setting the corresponding bit to 1.

We useHybEncode(v, V ′) to denote the process of encoding
fhyb(v) w.r.t. neighbor set V ′, where V ′ is the set of neighbors
to be encoded if v ∈ V α

k∗+1, and otherwise, V ′ = N
Ck∗+1

G
(v). We

can use the size of V ′ to indicate whether v is in V α
k∗+1 or not,

since v ∈ V α
k∗+1 if and only if |V ′| ≤ k∗.

2) NDF Fhyb: Let’s discuss the computation of Fhyb.
Definition 8 (NE-test): Consider a data graph G, a dimension

k, the corresponding V α
k∗+1 and fhyb. For any two vertices v and

v′, we say that v′ can pass the NE-test of fhyb(v) if and only if
one of the following conditions hold:
� If fhyb

[0] (v) = 0, v′ is not one of the IDs in fhyb(v).
� If fhyb

[0] (v) = 1 (i.e., v ∈ V (Ck∗+1
G)), assuming that B is

the block encoded in fhyb(v), then v′ satisfies that either v′

∈ R(B) ∧v′ /∈ B, or v′ /∈ R(B) while v′ misses the hash
in the corresponding slot of fhyb(v).

We use v′ NE�→ fhyb(v) to denote that v′ can pass the NE-test
of fhyb(v). Furthermore, the set of vertices that can pass the
NE-test of fhyb(v) is denoted as NT (fhyb(v)), namely:

NT (fhyb(v)) = {v′ ∈ V | v′ NE�→ fhyb(v)}

We define |NT (fhyb(v))| as NT-size of vector fhyb(v). Sym-
metrically, we define a set NT (v) containing such vertex v′ that

v
NE�→ fhyb(v′), namely:

NT (v) = {v′ ∈ V | v NE�→ fhyb(v′)}

Apparently, NE-test can be computed in O(k) time.
It is easy to prove that if v′ can pass the NE-test of fhyb(v), we

can conclude that v′ is not a neighbor of v in Ck∗+1
G . However,

v′ can still be a neighbor of v in G since (v, v′) may be one of
the edges in E \E(Ck∗+1

G) that are removed for computing the
core subgraph Ck∗+1

G . The following Theorem 1 tells us when
we can determine an edge as an NEpair.

Theorem 1:
Consider a data graph G, a dimension k, the corresponding

V α
k∗+1 and encoding function fhyb. For any two vertices v1 and

v2, the following claims hold:
� If fhyb

[0] (v1) = fhyb
[0] (v2), then (v1, v2) is NEpair if v1 and

v2 pass the NE-test of the hybrid encoding of each other:

v1
NE�→ fhyb(v2) ∧ v2

NE�→ fhyb(v1)

� If fhyb
[0] (v1) �= fhyb

[0] (v2), assume that fhyb
[0] (v1) = 0 while

fhyb
[0] (v2) = 1, then (v1, v2) is NEpair if v2

NE�→ fhyb(v1).
Proofs of theorems are presented in Appendix A in the sup-

plementary.
With Theorem 1, we can compute Fhyb(v1, v2) as follows:
� If fhyb

[0] (v1) < fhyb
[0] (v2), F

hyb(v1, v2)=v2
NE�→ fhyb(v1).

� If fhyb
[0] (v1) > fhyb

[0] (v2), F
hyb(v1, v2)=v1

NE�→ fhyb(v2).

� If fhyb
[0] (v1) = fhyb

[0] (v2), F
hyb(v1, v2) is equal to the value

of v1
NE�→ fhyb(v2) ∧ v2

NE�→ fhyb(v1).
3) Block Selection: Let’s consider the selection of block to be

encoded in fhyb(v) for each vertex v in V (Ck∗+1
G). Intuitively,

we always target the block that maximizes |NT (fhyb(v))|, i.e.,
the number of vertices which can pass the NE-test of fhyb(v).
For each blockB ∈ B

Ck∗+1
G

(v)whereN
Ck∗+1

G
(v) = {v1, v2, · · · ,

vx } (x = |N
Ck∗+1

G
(v)|), we first encode the bitset fhyb(v) and

then we discuss the computation of |NT (fhyb(v))| as follows:
� IfB is empty, then k · I − 3− �log2(k∗)� bits in the vector

will be used as hash slot. We can compute |NT (fhyb(v))|
by counting the number of vertices missing the hash in
fhyb(v).

� If B is a leftmost block, assume that B = {v1, v2, · · · , v|B|
}, according to the definition of NE-test, for v′ ≤ v|B|, v′

∈ NT (fhyb(v)) if and only if v′ /∈ B; while, for v′ > v|B|,
v′ ∈ NT (fhyb(v)) if and only if v′ misses the hash in
fhyb(v). Hence, |NT (fhyb(v))| is equal to v|B| −|B| +c
where c is the number of such vertex v′ that v′ > v|B| and
v′ misses the hash in fhyb(v).

� If B is a rightmost block, the computation of
|NT (fhyb(v))| is symmetrical to that of leftmost block.

� If B is neither a leftmost block nor a rightmost one, the
computation of |NT (fhyb(v))| is still similar to that of
leftmost/rightmost block. Assuming that B = {vi, vi+1,
· · · , vj }, |NT (fhyb(v))| is equal to vj − vi −(j − i) +c
where c is the number of such vertex v′ that not only v′ <
vi or v′ > vj , but also v′ misses the hash in fhyb(v).

The time cost of building fhyb(v) for each block is
O(|N

Ck∗+1
G

(v)|). For computing |NT (fhyb(v))| with fhyb(v),

a brute force way is to enumerate every vertex not in R(B) and
count the number of vertices that miss the corresponding hash,
which costO(|V |) time. In fact, the modular hash function in our
method is periodic and the time for computing |NT (fhyb(v))|
with fhyb(v) can be optimized to O(m). Specifically, assume
that the slot size ism. For any integer iwhere (i+ 1)m≤ |V |, it
is easy to understand that the number of vertices within interval
[i ·m, (i+ 1)m) that miss the hash is exactly the number of bits
of value 0 in the slot. Therefore, for a block B where R(B) =
[vi, vj], we can partition vertices outside R(B) into six parts:
[1, m), [m, t1 ·m), [t1 ·m, v1), (v2, t2 ·m), [t2 ·m, t3 ·m),
[t3 ·m, |V |] where t1 = � v1

m �, t2 = � v2

m �, t3 = � |V |
m �. And the

number of vertices outside R(B) that miss the corresponding
hash in fhyb(v), denoted as c, can be compute as following:

c = Z(m)− Z(1) + (t1 − 1) · Z(m) + Z(v1%m)

+ Z(m)− Z(v2%m) + (t3 − t2) · Z(m) + Z(|V |%m)

= (t1 + t3 − t2 + 1) · Z(m)

+ Z(v1%m) + Z(|V |%m)− Z(v2%m)− Z(1) (3)

where Z is a function such that Z(i) is the number of value 0 in
the first i positions of the corresponding hash slot in fhyb(v).
Computing Z(i) costs O(m) time and hence, the time for
computing |NT (fhyb(v))| with fhyb(v) is optimized to O(m).

Authorized licensed use limited to: Peking University. Downloaded on November 06,2024 at 02:46:20 UTC from IEEE Xplore. Restrictions apply.

ZHENG et al.: VERTEX ENCODING FOR EDGE NONEXISTENCE DETERMINATION WITH SIMD ACCELERATION 3607

Thus, the total time cost for block selection for v is

O
(
|B

Ck∗+1
G

(v)| · (|Nk∗+1
G (v)|+m)

)

= O
(
k∗ · |Nk∗+1

G (v)| · (|Nk∗+1
G (v)|+m)

)
= O (k · |NG(v)| · (|NG(v)|+m))

= O (k · |NG(v)| · (|NG(v)|+ k · I)) (4)

where I is the number of bits in a dimension and the upper bound
of m is k · I .

In fact, the key to computing |NT (fhyb(v))| for block B
is the function Z according to (3). We propose a sliding-
window like optimization for computing Z without generating
fhyb(v) for each block, which costs onlyO(m) time to compute
|NT (fhyb(v))| for each block and O(k∗ · |Nk∗+1

G (v)| ·m) time
in total for block selection.

Consider all t-size blocks in B
Ck∗+1

G
(v) over N

Ck∗+1
G

(v) =

{v1, v2, · · · , vx } where x = |N
Ck∗+1

G
(v)|: B1 = {v1, · · · , vt},

· · · , Bx−t+1 = {vx−t+1, · · · , vx}. We first build an array HB1

of size m where HB1
[i] (0 ≤ i < m) record the number of such

vertex v′ ∈ N
Ck∗+1

G
(v) \B1 that v′ %m = i. Apparently, for

blockB1,Z(i) is exactly the number of value 0 in the first i items
in HB1

. We can instantiating Z(i) as an m-size array over HB1
,

which costs O(m) time, and hence, computing |NT (fhyb(v))|
for block B1 with Z costs O(1) time ((3)). In addition, we
can construct HB2

based on HB1
in O(1) time. Specifically,

the difference between N
Ck∗+1

G
(v) \B1 and N

Ck∗+1
G

(v) \B2 is
the join of vt+1 and the exit of v1, which is quite similar to a
window of size t “slides” fromB1 toB2 over the sorted neighbor
sequence of N

Ck∗+1
G

(v). In this way, HB2
can be constructed by

conducting HB1
[v1%m]– and HB1

[vt+1%m]++, which costs
only O(1) time. Also, with HB2

, it take O(m) time to compute
Z for block B2, which can be used to figure out the correspond-
ing |NT (fhyb(v))| in O(1) time. Similarly, we can construct
HB3

, HB4
, · · · , HBx−t+1

successively in O(1) time for each.
Therefore, the total time cost for computing |NT (fhyb(v))| for
all t-size blocks is

O
(
|N

Ck∗+1
G

(v)|+ (|N
Ck∗+1

G
(v)| − t) ·m

)

= O (|NG(v)| · k · I) (5)

where 0 ≤ t ≤ k∗. Thus, the total time cost for block selection
is

O (k∗ · |NG(v)| · k · I) = O
(
k2 · |NG(v)| · I

)
(6)

Thus, the time cost for block selection of v is linear to
|NG(v)|. Building fhyb(v) for a block costs O(NG(v)) time,
and hence,the time cost for computing HybEncode(v, V ′) is
linear to |V ′|.

Actually, we can further optimize the computation.
When building HBi+1

over HBi
(1 ≤ i ≤ x− t+ 1),

if Bi.head%m = Bi+1.tail%m or HBi
[Bi.head%m] >

1 ∧ HBi
[Bi+1.tail%m] > 0, then the distribution of

Z will remain after conducting HBi
[Bi.head%m]– and

HBi
[Bi+1.tail%m]++, which means we can save the scan over

HBi+1
for reconstructing Z.

D. Maintenance

Let’s discuss the maintenance of VEND solution
(fhyb, Fhyb). There are four types of graph updates, i.e.,
vertex/edge insertion/deletion. We use Ins(v)/Del(v) to denote
the insertion/deletion of vertex v, and Ins(v1, v2)/Del(v1, v2)
for insertion/deletion of edge (v1, v2).

For the sake of presentation, we propose some important
concepts that will be used in the illustration of maintenance.
For vertex v, if fhyb

[0] (v) = 0, then we can fully recover the

neighbor set encoded in fhyb(v). While, if fhyb
[0] (v) = 1, some

neighbors are hashed in the slot and can not be recovered. Hence,
we say that a vector fhyb(v) is decodable if fhyb

[0] (v) = 0, and

otherwise, fhyb(v) is non-decodable. We say that a decodable
vector fhyb(v) is full if the number of encoded vertex IDs is k∗

(there is not enough unused bits for storing an extra ID), and
otherwise, fhyb(v) is unfilled.

We discuss the adjustment of fhyb separately for each type of
update. We use Gu (G, resp.) to uniformly denote the data graph
after (before, resp.) the update. Note that HybEncode(v, V ′)
(See Section V-C) will be frequently used in maintenance dis-
cussion. We first discuss the adjustment for edge update, which
will be extended for handling vertex update.

1) Insertion of Edge (v1, v2): If Fhyb(v1, v2) = 0, (fhyb,
Fhyb) is still adaptive for Gu and we do not need to update
anything since edge query over (v1, v2) will not be erroneously
filtered. While, if Fhyb(v1, v2) = 1, then:
� If one of fhyb(v1) and fhyb(v2) is unfilled decodable vec-

tor, assuming that it is fhyb(v1), then we can just conduct
encoding v2 in the extra unused bits of fhyb(v1) and finish
the maintenance. Note that we can easily locate the bits for
storing v2 by decoding fhyb(v1).

� If both fhyb(v1) and fhyb(v2) are full decodable vec-
tors, assume that V ′

1 and V ′
2 are two sets of vertex

IDs decoded from fhyb(v1) and fhyb(v2), respectively.
We can conduct either HybEncode(v1, V

′
1 ∪ {v2}) or

HybEncode(v2, V
′
1 ∪ {v1}) for maintenance. In fact, we

always reconstruct the vector that will result in larger NT-
size (Definition 8) than that of the other. Specifically, let c1
and c2 denote vectors built byHybEncode(v1, V

′
1 ∪ {v2})

and HybEncode(v2, V
′
1 ∪ {v1}), respectively. Assuming

that |NT (c1)| > |NT (c2)|, then we set fhyb(v1) = c1
and fhyb(v2) remains, otherwise, fhyb(v2) = c2 while
fhyb(v1) remains. Since V ′

1 (V ′
2, resp.) can be directly

recovered by decoding from fhyb(v1) (fhyb(v2), resp.),
reconstructing the vector need no storage accesses.

� If both fhyb(v1) and fhyb(v2) are non-decodable vectors,
similarly, we always reconstruct the vector that will result
in larger NT-size. However, the reconstruction is not easy
since we can not recover the set of vertex IDs encoded in
a non-decodable vector. A naive method is to retrieve the
entire neighbor setNG(v1) (NG(v2), resp.) and conduct re-
construction w.r.t. NG(v1) ∪ {v2} (NG(v2) ∪ {v1}, resp.)
for building a new vector. In fact, it is easy to understand
that, for vertex v′ ∈ NG(v1), if v1 cannot pass the NE-test
of fhyb(v′), encoding v′ into fhyb(v1) contributes noth-
ing to NEpair determinations. While, if v1 can pass the

Authorized licensed use limited to: Peking University. Downloaded on November 06,2024 at 02:46:20 UTC from IEEE Xplore. Restrictions apply.

3608 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 7, JULY 2024

NE-test of fhyb(v′), it is a must to encode v′ into fhyb(v1)
for the correctness. Hence, for reconstructing fhyb(v1)
and fhyb(v2), we need only to conduct Hyb(v1, V

′
1) and

Hyb(v2, V
′
2), respectively, where

V ′
1 =

{
v ∈ NG(v1) | v1 NE�→ fhyb(v)

}
∪ {v2}

V ′
2 =

{
v ∈ NG(v2) | v2 NE�→ fhyb(v)

}
∪ {v1}

Note that computing V ′
1 and V ′

2 only costs O(k ∗ |NG(v)|)
time where the dimension number k is a constant.

� If only one of fhyb(v1) and fhyb(v2) is a full decodable
vector while the other is non-decodable, we tend to recon-
struct the decodable one to avoid storage accesses.

2) Deletion of Edge (v1, v2): Similar to the edge insertion in
Section V-D1, we also discuss the adjustment of edge deletion
according to the types of vectors fhyb(v1) and fhyb(v2).
� If both fhyb(v1) and fhyb(v2) are decodable vectors, we

can just remove v1 (v2, resp.) from neighbor set encoded
in fhyb(v2) (fhyb(v1), resp.) for vector reconstructions.

� If both fhyb(v1) and fhyb(v2) are non-decodable vectors,
without loss of generality, assume that v can not pass
the NE-test of fhyb(v2). If v2 can pass the NE-test of
fhyb(v1), then v2 is not encoded in fhyb(v1) before, and
hence, we need only reconstruct fhyb(v2) by conducting
HybEncode(v2, NG(v2) \ {v1}). However, if v2 can not
pass the NE-test of fhyb(v1), then we need to reconstruct
both fhyb(v1) and fhyb(v2).

� If fhyb(v1) is decodable while fhyb(v2) is non-decodable
(We omit the discussions for the symmetrical case), 1©
for fhyb(v1), if v2 is encoded in fhyb(v1), then we can
reconstruct fhyb(v1) by removing v2; otherwise, we need
no update on fhyb(v1). 2© For fhyb(v2), if v1 passes the
NE-test of fhyb(v2), then v1 is not encoded in fhyb(v2)
before and we need no update on fhyb(v2); while, if v1
cannot pass the NE-test of fhyb(v2), we can reconstruct
fhyb(v2) by conductingHybEncode(v2,NG(v2) \ {v1}).

Note that our adjustment of encoding function for edge dele-
tion provides no guarantee of detecting new NEpair (v1, v2). A
VEND solution may not be able to detect all NEpairs since the
corresponding performance is heavily influenced by the graph
distribution and the dimension parameter k.

3) Insertion/Deletion of Vertex V: For insertion of vertex v,
we can just allocate a vector fhyb(v) for v where every bit of
fhyb(v) is initialized with value 0. An issue we need to consider
is that with the growth of vertex number, the bits used for
storing a vertex ID (i.e., I ′) may not be enough and we need
to reconstruct all vertex vectors. In fact, this case will happen
only when the data graph double in the vertex number, and the
amortized cost for each vertex insertion is O(degr(G)), where
degr(G) is the average degree of G. For deletion of vertex v,
we reconstruct all such vector fhyb(v′) where v′ ∈ NG(v) and
v can not pass the NE-test of fhyb(v′). We also clear every bit in
fhyb(v) with value 0. We omit the discussion on the extra bits
as the vertex volume shrinks since it is a symmetrical case to
that of vertex insertion.

Fig. 4. Example block and its encoding in hybrid version.

4) Analysis: Time cost for vertex update is constant. While,
the time for insertion/deletion of edge (v1, v2) is equal to
that for computing Hyb(v1, V

′
1) and Hyb(v2, V

′
2), i.e., O(k2 ·

I · (|V ′
1|+ |V ′

2|)), where V ′
1 (V ′

2, resp.)is a subset of NG(v1)
(NG(v2), resp.). Therefore, the time cost for edge update is linear
to the neighbor number of the adjacent vertices.

VI. SIMD-ORIENTED ACCELERATION

In this section, we further extend the hybrid encoding into
a new SIMD-oriented version, denoted as (fhyb+, Fhyb+). We
propose SIMD-oriented search tree(SS-tree, for short) to transfer
neighbor block into a new permutation, where we can conduct
neighbor membership query of NE-test in an efficient tree search
way, instead of previous sequential scan. We also design the
SIMD-oriented encoding and decoding in the new permutation
for further performance enhancement. Specifically, we present
our SS-tree based VEND framework in Section VI-A, where
we illustrate the definition, construction and array implementa-
tion of SS-tree, including the array-based tree search. For the
sake of presentation, we present the detailed SIMD-oriented
encoding and acceleration over array-implemented SS-tree in
Section VI-B. Due to space limitation, we discuss neighbor
block selection of hyb+ in Appendix C. Note that we omit
the discussion of maintenance for hyb+ version, which is quite
similar to that of the hybrid version.

A. SIMD-Oriented Search Tree

Let’s discuss our SS-tree based acceleration strategy for the
neighbor existence search over hybrid version. Consider the
example vector fhyb(2) of vertex 2 in Fig. 4, where the encoded
block (for the range part) is Bv=2 = {4, 5, 14, 16, · · · , 201,
322, · · · , 530}. In hybrid version, when we conduct the NE-test
of fhyb(2) for vertex 201, we would decode each the encoded
vertex in Bv=2 and then determine the membership of 201 in
Bv=2. We can see that this decoding and search costsO(|Bv=2|)
time.

Actually, the search is a fine grained and frequently used
operation, which should be optimized. We propose an SIMD-
oriented search tree for accelerating the neighbor existence
search, where we can not only optimize the sequential scan into
efficient tree search, but also incorporate SIMD [36] capabilities
to achieve performance enhancement.

1) SS-Tree Definition: SIMD enables the processing of mul-
tiple data simultaneously with a single instruction. The number
of data processed in parallel is called as scalar value, which
is usually 4, 8 or 16. Without loss of generality, we use s to

Authorized licensed use limited to: Peking University. Downloaded on November 06,2024 at 02:46:20 UTC from IEEE Xplore. Restrictions apply.

ZHENG et al.: VERTEX ENCODING FOR EDGE NONEXISTENCE DETERMINATION WITH SIMD ACCELERATION 3609

Algorithm 3: Construction of SS-Tree.

denote the scalar value. Given s, we formally define SS-tree in
Definition 9.

Definition 9 (SIMD-oriented Search Tree (SS-tree)): Con-
sider a scalar value s, neighbor block B= {x0, . . . , xn−1} and
the corresponding B− = B \ {x0, xn−1}. An SIMD-oriented
search tree (SS-tree, for short) is a complete s-branch search
tree built overB−, which is similar to the complete binary search
tree. Specifically, SS-tree satisfies the following conditions:
� Each tree node contains at most s elements (in ascending

order) from B− as sorted keys, except for the leaf nodes.
� Each tree node has at most s+ 1 children.
� Every level of SS-tree, except possibly the last, is com-

pletely filled, and all nodes in the last level are as far left
as possible.

� SS-tree are of properties of search tree with key of each
internal node being greater than all the keys in the respec-
tive node’s left subtree and less than the ones in its right
subtree [37].

We use T (B) to denote the SS-tree constructed over block B.
2) SS-Tree Construction: Consider a block B={x0, . . . ,

xn−1}, B−=B \ {x0, xn−1} and a scalar value s. Let’s discuss
the SS-tree construction with pseudo codes in Algorithm 3.
According to Definition VI-A1, T (B) is a complete s-branch
search tree built overB− where each internal level is completely
filled while nodes in the last level are all arranged on the left side.
In this way, once the number of tree nodes (i.e., �|B−|/s�) is
given, we can determine the topology structure of an SS-tree
(Line 2 in Algorithm 3). For example, |B−

v=2| = 12, and node
number of T (Bv=2) would be 3 with s = 4. Fig. 5(a) presents
the topology structure of T (Bv=2), where we also assign ID to
each tree node from top to the bottom and left to the right (Line
5 in Algorithm 3).

With the topology structure, we can compute the tree node
number of each subtrees from the root, and consequently deter-
mine the s elements in root (Lines 10-12 in Algorithm 3). For
example, assume that the first element in root (of ID 1) is v, since
there is totally 1 tree node (of ID 2) in the first subtree of the root,
there would be 1 ∗ 4 = 4 elements less than v and hence v is the

Fig. 5. SS-tree construction and array-implementation.

5-th element in B−
v=2, i.e., v = 20. Similarly, we can determine

the second element in root is the 10-th one of B−
v=2, i.e., 322.

410 and 521 would be the last two elements since there are no
branches. Apparently, we can recursively determine elements
in each descendant of root (Line 14 in Algorithm 3). Fig. 5(b)
presents the SS-tree of example block Bv=2 with s = 4.

3) Array-Implemented SS-Tree & Its Search: Similar to a
complete binary search tree, an SS-tree can be implemented
as an array, where we can also equivalently conduct the tree
search. Recall the tree node ID that is assigned from top to
the bottom and from left to the right in SS-tree. Actually, an
array implementation of a complete s-branch is to store tree
nodes in an array sorted by their IDs [37]. We create a new
permutation of each B, denoted as PB , where PB [0] stores x0

and PB [1] stores xn−1. Also, items from PB [(i− 1) ∗ s+ 2]
to PB [(i− 1) ∗ s+ s+ 1] store elements in the tree node of
ID i (1 ≤ i ≤ �(�|B−|/s)). In this way, we can encode each
array-implemented SS-treeT (B) into the range part in the vertex
vector, so that we can conduct membership query with tree
search over T (B) that is more efficient than previous sequential
scan over B. Fig. 5(c) presents the PBv=2

for Bv=2, where the
first two elements, i.e., 4 and 530, are minimum and maximum
elements inBv2

, respectively. And the subsequent four elements
{20, 322, 410, 521} correspond to those in tree node of ID 1 (see
Fig. 5(b)). We can encode PB in the range part of the vector,
where we would conduct the corresponding tree search.

According to the properties of SS-tree, once a node ID is
given, we can directly figure out all IDs of its children. Since each
tree node ID corresponds to a unique position in PB , branching
operations over SS-tree can be equivalently performed over PB ,
and hence we can directly conduct the search for membership
tests on PB . Pseudo codes for NE-test of v1 over fhyb+(v2) are
available in Algorithm 4 and let’s focus on the case when v1 ∈
(PB [0], PB [1]). We would firstly decode the s elements of root:
vi1 , vi2 , · · · , vis (Line 10 in Algorithm 4), and then we would
test whether v1 is one of these s elements (Line 11 in Algorithm
4). If not, we then determine which branch we should follow for
further recursive search (Line 13 in Algorithm 4). We would not
stop the search until we find that v1 is in some tree node or there
is no children node for further search.

There are three main operations in an NE-test, i.e., decoding
the s elements (Line 10), testing on whether v1 exists in the
decoded elements (Line 11), and the branching operation for
further search (Line 13). We discuss how these operations can
be accelerated with SIMD in the following Section VI-B.

Authorized licensed use limited to: Peking University. Downloaded on November 06,2024 at 02:46:20 UTC from IEEE Xplore. Restrictions apply.

3610 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 7, JULY 2024

Algorithm 4: NE-test of v1 against fhyb+(v2) in Hyb+.

Fig. 6. Encoding example for sorted keys: {20, 322, 410, 521}.

B. SIMD Acceleration Over SS-Tree

Consider a block B, the SS-tree T (B) with scalar value s
and the corresponding new permutation PB . We incorporate an
SIMD-oriented encoding over array-implemented SS-tree such
that we can not only improve the compression ratio, but also
enable SIMD capabilities for accelerating the decoding of NE-
tests.

1) SIMD-Oriented Encoding: There are two different parts
inPB , i.e., the first two vertices (PB[0],PB [1]) and the remaining
part of elements in T (B). We use straightforward encoding to
compress each of PB [0] and PB [1] into �log2(|V |)� bits on the
range encoding part. Remaining items in PB are groups of s
elements for SS-tree nodes. We apply Stream VBytes [38] to
encode these groups of elements. This encoding over a sequence
of integers contains two parts: control bytes and data bytes. The
former indicates the number of bytes occupied by each integer,
while the latter stores integers subsequently. In the mainstream
computer architecture, it usually takes at most 4 bytes to record
a 32-bit integer. Hence, data bytes part uses a variable-length (4,
at most) sequence of bytes to store an integer. We can always use
2 bits to indicate the number of bytes for an integer, and that is to
say, one control byte (8 bits) can indicate the variable-lengths of
4 integers, which is well suited for one SIMD instruction, since 4
is usually a divisor of scalar value s. For the sake of presentation
only, we assume that s = 4 in the following discussion.

Fig. 6 presents an encoding example over integer sequence
{20, 322, 410, 521}. We can see that these 4 integers occupy 1,
1, 2, and 2 bytes respectively, thus, the corresponding control
byte is 00000101. In this way, we can divide all vertices in
neighbor block into groups of (at most) 4 and encode these

groups together with the corresponding control bytes according
to Stream VByte strategy. This encoding itself improves the
compression ratio because of the variable-length based storage
for integers. We can also further improve the compression ratio
by applying differential coding to the node keys. For example,
for a set of node keys {x1, x2, x3, x4}, we can encode them
as {x1, x2 − x1, x3 − x2, x4 − x3}. More importantly, once we
read a control byte for decoding, we can accordingly get the
corresponding permutation of four variable-lengths and locate
the bits for encoded four integers, which can be decoded out
simultaneously with the “shuffle” operation of SIMD and then
accelerate the decoding [38].

2) SIMD-Accelerated Decoding: Let’s discuss our decoding
process with SIMD acceleration over the NE-test of v1 against
fhyb+(v2). Without loss of generality, we focus on the case
when PB [0] < v1 < PB [1]. Starting from the root node, we
traverse the encoded SS-tree until we reach the desired vertex.
Suppose we are currently visiting a node with ID i. Since we
have divided the encoding into control and data bytes, we need
to calculate the encoding offset for the data byte of the current
node. This can be easily obtained by accumulating the length of
data indicated by the first i− 1 control bytes. The i-th control
byte records the length of the data bytes for the sorted keys
of the current tree node. After obtaining the corresponding
data bytes, we need to conduct the decoding with two steps.
The first is to convert the variable-length data bytes into a
fixed-length integer list, which can be efficiently decoded using
the “shuffle” operation of SIMD based on the control byte.
The second is to restore the original list of integers. Recall
the example of differential coding presented in Section VI-B1.
Assuming that we get the list {x1, x2 − x1, x3 − x2, x4 − x3},
we can restore the original list by building two additional lists,
namely, {0, 0, x2 − x1, x3 − x2} and {0, 0, x1, x2 − x1}, over
the given one. The whole computation can be accelerated by
the “shift” and “addition” mechanism of SIMD. These two
steps correspond to the “SIMD-Decode” function at Line 10 in
Algorithm 4. Once we figure out the original list, we can conduct
a membership query of v1 against the list in parallel using the
SIMD “compare” operation (Line 11 in Algorithm 4). If v1 is
not any of these elements, we can determine a branch of current
tree node for further search with another SIMD “compare” (Line
13 in Algorithm 4). We would not stop our search until we find
the target vertex or reach a leaf node.

VII. EXPERIMENTAL EVALUATION

All methods are implemented in C++ and run on a CentOS
machine of 128 G memory and two Intel(R) Xeon(R) Silver-
4210R 2.40 GHz CPUs.The processor provides 128-bit registers
to support the required SIMD instructions.Codes are available
on Github [39].

We use six real world datasets in our experiments. As-Sk [40]
dataset is an Internet topology graph generated from trace-
routes. Wiki [41] is a graph of Wikipedia hyperlinks. Uk [42] is
a 2005 crawl of the. UK domain performed by UbiCrawler [43].
Gsh is a large snapshot of the web taken in 2015 by BUb-
iNG [44]. Orkut [45] dataset is created from a free online social

Authorized licensed use limited to: Peking University. Downloaded on November 06,2024 at 02:46:20 UTC from IEEE Xplore. Restrictions apply.

ZHENG et al.: VERTEX ENCODING FOR EDGE NONEXISTENCE DETERMINATION WITH SIMD ACCELERATION 3611

TABLE I
SUMMARY OF DATASETS

network where users form friendships each other. Cage [46]
dataset is a collection of CAGE tags representing transcript ends
for gene expression analysis. The default storage backend for
adjacent list is RocksDB [47] (on disk). Each graph is taken
as undirected and the adjacent list of each vertex contains both
in and out neighbors. For each dataset, we set five different
dimension numbers k: 2, 4, 8, 16, 32.

Table I presents the statistical information about these
datasets. Note that the first 5 graphs (i.e., As-Sk, Wiki, Uk,
Gsh and Orkut) are indeed of power-law distribution while Cage
follows a non-power-law one where most vertices are of degree
larger than 10. We can see from Table I that, for graph Cage,
only a quite tiny part of vertices and edges are encoded when
k is not larger than 10. Note that we omit all results when k is
larger than the average degree. Specifically, VEND is proposed
to avoid disk accesses for no-result edge queries, and if k is
larger than the average degree, we can just load the entire graph
into memory avoid any disk access. Due to space limitation, we
demonstrate these graph distributions in Fig. 12 in Appendix D,
where we also present more discussions for graph distributions.

We also present a series case studies in Appendix. Specif-
ically, we demonstrate VEND acceleration for disk-based tri-
angle counting and edge query operations in graph database
Neo4j [1] (Appendix E.1). We also compare our methods against
in-memory graph framework Aspen [48]. Additionally, we ex-
tend our methods over directed graphs and evaluate our solutions
over a directed graph dataset Pokec [49] (Appendix E.3). More
extra evaluations are available in Appendix.

A. Comparative Setting

We evaluate our solutions against four Bloom filter (BF) based
methods. The first is standard BF (SBF) built over a bitset of size
|V | · k · I , where we hash each edge with the corresponding
two adjacent vertices as input. Note that edge deletion requires
reconstruction to guarantee consistency. The second one is
Blocked BF (BBF) [33] where the bitset is partitioned into
a series of smaller standard BF (blocks) and when a deletion
happens, only the affected block need to be reconstructed. We
set the block size to 512 according to [33]. The last one is the
variant of the BF that is only applied to encode vertices in the
core subgraph. Similar to the hybrid version, vertices not in
K-core are explicitly encoded. We denote this version as local
BF (LBF), which apparently can be efficiently updated without
global reconstruction, and hence we only applied the standard
BF there in view of its highest false positive rate. Apparently,
bit-hash version in Section IV-D is essence a special case of LBF.
The optimal number of hash functions in BF can be computed
by (ln 2 ·m)/n where m is the average number of items to be

hashed and n is the fixed size of hash slot [29]. We also include
the range version (Section IV-C) for comparison, which can be
maintained in a similar way to that of hybrid. Further more,we
implement the hybrid optimized version (Section VI) with SSE
SIMD instruction set that can operate 4 scalars in parallel. We
first evaluate these VEND solutions from three aspects: VEND
score (Section VII-B), edge queries acceleration (Section VII-C)
and the maintenance efficiency (Section VII-D).

B. VEND Score

We evaluate the VEND score of each version over given
datasets. Note that we did not enumerate all vertex pairs in
V× V to count the precise number of NEpairs, which is more
than a thousand billions. In fact, we randomly generate one
billion vertex pairs for each dataset as edge queries. We also
create another set of edge queries where the corresponding two
vertices are close to each other in light of the locality of many
edge query related computation, such as clustering coefficient
(triangle counting) and subgraph matching. We generate this
edge query set by sampling pairs of vertices having at least one
common neighbor. The VEND scores over these two query sets
are presented in Figs. 7 and 8, respectively. We can see that our
methods and SBF score almost equally highest, and hyb+ VEND
is even better than hybrid version. Over Cage dataset, both
hyb+ and hybrid VEND outperform comparative ones, which
confirms that our techniques are applicable not only on graphs
of power-law distributions but also those of non-power-law
ones. An interesting observation is that performance gaps of all
methods in Fig. 7 are significantly smaller that those in Fig. 8.
Actually, an equivalent problem of VEND is to determine vertex
pairs where the two vertices are of distance larger than 1. Hence,
for randomly generated vertex pairs of which the two vertices
tend to be far from each other, even simple VEND ideas could
identify most NEpairs, that is why performance gaps in Fig. 6 is
small. While, for vertex pairs of common neighbors, the distance
of those two vertices are at most 2, it is not easy for those naive
VEND solutions to identify the corresponding NEpairs. Hence,
in the scenario where edge queries mainly happen on vertices
from the same local part of graph, our performance advantages
would be more significant.

C. Edge Query Acceleration

For edge queries acceleration, we generate two query sets
where the first contains one million randomly generated vertex
pairs (denoted as RandPair) while the second set is built
by sampling one million vertex pairs over those of common
neighbor (denoted as CommPair). We report the total time for
answering these edge queries in Fig. 9. We can see from that
all VEND solutions exhibits considerable acceleration on edge
queries over both power-law and non-power-law graphs. Our
hyb+ VEND perform best while hybrid version performs sim-
ilarly to SBF. All these three methods significantly outperform
the others. Also, the Non-VEND version is the slowest than
any VEND-accelerated method. In fact, graphs are stored on
disk while VEND encoding are persisted in memory, and hence,
VEND-accelerated methods would filter lots of disk accesses for

Authorized licensed use limited to: Peking University. Downloaded on November 06,2024 at 02:46:20 UTC from IEEE Xplore. Restrictions apply.

3612 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 7, JULY 2024

Fig. 7. VEND score over different datasets on randomly generated vertex pairs.

Fig. 8. VEND score over different datasets on vertex pairs of common neighbor.

Fig. 9. Total time over different edge query sets (k = 8).

Fig. 10. Throughput for addressing edge updates (k = 8).

no-result edge queries with in-memory NDF, while Non-VEND
version would always conduct disk accesses for each query.

D. Maintenance Evaluation

We compare our work against comparative ones on mainte-
nance efficiency. We sample 100,000 existing edges for con-
ducting edge deletions and randomly generate another 100,000
new edges for edge insertion. Note that we do not include
insertion/deletion of vertices in our evaluation since they are
trivial compared to those of edges. Edge insertions and dele-
tions are evaluated independently and we report throughput
for addressing these updates in each group. We only consider
the time cost for updating vectors and we omit the time for
committing updates in storage, which varies a lot on different
graph databases.

We can see from Fig. 10 that although comparative works
are more efficient than our method on insertion, we can still
address nearly tens of thousands of edge insertions per second.

An important observation is that performances of SBF and BBF
are so terrible that they can hardly be applied in real-world
scenarios. In general, our method is apparently the best with
high VEND score and efficient maintenance. Also, edge deletion
takes much more time that insertion. 1© For BF based methods
(i.e., SBF, BBF and LBF), they can incrementally update the
slot with trivial hash operations for insertion. While, for deletion,
related hash slots need to be totally reconstructed when deletions
happen. We can also see that deletion maintenance of LBF is
much more efficient than that of SBF and BBF since LBF create
a relatively small and independent slot for each vertex, and hence
the corresponding reconstruction would be more lightweight.
2© For our counterparts, as indicated in Section V-D1, there

are some cases for edge insertion that we need no encoding
construction, while for edge deletion (see Section V-D2), we
always need at least one encoding reconstruction. Therefore,
the insertion throughput is usually larger than that of deletion.

E. Index Construction and Space Usage

We report the index construction time and space cost of
hybrid and hyb+ VEND in Table II. Hyb+ costs a bit (about
10%) more index construction time than that of hybrid version,
since encoding of the former is more complicated than that of
the latter. Note that space costs of hybrid and hyb+ versions
are the same under a given k, since both of their data structure
are |V (G)| vectors of length k. Percentage numbers present the
corresponding proportion of space saved by VEND. We can see
that VEND memory usage is highly linear tok. Some space costs

Authorized licensed use limited to: Peking University. Downloaded on November 06,2024 at 02:46:20 UTC from IEEE Xplore. Restrictions apply.

ZHENG et al.: VERTEX ENCODING FOR EDGE NONEXISTENCE DETERMINATION WITH SIMD ACCELERATION 3613

TABLE II
INDEX CONSTRUCTION AND MEMORY EFFICIENCY

are marked as N/A when the k is larger than the average degree,
where VEND turns invalid according to our problem scenarios.

VIII. CONCLUSION

Edge query is one of the fundamental operations in graph
databases. We propose vertex encoding based edge nonexis-
tence determination (VEND) for accelerating edge queries. A
VEND solution consists of a vertex encoding f and NEpair
determination function (NDF) F , with which we efficiently
filtering no-result edge queries, i.e., vertex pairs connected by
no edges. We first design an efficient optimal partial VEND
solution over a subset of vertices such that no-result edge queries
related to these vertices can be efficiently and precisely detected.
We also illustrate range-based and hash-based extensions over
the optimal partial version, after which we propose a hybrid
VEND solution incorporating both range and hash ideas, as well
as an efficient maintenance algorithm over the hybrid version
when edge insertions/deletions happen. Furthermore, NDF is a
fine-grained and frequently used operation, and we incorporate
SIMD acceleration over our hybrid VEND solution, forming
a hyb+ version. Extensive experiments show that our solution
performs well on real-world datasets and is able to detect most
no-result edge queries.

REFERENCES

[1] J. J. Miller, “Graph database applications and concepts with Neo4j,” in
Proc. southern Assoc. Inf. Syst. Conf., Atlanta, GA, USA, 2013, vol. 2324,
no. 36, pp. 141–147.

[2] A. Deutsch, Y. Xu, M. Wu, and V. E. Lee, “Aggregation support for modern
graph analytics in tigergraph,” in Proc. Int. Conf. Manage. Data, D. Maier,
R. Pottinger, A. Doan, W.-C. Tan, A. Alawini, and H. Q. Ngo, Eds.,
Portland, OR, USA, Jun. 14–19, 2020, pp. 377–392. [Online]. Available:
https://doi.org/10.1145/3318464.3386144

[3] “Nebula graph,” 2022, Accessed: Jan. 15 . [Online]. Available: https://
nebula-graph.io/

[4] “Janusgraph,” 2022, Accessed: Jan. 15, . [Online]. Available: https://
janusgraph.org/

[5] T. Neumann and G. Weikum, “The RDF-3X engine for scalable manage-
ment of RDF data,” VLDB J., vol. 19, no. 1, pp. 91–113, 2010.

[6] L. Zou, J. Mo, L. Chen, M. T. Özsu, and D. Zhao, “gStore: Answering
SPARQL queries via subgraph matching,” Proc. VLDB Endowment, vol. 4,
no. 8, pp. 482–493, 2011.

[7] S. N. Soffer and A. Vazquez, “Network clustering coefficient with-
out degree-correlation biases,” Phys. Rev. E, vol. 71, no. 5, 2005,
Art. no. 057101.

[8] M. A. Hasan and V. S. Dave, “Triangle counting in large networks: A
review,” Wiley Interdiscipl. Rev.: Data Mining Knowl. Discov., vol. 8, no. 2,
2018, Art. no. e1226.

[9] S. Arifuzzaman, M. Khan, and M. Marathe, “Patric: A parallel algorithm
for counting triangles in massive networks,” in Proc. 22nd ACM Int. Conf.
Inf. Knowl. Manage., 2013, pp. 529–538.

[10] K. Tangwongsan, A. Pavan, and S. Tirthapura, “Parallel triangle counting
in massive streaming graphs,” in Proc. 22nd ACM Int. Conf. Inf. Knowl.
Manage., 2013, pp. 781–786.

[11] F. Bi, L. Chang, X. Lin, L. Qin, and W. Zhang, “Efficient subgraph
matching by postponing cartesian products,” in Proc. Int. Conf. Manage.
Data, 2016, pp. 1199–1214.

[12] J. Leskovec and A. Krevl, “SNAP datasets: Stanford large network dataset
collection,” Jun. 2014. Accessed: Sep. 15, 2023. [Online]. Available: http:
//snap.stanford.edu/data

[13] Z. Liu, C. Chen, X. Yang, J. Zhou, X. Li, and L. Song, “Heterogeneous
graph neural networks for malicious account detection,” in Proc. 27th ACM
Int. Conf. Inf. Knowl. Manage., 2018, pp. 2077–2085.

[14] C. Kankanamge, S. Sahu, A. Mhedhbi, J. Chen, and S. Salihoglu, “Graph-
flow: An active graph database,” in Proc. ACM Int. Conf. Manage.
Data, 2017, pp. 1695–1698. [Online]. Available: https://doi.org/10.1145/
3035918.3056445

[15] Y. Cui, D. Xiao, D. B. H. Cline, and D. Loguinov, “Improving I/O
complexity of triangle enumeration,” IEEE Trans. Knowl. Data Eng.,
vol. 34, no. 4, pp. 1815–1828, Apr. 2022.

[16] J. Zhou et al., “Graph neural networks: A review of methods and applica-
tions,” AI Open, vol. 1, pp. 57–81, 2020.

[17] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by
locally linear embedding,” Science, vol. 290, no. 5500, pp. 2323–2326,
2000.

[18] M. Belkin and P. Niyogi, “Laplacian eigenmaps for dimensionality
reduction and data representation,” Neural Comput., vol. 15, no. 6,
pp. 1373–1396, 2003.

[19] A. Ahmed, N. Shervashidze, S. Narayanamurthy, V. Josifovski, and A. J.
Smola, “Distributed large-scale natural graph factorization,” in Proc. 22nd
Int. Conf. World Wide Web, 2013, pp. 37–48.

[20] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of
social representations,” in Proc. 20th ACM SIGKDD Int. Conf. Knowl.
Discov. Data Mining, 2014, pp. 701–710.

[21] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in Proc. 22nd Int. Conf. Knowl. Discov. Data Mining, 2016,
pp. 855–864.

[22] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line: Large-scale
information network embedding,” in Proc. 24th Int. Conf. World Wide Web,
2015, pp. 1067–1077.

[23] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Proc. 31st Int. Conf. Neural Inf. Process.
Syst., 2017, pp. 1025–1035.

[24] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio,
“Graph attention networks,” Stat, vol. 1050, p. 4, 2018.

[25] L. Lü and T. Zhou, “Link prediction in complex networks: A survey,”
Physica A: Stat. Mechanics Appl., vol. 390, no. 6, pp. 1150–1170, 2011.

[26] M. E. Newman, “Clustering and preferential attachment in growing net-
works,” Phys. Rev. E, vol. 64, no. 2, 2001, Art. no. 025102.

[27] G. Kossinets, “Effects of missing data in social networks,” Social Netw.,
vol. 28, no. 3, pp. 247–268, 2006.

[28] L. Katz, “A new status index derived from sociometric analysis,” Psy-
chometrika, vol. 18, no. 1, pp. 39–43, 1953.

[29] L. Luo, D. Guo, R. T. B. Ma, O. Rottenstreich, and X. Luo, “Optimizing
bloom filter: Challenges, solutions, and comparisons,” IEEE Commun.
Surveys Tuts., vol. 21, no. 2, pp. 1912–1949, Secondquarter 2019.

[30] L. Fan, P. Cao, J. M. Almeida, and A. Z. Broder, “Summary cache: A
scalable wide-area web cache sharing protocol,” IEEE/ACM Trans. Netw.,
vol. 8, no. 3, pp. 281–293, Jan. 2000.

[31] C. E. Rothenberg, C. A. B. Macapuna, F. L. Verdi, and M. F. Magalhães,
“The deletable Bloom filter: A new member of the Bloom family,” IEEE
Commun. Lett., vol. 14, no. 6, pp. 557–559, Jun. 2010.

[32] H. Lim, J. Lee, H. Y. Byun, and C. Yim, “Ternary bloom filter replacing
counting bloom filter,” IEEE Commun. Lett., vol. 21, no. 2, pp. 278–281,
Feb. 2017. [Online]. Available: https://doi.org/10.1109/LCOMM.2016.
2624286

[33] F. Putze, P. Sanders, and J. Singler, “Cache-, hash-, and space-efficient
bloom filters,” ACM J. Exp. Algorithmics, vol. 14, pp. 4.4–4.18, 20010.
[Online]. Available: https://doi.org/10.1145/1498698.1594230

[34] S. B. Seidman, “Network structure and minimum degree,” Social Netw.,
vol. 5, no. 3, pp. 269–287, 1983.

[35] J. Wang, C. Lin, Y. Papakonstantinou, and S. Swanson, “An experimental
study of bitmap compression vs. inverted list compression,” in Proc. ACM
Int. Conf. Manage. Data, 2017, pp. 993–1008.

[36] J. Zhou and K. A. Ross, “Implementing database operations using SIMD
instructions,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2002,
pp. 145–156. [Online]. Available: https://doi.org/10.1145/564691.564709

[37] Wikipedia Contributors, “Binary search tree – Wikipedia, the free en-
cyclopedia,” 2023, Accessed: Jan. 15, 2023. [Online]. Available: https:
//en.wikipedia.org/wiki/Binary_search_tree

Authorized licensed use limited to: Peking University. Downloaded on November 06,2024 at 02:46:20 UTC from IEEE Xplore. Restrictions apply.

https://doi.org/10.1145/3318464.3386144
https://nebula-graph.io/
https://nebula-graph.io/
https://janusgraph.org/
https://janusgraph.org/
http://snap.stanford.edu/data
http://snap.stanford.edu/data
https://doi.org/10.1145/3035918.3056445
https://doi.org/10.1145/3035918.3056445
https://doi.org/10.1109/LCOMM.2016.2624286
https://doi.org/10.1109/LCOMM.2016.2624286
https://doi.org/10.1145/1498698.1594230
https://doi.org/10.1145/564691.564709
https://en.wikipedia.org/wiki/Binary_search_tree
https://en.wikipedia.org/wiki/Binary_search_tree

3614 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 7, JULY 2024

[38] D. Lemire, N. Kurz, and C. Rupp, “Stream vbyte: Faster byte-oriented
integer compression,” Inf. Process. Lett., vol. 130, pp. 1–6, 2018.

[39] “Codes,” 2022. Accessed: Sep. 15, 2023. [Online]. Available: https:
//github.com/hnuGraph/VEND

[40] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graphs over time: Densifi-
cation laws, shrinking diameters and possible explanations,” in Proc. 11th
ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2005, pp. 177–187.

[41] H. Yin, A. R. Benson, J. Leskovec, and D. F. Gleich, “Local higher-order
graph clustering,” in Proc. 23rd ACM SIGKDD Int. Conf. Knowl. Discov.
Data Mining, 2017, pp. 555–564.

[42] P. Boldi, B. Codenotti, M. Santini, and S. Vigna, “uk-2005: A crawl of
the. uk domain performed by ubicrawler,” 2005. Accessed: Sep. 15, 2023.
[Online]. Available: https://law.di.unimi.it/webdata/uk-2005/

[43] P. Boldi, B. Codenotti, M. Santini, and S. Vigna, “Ubicrawler: A scalable
fully distributed web crawler,” Softw.: Pract. Experience, vol. 34, no. 8,
pp. 711–726, 2004. [Online]. Available: https://doi.org/10.1002/spe.587

[44] P. Boldi, A. Marino, M. Santini, and S. Vigna, “Bubing: Massive crawling
for the masses,” ACM Trans. Web, vol. 12, no. 2, pp. 12:1–12:26, 2018.

[45] J. Yang and J. Leskovec, “Defining and evaluating network communities
based on ground-truth,” Knowl. Inf. Syst., vol. 42, no. 1, pp. 181–213, 2015.

[46] R. A. Rossi and N. K. Ahmed, “The network data repository with interac-
tive graph analytics and visualization,” in Proc. AAAI Conf. Artif. Intell.,
2015, pp. 4292–4293.

[47] S. Dong, A. Kryczka, Y. Jin, and M. Stumm, “RocksDB: Evolution of de-
velopment priorities in a key-value store serving large-scale applications,”
ACM Trans. Storage, vol. 17, no. 4, pp. 1–32, 2021.

[48] L. Dhulipala, G. E. Blelloch, and J. Shun, “Low-latency graph streaming
using compressed purely-functional trees,” in Proc. 40th ACM SIGPLAN
Conf. Program. Lang. Des. Implementation, 2019, pp. 918–934. [Online].
Available: https://doi.org/10.1145/3314221.3314598

[49] L. Takac and M. Zabovsky, “Data analysis in public social networks,” in
Proc. Int. Sci. Conf. Int. Workshop Present Day Trends Innovations, 2012,
pp. 1–6.

Hangyu Zheng received the BS degree from Nan-
chang University, Nanchang, China, in 2021. He is
currently working toward the MS degree in graph
search from the College of Computer Science and
Electronic Engineering, Hunan University, China.
His research interests include graph query and graph
database.

Youhuan Li (Member, IEEE) received the BS degree
and the PhD degree in graph stream management from
Peking University, China, in 2013 and 2018, respec-
tively. From 2018 to 2020, he was a postdoc with
Peking University and Tencent, Shenzhen, China,
respectively. He is currently an associate professor
with Hunan University. His research focuses on graph
data management.

Fang Xiong received the BS degree in computer sci-
ence and technology from Hunan Normal University,
China, in 2002 and the PhD degree from the National
University of Defense Technology, Changsha, China,
in 2022. He is currently with Network Information
Department, Xiangya Hospital, Central South Uni-
versity. His research mainly focuses on medical Big
Data.

Xiaosen Li received the BS degree in software from
Central South University, China, in 2012 and the
master’s degree in software engineering from Peking
University, China, in 2015. In 2018, he was a senior
research engineer with Tencent, China. His research
interests mainly include data mining and machine
learning.

Lei Zou is currently a professor with the Institute of
Computer Science and Technology, Peking Univer-
sity, China. He is also a faculty member with Big Data
Center, Peking University and Beijing Institute of Big
Data Research, respectively. His research interests in-
clude graph database and semantic data management.

Peifan Shi received the BS degree from the Beijing
University of Chemical Technology, China, in 2021.
She is currently working toward the MS degree in
distributed graph search with Hunan University. Her
research research focuses on graph search.

Zheng Qin received the PhD degree in cyber-security
from Chongqing University, China, in 2001. He is
currently a professor with Hunan University. His
research interests mainly include network and data
security and privacy.

Authorized licensed use limited to: Peking University. Downloaded on November 06,2024 at 02:46:20 UTC from IEEE Xplore. Restrictions apply.

https://github.com/hnuGraph/VEND
https://github.com/hnuGraph/VEND
https://law.di.unimi.it/webdata/uk-2005/
https://doi.org/10.1002/spe.587
https://doi.org/10.1145/3314221.3314598

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

