
GAMMA: A Graph Pattern Mining Framework for
Large Graphs on GPU

Lin Hu†, Lei Zou†, M. Tamer Özsu‡
†Peking University, China; ‡University of Waterloo, Canada;

†{hulin,zoulei}@pku.edu.cn, ‡tamer.ozsu@uwaterloo.ca

Abstract—Graph pattern mining (GPM) is getting increasingly
important recently. There are many parallel frameworks for
GPM, many of which suffer from performance. GPU is a power-
ful option for graph processing, which has excellent potential for
performance improvement; however, parallel GPM algorithms
produce a large number of intermediate results, limiting GPM
implementations on GPU.

In this paper, we present GAMMA, an out-of-core GPM
framework on GPU, and it makes full use of host memory
to process large graphs. Specifically, GAMMA adopts a self-
adaptive implicit host memory access manner to achieve high
bandwidth, which is transparent to users. GAMMA provides
flexible and effective interfaces for users to build their algorithms.
We also propose several optimizations over primitives provided
by GAMMA in the out-of-core GPU system. Experimental results
show that GAMMA has scalability advantages in graph size over
the state-of-the-art by an order of magnitude, and is also faster
than existing GPM systems.

Index Terms—graph pattern mining, large graphs, GPU

I. INTRODUCTION

The importance of graph algorithms in many fields is well-
recognized: chemical engineering [1], social network [2], [3]
and financial market [4]. Significant attention has been paid to
graph pattern mining (GPM) tasks that discover graph patterns
satisfying some criteria [5]–[9]. This class of workloads in-
volves subgraph matching (SM) [10], frequent pattern mining
(FPM) [11], [12] and k-clique (kCL) computation [13]. GPM
algorithms usually produce a large number of intermediate re-
sults, making them more challenging. For example, exploring
length-4 embeddings over cit-Patent (a dataset with 16.5 M
edges) produces 13.5 billion intermediate results [7]. In this
paper, we focus on efficient computation of GPM algorithms
using hardware accelerators.

There are two different roadmaps to develop GPM algo-
rithms. One is to design an efficient graph algorithm for
a specific task, such as subgraph matching [10], [14], [15]
and FPM [11], [12]. The second is to define a generic
framework, which incorporates efficient primitives that can be
used to specify GPM algorithms. These primitives are tuned to
address the computational commonalities among GPM tasks
such as their computationally heavy nature, their tendency to
perform random access to data, and the production of massive
intermediate results by many well-known GPM algorithms.
In this paper we follow the second approach and develop
GAMMA (graph pattern mining framework for large graphs),
a framework that incorporates primitives that can be efficiently

executed on GPUs and can be used to implement GPM
algorithms such as FPM and SM.

Many GPM frameworks have been proposed [5], [8], [9],
[16], most of which are CPU-based. They generally have un-
satisfactory performance due to the exponential search space of
GPM and limitations of CPU-only computation. For example,
Arabesque [5], a state-of-the-art GPM framework, spends 1.65
hours to find all length-3 frequent patterns in a graph with one
million edges.

GPM is a class of algorithms that can benefit from hard-
ware assistance, specifically GPU processing. GPU provides
massive parallelism with a large memory bandwidth compared
to a CPU, making it suitable for graph pattern mining.
Most existing GPU-based works focus on designing specific
GPM algorithms [10], [13], [17] rather than a comprehensive
framework. To the best of our knowledge, Pangolin [8] is the
only GPU-based GPM framework. It works on the assumption
that graphs and intermediate results can be resident in GPU
device memory. However, as noted earlier, GPM algorithms
often produce extensive intermediate results, and GPU device
memory is quite limited (e.g., 16 GB for Tesla V100). Thus,
Pangolin cannot deal with large graphs.

To deal with large graphs on GPU, existing works [17]–
[20] partition graphs and explicitly transfer them to GPU to
process them. However, they require task-specific partitioning
strategies, and this approach causes redundant memory transfer
and extra data reorganization cost. It is desirable to avoid these
overheads.

The goal of this paper is to design an out-of-core GPM
framework for graphs that are too large to fit GPU device
memory. We have two main challenges: one is how to store
and access large graph data and intermediate results on CPU-
GPU heterogeneous platform; the other is to address the
computational bottlenecks due to processing large graphs on
out-of-core GPU systems.

To address the first issue, we adopt the implicit host memory
access approach, where host memory and device memory
become a unified address space. This style of access assures
that the data required by the device can be fetched from
CPU at run-time. There are two kinds of implicit memory
access modes with different characteristics: unified memory
and zero-copy memory. Accessing unified memory may cause
additional data migration, but it has buffers in the device;
zero-copy memory has no buffer in the device, and has little
migration cost. Thus, unified memory is friendly to data with

good temporal and spatial locality, while zero-copy memory
is suitable for isolated and infrequently accessed data. Neither
works particularly well for GPM because of the diversity of
access patterns to graphs. In this paper, we propose a self-
adaptive access approach based on a quantitative model of the
access. We also design data structures considering data locality
to smooth the bandwidth gap between host memory and device
memory.

The second challenge is that the computational complexity
of GPM algorithms increase quickly as the graph size grows,
and the performance issues of in-core GPU systems become
even more serious in out-of-core GPU platforms (see Section
V-B). These include the uncertain amount of output produced
by threads and the large amounts of computational redundancy,
and sorting data whose size exceeds device memory is a new
challenge. We develop three optimizations to the primitives
to address these issues: (1) design a dynamic device memory
allocation strategy to address the uncertainty in the extension
primitive, (2) group multiple extension processes to reduce
redundant computation, and (3) implement an efficient sort
method when the key size exceeds device memory.

TABLE I
CATEGORIES OF DIFFERENT GRAPH MINING WORKS.

GPU CPU
in device out of device

frameworks Pangolin [8] GAMMA

Peregrine [16],
Kaleido [7],

Arabesque [5],
Fractal [9]

specific algos GSI [10], Tricore [17] Guo et al. [15] Sun et al. [21]

Our self-adaptive memory access approach enables GPU to
process much larger graphs than what is currently possible; the
proposed optimizations to primitives guarantee better perfor-
mance and better scalability. These are our main contributions,
and they are incorporated into GAMMA. To the best of our
knowledge, GAMMA is the first out-of-core GPM framework
to deal with large graphs that are beyond the capacity of
device memory (see Table I). Programming GPM algorithms
within GAMMA frees users from massive programming de-
tails, including complicated host memory access, maintaining
large-scale intermediate results and primitive optimizations.
We demonstrate this by building three GPM algorithms.

Experimental results show that GAMMA can support
billion-scale graphs and has an order of magnitude better
scalability in graph size than other GPM frameworks on GPU.

To summarize, we make the following contributions:

• We propose a GPM framework on GPU, called GAMMA,
which uses host memory to deal with large graphs. It
provides flexible and effective interfaces for users to build
their algorithms.

• We build a self-adaptive method to determine when to
use alternative modes of accessing host memory (unified
and zero-copy), each of which is suitable for different sit-
uations. This helps to smooth the bandwidth gap between
host memory and device memory.

• We propose three optimizations to existing GPM frame-
work primitives based on the GPU architecture and graph
mining tasks. These optimizations target large graphs.

• We conduct extensive experiments. The results show
that GAMMA has great improvements in scalability and
performance compared with state-of-the-art works.

II. PRELIMINARIES

A. Heterogeneous System Architecture

The architecture of a heterogeneous computing system
involving CPU and GPU is shown in Fig. 1.

Device memory

Host memory

D1

core core core core
core core core core

D1

D2 D2
request

D3
request

explicit copy

Shared
memory

thread block

warp

Host Device

Fig. 1. GPU architecture.

Software. A warp is a group of threads, and threads in it run
in Single Instruction Multiple Threads (SIMT) manner. There-
fore, synchronization in a warp does not introduce extra cost.
A thread block consists of several warps, and it is the largest
unit for thread communication. Thread block synchronization
has a much higher overhead than warp synchronization.

Hardware. GPU has thousands of cores, and they share
device memory. Shared memory is on-chip memory managed
by thread blocks. It is limited in size (about 48 KB per thread
block) but has low access latency. Device memory is connected
to host memory via PCIe. Data transfer between the host
(CPU) and GPU is a critical part of GPU-optimized algo-
rithms, and we discuss it in detail in the following subsection.

B. Host Memory Access

It is traditional in processing large graphs to use explicit
memory transfer to move each portion of the graph to the
device memory (D1 in Fig. 1). This can be achieved in two
ways. The first approach [15], [17]–[19] is partitioning the
large graph such that each partition fits into device memory,
and partitions are iteratively loaded to device memory and
processed. This method introduces extra data transfer cost
and reduces the utilization of GPU. Furthermore, this task-
specific data partitioning solution cannot support a universal
GPM framework. The second solution is a fine-grained data
transmission method proposed by Subway [20]. It collects the
required data, reorganizes them into a compressed structure
in the host, and transfers them to the device. Obviously, data
extraction and reorganization on CPU are costly. Therefore,
explicit memory transfer cannot be applied to large-scale GPM
on an out-of-core GPU platform.

Implicit memory access unifies host memory and device
memory into the same address space, and the required data
can be fetched from CPU on-the-fly. This method is trans-
parent to users and more suitable for general-purpose tasks.
Furthermore, it overlaps data transfer and computation because
threads issuing memory requests will be switched off GPU

until the required data are fetched. Therefore, we use them
for host memory access in GAMMA.

There are two implicit memory access modes: unified mem-
ory and zero-copy memory. Unified memory treats host and
device memory as unified memory space, and data are resident
in either side. When a memory access request (even a single
byte) is issued from device to data resident in host, a page fault
occurs, and a data page (typically 4 KB) is migrated from host
to device and buffered. This leads to page-fault handling and
long migration latency, but subsequent accesses to the same
page can directly refer to the device buffer for the required
data. D2 in Fig. 1 uses unified memory transfer.

Data access to zero-copy memory will cause data transfer at
units of 128 bytes. Thus, it has almost no extra data migration
cost. It does not have any buffer on the device. As a result,
every time the device issues a memory access request to zero-
copy memory, the required data will be transferred to the
device. D3 in Fig. 1 uses zero-copy memory access.

In summary, unified memory is friendly to data with good
spatial or temporal locality, in which case multiple accesses
to the buffered data will make up for the time of page fault
and long migration latency; zero-copy memory is suitable for
isolated and infrequently accessed data because small data
migration size assures low latency. One of our significant
contributions is to design a self-adaptive strategy to determine
proper host memory access manner for different pages.

III. GAMMA DESIGN OVERVIEW

GPM involves finding subgraphs of interest in an input data
graph Gd. In this paper, we refer to a subgraph to be found as
a pattern, and each specific instance found in the data graph
as an embedding or instance. Although GAMMA applies to
all GPM tasks (e.g., triangle counting, motif counting, kCL,
SM and FPM), in this paper we use subgraph isomorphism
(SM) and frequent pattern mining (FPM) as running examples
for illustration. These tasks are defined as follows:

• Subgraph isomorphism. SM finds in a data graph Gd all
subgraphs (instances) isomorphic to a pattern P that can
be represented as a query graph Gq .

• Frequent pattern mining. FPM finds all patterns P whose
support (denoted as “sup”) is at least a given threshold.
P ’s support is the frequency of the instances of P in Gd.

A. Embedding Table

The collection of embeddings for a given pattern is or-
ganized as an embedding table. The embeddings can be
organized in either vertex-oriented or edge-oriented fashion.
Consequently, the embedding table can be vertex-oriented
(called v-ET) or edge-oriented (called e-ET).

Fig. 2 shows examples of SM and FPM. The labels besides
vertices (i.e., vi and uj) are vertex IDs that we introduce to
simplify the description of the graph; similarly for edge IDs
ei and Ej . The labels (such as ‘A’) inside vertices are the
actual vertex labels.In a v-ET Tv , each column corresponds
to one vertex in the pattern. For example, vertex embedding
(u1,u2,u3) in the v-ET of Fig. 2(b) corresponds to pattern

(v1, v2, v3) in Gq . For e-ET Te, each column corresponds to
one edge in the pattern: the first column in e-ET of Fig. 2(b)
records the matched edges of E1 in Gq .

B. Execution Workflow

A

C C

B B

u1

u2 u4

u3 u5

(a)Data graph Gd

A

C B

v1

v2 v3
Query graph Gq

v-ET Tv
v1 v2 v3

u1

e1

e3

e4

E1 E2
E3

e-ET Te
E1 E3 E2

(c)Frequent pattern mining

(b)Subgraph matching

(edge number = 2, sup = 2)
e-ET Te

X

edge 1 edge 2

√√u2 u3
u1 u4 u5

e1 e2 e3
e4 e5

before extension
after extension

before extension

after extension

e1 e2
e1 e3
e1 e4
e2 e3
e3
e4
e5

e5

map to pattern

e2 e5

A C B sup = 2
sup = 1
sup = 1
sup = 1

sup = 2

√

√

X
X
X

...

PT

C A B
C A C
A B C

A C B

...
... ...

Fig. 2. An example of edge-extension and vertex-extension in SM and FPM.

GAMMA adopts a three-phase execution process:
“extension-aggregation-filtering” [7]–[9].

1) Extension: The extension step takes an embedding table
as input, and extends the length of each embedding in it
by one. Depending on the type of embedding table that is
used, two types of extensions are possible: vertex-extension
and edge-extension. Each adds one possible vertex (or edge)
to the existing embeddings.

Definition 3.1 (Extension): Given an embedding M , the
vertex extension (Extv(M)) and edge extension (Exte(M))
of M are defined as follows:

Extv(M) = {M ⊕ u|u ∈ Nv(M)}
Exte(M) = {M ⊕ e|e ∈ Ae(M)} (1)

where ⊕ denotes adding one vertex or edge into the current
embedding; Nv(M) and Ae(M) denote all neighbor vertices
and adjacent edges to the instance M , defined as

Nv(M) =
⋃

u′∈V (M) Nv(u
′)− V (M)

Ae(M) =
⋃

u′∈V (M) Ae(u
′)− E(M)

(2)

where Nv(u
′) and Ae(u

′) denote all neighbor vertices and
adjacent edges to vertex u′, V (M) and E(M) denote all
vertices and edges in instance M .

Generally, FPM algorithm uses edge-extension, as shown
in Fig. 2(c). SM can use both types of extension: edge
extension can implement a binary join (query-edge-at-a-time)
[22] and vertex extension can implement a worst-case optimal
join (query-vertex-at-a-time) [23]. Fig. 2(b) includes examples
of vertex-extension and edge-extension in SM. In v-ET Tv ,
initially there are two embeddings (u1, u2) and (u1, u4) that
match (v1, v2) in Gq . They can be extended to (u1, u2, u3) and
(u1, u4, u5), respectively. An analogous process exists for edge
extension in e-ET Te. These two different extension methods
make our approach more flexible and effective in building
various GPM algorithms.

2) Aggregation: This step maps an embedding table ET
into a pattern table PT and computes an aggregation function
over PT . Specifically, each embedding in ET is mapped
to a pattern graph. For example, both embeddings (e1, e2)
and (e4, e5) are mapped to the same pattern graph (A-C-
B) in FPM of Fig. 2(c). This can be achieved by computing
graph canonical label [24]1. Finally, the mapped patterns are
aggregated over PT . For example, only pattern (A-C-B) has
support 2, since it has two instances.

3) Filtering: GAMMA allows users to specify constraints
on the embedding. For example, the extended embeddings
should satisfy the given query graph’s structure in SM; the
support of the mined graph pattern should be no less than
a given threshold in FPM. These conditions can be enforced
through filtering following extension or aggregation.

Some of the pruning can be performed earlier even though
the filtering step follows extension and aggregation. For ex-
ample, in SM using vertex extension, extended embeddings
violating the query graph’s constraint can be pruned imme-
diately. When extending the embedding (u1, u2) in Fig. 2(b),
we only consider the common neighbors of u1 and u2.

Note that not every primitive is used in every specific
algorithm, but the primitives are able to support various GPM
algorithms.

C. Implementing GPM Tasks – Examples

We illustrate the application of the described workflow by
implementing SM and FPM. Fig. 3 lists the data structures
and interfaces visible to users in GAMMA.

Data structures visible to users
1. constraint c; //describing how to pruning embeddings
2. embedding_table ET; //the data structure of intermediate results
3. pattern_table PT; //table of patterns mapped by embeddings
4. graph_data Gd; //the data graph
5. query_graph Gq; //the query graph

Interfaces visible to users
1. Vertex_Extension (embedding_table ET, graph_data Gd);
2. Edge_Extension (embedding_table ET, graph_data Gd);
3. Aggregation (embedding_table ET, map_function mf);
4. Filtering (embedding_table ET, pattern_table PT = NULL, constraint c);
5. output_results (embedding_table ET = NULL, pattern_table PT = NULL);

Fig. 3. Data structures and interfaces visible to users in GAMMA.

1) Subgraph Isomorphism: This algorithm can be imple-
mented using either binary join or worst-case optimal join
(WOJ). We illustrate the latter using primitives in GAMMA.

We demonstrate WOJ implementation using vertex-centric
extension in Algorithm 1. The initial embeddings in WOJ are
one-column embedding table, matching the first vertex in Gq .
In each iteration, we process one query vertex. For example,
assume that we have all matched vertices corresponding to
v1 in Fig. 2(b) (line 2), and the next query vertex is v2.
For each embedding in Tv , we consider all possible vertex
extensions (e.g., u2 and u4) (line 4). Extended embeddings

1The canonical label of a graph is a code that uniquely identifies the graph
such that two graphs have the same code if and only if they are isomorphic.

can be safely filtered if violating subgraph isomorphism of
Gq (line 5). Binary join can be implemented using GAMMA
with a similar process, except that it uses edge extension. Since
GAMMA is a framework, we do not build indexing structures
for a specific algorithm like SM; instead, we perform pruning
and label checking at run-time.

Algorithm 1: WOJ Subgraph Matching
Input: query graph Gq , data graph Gd.
Output: subgraph matching results.

1 Let δv denote the matching order of vertices in Gq ;
2 ET ← all matched vertices to the first vertex in δv ;
3 foreach unmatched vertex v ∈ δv do
4 V ertex Extension(ET,Gd) ;

5 Filtering(ET,Constraint = Gq) ;
6 end
7 output result(ET) ;

2) Frequent Pattern Mining: FPM uses edge extension.
Initially, all length-1 embeddings are recorded in ET and
the pattern table PT is empty (line 1 in Algorithm 2). In
each iteration, we map all extended embeddings from the
last iteration to patterns, append those patterns to PT , and
calculate the support of each pattern (line 3). We filter out
patterns in PT that do not satisfy the given threshold. The
instances of invalid patterns are also removed from ET (line
4). If it is not the last iteration, all embeddings in ET are
extended by one edge (line 6). Fig. 2(c) illustrates the above
process.

Algorithm 2: Frequent Pattern Mining
Input: data graph Gd, pattern length limit l, minimum support

supmin, map function mf .
Output: all frequent patterns.

1 ET ← all length-1 embeddings, PT ← ϕ;
2 foreach i ∈ [1,l] do
3 PT = PT ∪Aggregation(ET,mf) ;

4 Filtering(ET, PT,Constraint = supmin) ;
5 if i<l then
6 Edge Extension(ET,Gd) ;
7 end
8 end
9 output result(PT) ;

IV. GRAPH DATA STORAGE AND ACCESS

We adopt Compressed Sparse Row (CSR) [8], [10], [17]
to represent a data graph Gd, which is made up of adjacency
lists of all vertices. Both edge-extension and vertex-extension
in Section III-B need to access adjacency lists. Therefore, we
need to design an efficient access strategy to improve overall
performance, especially in out-of-core systems.

GPU device memory is limited. To ensure high write
performance, it is necessary to maintain a buffer of some
extension results (the last column of the embedding table) in
device memory. Unified memory also needs a device buffer.
Therefore, there is insufficient space left for graph data in the
device when processing large data graphs. As a result, we

maintain data graph Gd in host memory and propose a self-
adaptive host memory access strategy.

As mentioned in Section II-B, unified memory access [25]
is friendly to data with good spatial or temporal locality, while
zero-copy memory access [26] is suitable for infrequently
accessed and isolated data. We use both access methods to
exploit both of their advantages. Consequently, we duplicate
the CSR of data graph in both unified memory and zero-copy
memory. Graph duplication is not a big issue considering the
host memory capacity. GAMMA does not build any auxiliary
data structures other than structural information and labels to
represent graphs. Therefore, the storage of a graph with one
billion edges takes only 10 ∼ 15 GB.

Adjacency lists are organized in memory pages. The key
issue in this section is to determine the access strategy for each
requested page p. In GAMMA, embeddings are extended in
parallel using the device cores. Before the extension, we know
the list of vertices whose adjacency lists will be used. Thus,
for each page p, we can calculate how much data in p will
be accessed in the next extension. If a large portion of p will
be accessed (such as page 2 in Fig. 4), we use the unified
memory access to p (multiple threads access the same page
p); otherwise, p is accessed by the zero-copy memory (such
as page 1 in Fig. 4).

Page 1

Page 2

Page 1
Zero-copy mem

Unified mem
Page 1

host device

Unified
memory
cache

Core Core
Core Core
Core Core
Core Core

choose access
manner

Page 2

Page 2

Fig. 4. Two different host memory access methods.

1) Spatial Locality: Existing work [27] shows that serial
graph algorithms have poor spatial locality because of their
irregular access patterns, resulting in low cache hit rate. How-
ever, massive parallel memory accesses enlarge the memory
footprint for a period of time, making some pages have good
spatial locality. Usually, these pages have high-degree vertices
or vertices with some specific labels. If a page p is accessed
multiple times by different GPU threads in the same extension,
p has good spatial locality and is suitable for unified memory
access. The spatial locality due to this parallel access can
be used to improve access performance. Intuitively, spatial
locality defines how much data in p will be accessed, and
this can be formulated as follows.

Definition 4.1 (Spatial Locality): The spatial locality of a
page p in the i-th extension is defined by the access quantity
of p, i.e.,

SpatialLoci(p) =
∑

l(v)∈p∧l(v)∈Ai

|l(v)| × timesi(l(v)) (3)

where Ai denotes all accessed adjacency lists in the i-th
extension, l(v) denotes the adjacency list of vertex v, and
|l(v)| is its size. timesi(l(v)) denotes how many times l(v)
is accessed in the in i-th extension.

10 100 1000 10000
0.4

0.6

0.8

Pages with top heatness

co
m
m
on

ra
ti
o

2nd extension

3rd extension

4th extension

Fig. 5. We take four extensions in SM in different datasets, and show the ratio
of duplication of most frequently accessed pages between current extension
and past extensions.

2) Temporal Locality: A page p has good temporal locality
implies that when p is accessed, there is a high probability
that it will be accessed again in the near future. Experiments
(in Fig. 5) show that extensions have good temporal locality.
Generally, duplicated hot pages in different extensions take
over half of all hot pages, and even reach 70% when we
calculate enough pages. Thus, we define the temporal locality
as follows:

Definition 4.2 (Temporal Locality): The temporal locality of
a page p in the i-th extension is defined by the access quantity
of p in the first i-1 extensions, i.e.,

TempLoci(p) =
∑

j≤i−1

∑
l(v)∈p∧l(v)∈Aj

|l(v)| × timesj(l(v))

(4)
where Aj , l(v), |l(v)| and timesj(l(v)) have been introduced
in defining spatial locality.

TempLoci(p) is similar to SpatialLoci(p), except that it is
a summarized parameter telling the historical access frequency
of page p. Some pages have good temporal locality in the
extensions in GAMMA (shown in Fig. 5). Thus, a page p
with large TempLoci(p) will be accessed through the unified
memory, as p can be cached in device for further extensions.

3) Access Heat: We define the access heat for each page
p at the i-th extension that combines spatial locality and
temporal locality to model how likely it is for the page to
be accessed. We weigh the two factors by the ratio between
the total accessed data in the i-th extension and the historical
accessed data in the first (i− 1) extensions as follows.

Definition 4.3 (Access Heat): The access heat of a page p
is defined as follows:

AccHeati(p) =
Ai∑

j≤i Aj
× SpatialLoci(p) +

∑
j≤i−1 Aj∑
j≤i Aj

× TempLoci(p)

where Aj denotes the total accessed data in the j-th extension.
After each extension, AccHeati(p) of each page is updated,

and they are used to determine memory access method in the
following extension: pages accessed through unified memory
have buffers in the device so that the maximum number
Nu of those pages is determined by the available size of
device buffer; Nu hot pages with the largest AccHeat will be
accessed by unified memory, while other data will be accessed
by zero-copy memory. This self-adaptive method learns hot
adjacency lists (or pages) in run-time without introducing too
much overhead, and improves overall bandwidth compared
with only using zero-copy memory or unified memory.

V. GAMMA: IMPLEMENTATIONS AND OPTIMIZATION

In this section, we introduce the implementation details and
the time complexity of GPM in GAMMA.

A. Embedding Table

Data structure. Intermediate results in GPM include many
embeddings. Embeddings extended from the same parent share
a common prefix. Thus, we can use a prefix-tree to store the
embeddings compactly [8], [28]. For example, e-ET Te in FPM
in Fig. 2(c) is extended to the third edge, as shown in Fig.
6(a), and Fig. 6(b) shows an embedding table after merging
common prefixes.

edge 1 edge 2
e1 e2
e1 e3
e1 e4
e2 e3
e3
e4
e5

e5

...

unified memory

edge 3

(a) Te extending the third edge

device memory

edge 1 edge 2
e1 e2

e3
e4

e2 e3
e3
e4
e5

e5

...

edge 3

(b) prefix-merged Te

edge 1 edge 2
e1 e2
e4 e5

...

edge 3

(c) compressed Te

Fig. 6. Data structure and data layout of the embedding table.

Some embeddings are invalid after “filtering”, and com-
pressing the embedding table will save much space, as in Fig.
6(c). The space compression also provides a better chance
for coalesced memory access. However, the compression
is ignored in existing GPM frameworks [5], [7]–[9]. Our
compression operation has three stages: firstly, the valid and
invalid embeddings are marked separately; then, a prefix-scan,
which is an efficient operation on GPU, is performed on
all marks to obtain new positions of valid embeddings in
the compressed embedding table; finally, valid elements are
collected in parallel to form the compressed embedding table.

Data layout. The embedding table is stored in column-first
fashion: each column of vertex or edge table (e.g., e1, e4 in the
first column of Fig. 6(c)) is stored consecutively for coalesced
reading and writing, and each vertex (or edge) has a pointer
to its predecessor in the same embedding. The size of the
embedding table may grow exponentially in GPM algorithms.
Therefore, it should be resident in host memory. The access to
the embedding table is concentrated and continuous, because
many embeddings are extended in batches, which have con-
tinuous ancestor units since the embedding table is stored in
columns. Thus, we use the unified memory for the embedding
table. Furthermore, writing results to host memory directly is
much slower than writing to GPU device memory. Therefore,
we keep a buffer on the device to write extension results, as
shown in Fig. 6, and flush them to host memory after the
extension of embeddings.

B. Primitive Optimizations

The primitives “extension-aggregation-filtering” are conve-
nient for users to implement various GPM algorithms, but their
efficient execution over large graphs in an out-of-core GPU
system brings new challenges. We discuss them and propose
our solutions in the remainder.

Challenge 1: Parallel Write Conflict. When thousands of
threads on a GPU are doing parallel extensions, each thread

produces an uncertain number of results. As a result, parallel
threads do not know the position they should start writing. We
refer to this as “parallel write conflict”. Most GPU systems,
such as Pangolin [8], solve this by doing the same process
twice: the first round records the number of results produced
by each thread, and the same process is repeated to collect the
results. This method solves the write conflict with an additional
extension, leading to a severe performance decline. GSI [10]
estimates the maximum result set size for each thread and pre-
allocates enough space, but the overestimation often causes
significant space waste. In a word, existing methods are limited
with extra time cost or space cost.

Memory pool

First available memory block

scheduler
threads

warps

Among warps Inside a warp

Validation bits

1 0 0 1 0 1

0 1 1 1 2 2

memory block

Write offset

... ...

Fig. 7. Dynamic memory allocation.

Optimization 1. To solve the write conflict problem, we
design a dynamic memory allocation strategy. The available
memory is divided into many memory blocks that form the
memory pool. Each warp is assigned a memory block into
which it writes the results of embedding extension. When the
allocated memory block is full, the warp requests a new one
from the memory pool and continues with the extension, as
shown in Fig. 7. A scheduler is responsible for the whole
memory pool and responds to warp requests. Dynamic allo-
cation solves the write conflict problem among warps. Write
conflict among threads within a warp is solved by warp-level
prefix scan. Here we choose a warp as the write unit of a
memory block, because compared with using thread blocks,
the SIMT feature of warp helps solve intra-warp thread conflict
at minimum cost; compared with using threads, fewer write
units help reduce memory allocation contention and cut down
the waste of memory blocks.

The additional time overhead is due to the memory block
allocation competition between warps. However, the GPU
kernel only has hundreds of active warps, and each warp
only asks for a new memory block after it finishes writing
the current one. This limits the additional time overhead.
The additional space is needed only when the entire process
is finished but a warp has not used up its current memory
block. In the worst case, hundreds of memory blocks might be
wasted. However, in our setting, a memory block is only 8 KB,
so this additional storage overhead can be ignored compared
with large-scale intermediate results. Thus, our method is both
time-efficient and space-saving.

Challenge 2: Duplicate Computation. The second chal-
lenge is computational redundancy in the intersection of
multiple lists, a common operation in many GPM algorithms
such as kCL and SM. The state-of-the-art GPM implemen-

A

A

A

A

A

Query graph Gq
v1

v2
v5

v3 v4

u1 u2 u3 u4

u1 u2 u3 u4

u1 u2 u3 u5

u1 u2 u3 u6

u1 u2 u3 u7

u1 u2 u4 u5

u1 u2 u5 u6

u1 u2 u5 u7

u1 u3 u5 u6

u1 u3 u5 u7

...

warp 0

warp 1

warp 2

warp 0

u1

u2

u3

u4

u5

u6

①group embeddings

②intersect ③search

intersected list Lm
in shared memory

④write

memory buffer

first task

u1

u3

u5

u6

u7

②intersect ③search

intersected list Lm
in shared memory

second task
④write

u7

(a) Redundant computation

(b) Our solution

one embedding

Fig. 8. Redundant computation and our solution.

tations on GPU, such as Pangolin [8], have large amounts
of computational redundancy. Consider a query graph Gq

and one embedding (u1, u2, u3, u4) that matches the subquery
induced by (v1, v2, v3, v4) (Fig. 8(a)). The query vertex v5
to be matched is adjacent to u1, u2, u3 and u4. Pangolin
extends the embedding by enumerating each neighbor of u4,
and searches it in the adjacency lists of u1, u2 and u3.
This introduces duplicate computation because those three
adjacency lists are accessed and searched multiple times.
Furthermore, this computational redundancy is even higher
for parallel extension. Consider the multiple embeddings in
Fig. 8(b): the first four embeddings are produced by the same
parent embedding, therefore they have the same prefix. The
naive extension leads to more redundant memory accesses and
computation over the adjacency lists of u1, u2 and u3.

To address this problem, we can intersect the adjacency lists
of u1, u2 and u3 to get an intersected list Lm, then intersect
Lm with the adjacency list of u4.

Optimization 2. We use shared memory, a fast on-chip
memory to store pre-intersected lists in order to reduce com-
putational redundancy and accelerate memory access.

Embedding extension is done in four steps in GAMMA
(Fig. 8(b)). First, the embeddings are classified into different
groups according to their prefixes. For example, the first four
embeddings belong to the same group since they share the
same prefix (u1, u2, u3), and the next group contains only one
embedding in Fig. 8(b). Then, one warp is responsible for
extending the embeddings in one group. The intersection of
the prefix’s adjacency lists produces the intersection list Lm.
For example, Lm = Nv(u1)∩Nv(u2)∩Nv(u3), where Nv(u1)
denotes the adjacent neighbors of u1. Finally, in this example,
warp 0 intersects the adjacency lists of u4, u5, u6 and u7 with
Lm and writes these results into a warp-level results buffer
(memory block), which was discussed in Challenge 1. Once

an embedding group extension is completed, warp 0 will move
on to the next assigned task, and the results are collected in
the same memory block.

This optimization is suitable for BFS-based extension
method, where embeddings with the same parent are processed
concurrently. The BFS-based method is widely used on GPU,
because memory access of neighbor threads is concentrated
and coalesced in this manner.

Challenge 3: GPU-based External Sort. Aggregation over
the pattern table PT needs to sort the canonical labels of all
pattern graphs in PT . However, the size of PT may be beyond
the capacity of device memory. Thus, optimizing out-of-core
GPU sorting is a challenge. To the best of our knowledge,
most GPU-based sorting algorithms, except for two works
[29], [30], assume that inputs fit in GPU memory. However,
those two methods do not fully utilize GPU parallelism. Thus,
we propose an optimized out-of-core GPU sorting algorithm.

Optimization 3. We first partition PT into segments Si

(i = 1, ..., n) such that each segment Si can be sorted by in-
core GPU sorting algorithms [31]. These n sorted segments
Si are written back to the host memory, and merged using the
multi-merge algorithm (Algorithm 3).

For each segment Si, its checkpoints are defined as the
points that divide Si into partitions of even size, denoted
as psize. In the example given in Fig. 9(a), each segment
is partitioned into two parts. The set of checkpoints of Si

is denoted as Ci. Algorithm 3 starts by collecting all the
checkpoints of Si (i = 1, ..., n) to get a set Ω (line 2). For
each checkpoint x ∈ Ω, the algorithm finds the matched index
§i in each Si. Intuitively, the matched index of x over a non-
descending sorted segment Si denotes the largest index §i in
Si, where x is no larger than Si[§i]. Formally, we have the
following definition.

Definition 5.1 (matched index): Given a value x and a sorted
segment Si, the matched index of x in Si, denoted as §i, is
defined as: (1) 0 < §i < |Si| if Si[§i − 1] < x ≤ Si[§i]; or (2)
§i = 0 if x ≤ Si[0]; or (3) §i = |Si| if x > Si[|Si| − 1].

Finding the matched indices of different checkpoints on
different segments can be easily parallelized on GPU.

In this way, each segment Si is partitioned into |Ω| + 1
lists So

i , o = 0, ..., |Ω| (see Fig. 9(a)). So we divide the task
of merging n segments Si (i = 1, ..., n) into many subtasks
of merging short segments (line 4). Our partition method
with “checkpoints” and “matched index” assures that each
partition size is no larger than psize, otherwise severe work-
load imbalance may occur. These subtasks can be conducted
independently, achieving high parallelism on GPU. Fig. 9(a)
gives an example. The first subtask merges all S0

i (i = 1, ..., n)
(marked in blue), which are smaller than the first checkpoint
c2. Thus, the merged list of all S0

i (i = 1, ..., n) should precede
the list merging all S1

i (i = 1, ..., n).
For explanation, we only discuss how to merge each 0-th list

in all Si (i = 1, ..., n) (lines 7-23). Fig. 9(a) highlights these
on the three sorted lists, denoted as S0

1 , S0
2 , and S0

3 , which
are merged into a sorted list S0

m. A naive solution works as
follows. Consider each element x in S0

2 (assume that S0
2 [i]=x):

2 x 1 1

2 2 2 4 4 4 4 5

0 1 2 3 4 5 6 7

0 0 0 2 2 3 3 4

0 0 0 2 0 1 0 1
Prefix sum

(1) Matched index count

S1

S2

S30

0

0
(3) Matched index

Writing position of S2
2 3 4 9 10 12 13 16

0
Stage 2

Stage 1

S1

S2

S3

c1

c3

c2

Ω = {c2, c1, c3}
S1

S2

S3

c1

c3

c2 c1

c1c2

c2 c3

c3

(2) Prefix-sum vector

x

S1

S2

S3
0

0

0

(b) A naive approach

x

i =4

I3 =2

I1 =4

i+I1+I3 = 10

(a) Segment partition

+
+

(c) Our approach

Sm
0

xx

x

x

Matched index of
elements of S2 in S1

Matched index of
elements of S2 in S3

0

0

0

0

Fig. 9. Two stages of multi-merge.

we search the matched index of x in all other lists (i.e., S0
1

and S0
3 in Fig. 9(b)), denoted as Ix1 and Ix3 , respectively. We

can infer that the final index of x in S0
m is i + Ix1 + Ix3 , as

illustrated in Fig. 9(b). We perform the same process for each
element in all sorted lists S0

i (i = 1, ..., n) to locate elements
in the merged list S0

m, which can be parallelized.

Algorithm 3: Multi-merge Kernel
Input: sorted list set S (|S| = n).
Output: One Merged List.

1 /* block-wise spliting lists*/;
2 check points ← get check points(S);
3 /* block-wise dividing tasks*/;
4 subtask set ← divide(S, check points);
5 /* warp-wise merging short lists*/;
6 foreach ith subtask ∈ subtask sets do
7 Si

1,..., Si
n, global off ← get subtask(subtask set, i);

8 writing pos[][] ← initial n writing pos();
9 /* handling each (Si

j ,Si
k) pair*/;

10 foreach j ∈ [1,n] do
11 foreach k ∈ [1,j) do
12 matched idx[], matched cnt[] ← zeros();
13 /* thread-wise searching for matches*/;
14 foreach p ∈ [0,|Si

j |) do
15 pos ← search for match(Si

j [p], S
i
k);

16 matched idx[p] ← pos;
17 matched cnt[pos] += 1;
18 end
19 writing pos[j].vector add(matched idx);
20 prefix sum(matched cnt);
21 writing pos[k].vector add(matched cnt);
22 end
23 end
24 /* thread-wise writing merged results Si

m*/;
25 foreach Si

j ∈ Si
1,...,Si

n do
26 parallel writing(Si

j , writing pos[j], global off);
27 end
28 end

Some redundant search, e.g., searching elements of S0
2

over S0
3 , can be avoided. We can define an order of these

short segments (i.e., S0
1 , S0

2 and S0
3 in Fig. 9(c)) and only

search elements of S0
j over S0

k , where j > k (lines 14-18).

Assume that all elements in S0
3 find their matched indices in

S0
2 , we count all matched indices at each position of S0

2 to
obtain the vector [0,0,0,2,0,1,0,1]. The prefix-sum over this
vector generates vector [0,0,0,2,2,3,3,4] (lines 20-21), which
denotes the matched indices of elements in S0

2 over S0
3 . For

the ith element x in S0
2 , the ith element in the prefix-sum

vector denotes the matched index Ix3 over S0
3 . Thus, we avoid

searching x over S0
3 . Fig. 9(c) demonstrates how to compute

writing positions of all elements in S0
2 , where the 4-th element

x is highlighted in red. Prefix-sum is an efficient operation on
GPU, thus we can save about half of the workloads.

C. Complexity Analysis

The complexity of GPM tasks is primarily due to combi-
natorial enumeration and isomorphism check, and the most
time-consuming stage is the final extension because of its
exponentially increased intermediate results size [8]. Here we
give the worst-case complexity analysis.

Considering SM algorithm on an input graph G with n
vertices and the maximum embedding size of k, the maximum
degree in G is denoted as dmax. There are up to O(nk−1)
size-(k − 1) embeddings (partial matches) in the embedding
table before the final extension. For each size-(k − 1) partial
match p, assume that we extend the embedding from one data
vertex in p. Obviously, there are up to O(nk−1dmax) possible
new candidate embeddings. For each new candidate match p′,
we need to check adjacency of the new extended vertex v
(v = p′ − p) with the other k − 2 vertices in size-(k − 1)
partial match p. The adjacency check is done using binary
search over the adjacency lists. Thus, the overall complexity
is O(nk−1dmax(k − 2)log(dmax)). That is the complexity of
naive combinatorial enumeration as implemented in Pangolin
[8].

Our Optimization 2 groups embeddings to avoid redun-
dancy. In the last extension, all size-(k − 1) embeddings can
be grouped by sharing size-(k − 2) embeddings as parents.
Generally, there are up to O(nk−2) embedding groups. In
processing each group, we first intersect the adjacency lists
of k− 2 prefix vertices, whose complexity is O((k− 2)dmax)
for each group. As analyzed in the last paragraph, there are

O(nk−1dmax) new size-k candidate embeddings p′. For each
candidate embedding, we only need to check the adjacency
of the new extended vertex with regard to the pre-intersected
list, whose time complexity is O(log(dmax)), since the pre-
intersected list length is O(dmax). Therefore, the complexity
of combinatorial enumeration in GAMMA is O(nk−2(k −
2)dmax + nk−1dmaxlog(dmax)), which is less than that of
Pangolin because of the grouping operation.

The complexity of isomorphism test for each new embed-
ding is O(e

√
klogk) [32]. Considering both combinatorial enu-

meration and isomorphism check, the worst-case complexity
is O(nk−2(k − 2)dmax + nk−1dmax(log(dmax) + e

√
klogk)).

Other GPM algorithms can be analyzed similarly.
Assuming there are w warps in the device, the parallel

complexity is O(n
k−2(k−2)dmax+nk−1dmax(log(dmax)+e

√
klogk)

w)
in which the tasks of each warp are independent. Thread par-
allelism inside warps is affected by memory access and thread
divergence, which can further reduce the parallel complexity.

VI. EXPERIMENTS

A. Experimental Setting

Infrastructure. We use the CUDA-9.0 toolkit and GCC
5.3.0 to compile all codes with -O3 option. All experiments
are carried out on a Linux server with Intel Xeon E5-2640
CPU, a 32-core processor and 380 GB of host memory. It
also has an NVIDIA Tesla V100 with 16 GB global memory.

TABLE II
DATASETS INFOS

dataset nodes edges types
cit-Patent(CP) 6M 17M citation

com-lj(CL) 4M 34M social
com-orkut(CO) 3M 117M social
email-Euall(EA) 265K 729K email
email-Enron(ER) 37K 368K email
com-lj×8(CL×8) 32M 467M synthetic

soc-Live×5(SL×5) 24M 481M synthetic
uk2005(UK) 39M 1.6B web
it2004(IT) 41M 2.1B web

twitter rv(TW) 62M 2.4B social

Datasets. We use a number of real graphs with varying sizes
from different domains. To test the the scalability of GAMMA
to large graphs, we scale up soc-Live and com-lj by 5× and
8× using graph upscaling technique [33]; we also use billion-
scale real-world graphs. Table II lists all datasets.

Comparative evaluation. We use subgraph matching (SM),
frequent pattern mining (FPM) and k-clique (kCL) workloads
to compare GAMMA2 with the state-of-the-art methods:

Pangolin [8] is the only GPM framework on GPU. It
provides an API for users to apply application-specific pruning
to reduce enumeration space, resulting in comparable perfor-
mance to specific implementations. We adopt both its GPU
implementation and single-thread implementation as baselines
to evaluate GAMMA’s performance.

Peregrine [16] is a state-of-the-art GPM framework on
CPU, which uses multi-threads to improve performance and

2Our codes are released on github: https://github.com/pkumod/GAMMA.

is superior to other GPM systems, including Arabesque [5],
Rstream [6] and Gminer [34]. Therefore, we use Peregrine as
the multi-thread CPU baseline.

We also use some task-specific implementations to demon-
strate that GAMMA makes it easier to implement graph min-
ing algorithms without sacrificing performance. We compare
with GSI [10], a state-of-the-art subgraph matching algorithm
on GPU, for subgraph matching. It uses “prealloc-combine”
method to avoid joining-twice. It also introduces a GPU-
friendly data structure to improve the joining phase in SM.
Since existing GPU algorithms do not have good support
for FPM on large graphs, we use FPM implementation in
GraphMiner [35], which is a multi-core CPU-based graph
algorithm library3 that combines several state-of-the-art GPM
designs [8], [36], [37].

B. Memory Usage

10
1

10
2

10
3

10
4

10
2

10
3

10
410

4.2

10
5

device memory size

datasets edge number (×105 edges)

p
ea
k
m
em

or
y
u
sa
ge

(M
B
)

kCLGAMMA SMGAMMA FPMGAMMA

kCLpangolin SMGSI FSMpangolin

Fig. 10. Peak memory usage.

The peak memory usage of GAMMA and other GPU-based
GPM implementations, including host memory and device
memory, is shown in Fig. 10. GAMMA uses less memory
than other GPM implementations for a given input graph,
because of our compression of the embedding table. There
are many cases in GAMMA where memory usage exceeds
available device memory. The maximum used space reaches
310 GB in some large graphs. In-core GPM algorithms only
use device memory and they cannot run on large graphs.

Fig. 10 also shows that SM uses less memory than FPM, and
FPM uses less memory than kCL; because SM has the most
pruning conditions, and kCL has few pruning conditions. As
a result, the maximum graph size in SM of GAMMA is the
largest among the three algorithms in our experiments, and
that of kCL is the smallest.

C. Comparative Evaluation

GAMMA’s comparative evaluation with the baselines for
each of the workloads is discussed below.

K-clique. The experimental results of GAMMA compared
with state-of-the-art works for kCL are shown in Fig. 12.
“Pangolin-ST” denotes single-thread verison of Pangolin, and
“Pangolin-GPU” denotes GPU verison of Pangolin. Some

3We call it a library rather than a framework because it implements
these graph algorithms separately, without abstracting primitives or uniform
processing framework like GAMMA.

CP
q1

CP
q2

CP
q3
CL

q1
CL

q2
CL

q3

CO
q1

CO
q2

CO
q3

EA
q1

EA
q2

EA
q3

ER
q1

ER
q2

ER
q3

CL
× 8 q1

CL
× 8 q2

CL
× 8 q3

SL
× 5 q1

SL
× 5 q2

SL
× 5 q3

UK
q1

UK
q2

UK
q3
IT

q1
IT

q2
IT

q3

TW
q1

TW
q2

TW
q3

10
−1

10
0

10
1

10
2

ru
n
n
in
g
ti
m
e(
se
c) GSI Peregrine GAMMA

Fig. 11. Performance of SM.

CP (k = 5)
CL(k = 4)

CO(k = 4)
EA(k = 6)

ER(k = 6)
CL× 8(k = 4)

SL× 5(k = 4)
10

−1

10
0

10
1

10
2

ru
n
n
in
g
ti
m
e(
se
c)

Pangolin-ST Pangolin-GPU

Peregrine GAMMA

Fig. 12. Performance of kCL.

works crash on some of the datasets, and we omit those
cases in the figure. GAMMA has good scalability for all
datasets. It has better performance than “Pangolin-GPU” and
Peregrine: it achieves an average of 67.6% and 73.9% speedup,
respectively.

query graph 1 query graph 2 query graph 3

Fig. 13. Query graphs in SM.

SM. Fig. 11 reports the running times of GAMMA, GSI and
Peregrine for three SM queries (as shown in Fig. 13) on each
dataset. We do not compare with Pangolin or GraphMiner,
since they do not have subgraph matching implementations.
GAMMA performs much better than GSI and Peregrine on
all large graph datasets except for two small datasets (EA
and ER), achieving 50.6% speedup over GSI and 70.5%
speedup over Peregrine on all datasets. For small datasets, the
preparation of host memory usage in GAMMA accounts for a
large portion of the total running time. Thus, it is slower than
the in-core GPU implementation of GSI and the CPU-based
Peregrine. GSI and Peregrine crash on some datasets in our
experiments, which we omit in Fig. 11.

FPM. We compare GAMMA with GraphMiner, Peregrine
and Pangolin in FPM. As shown in Fig. 14, GAMMA has
great scalability advantages compared with other works: it can
process billion-scale graphs, while other methods meet crashes
in large datasets. GAMMA has 86.1% and 73.8% performance
improvement compared with “Pangolin-ST” and “Pangolin-
GPU”, respectively. It achieves an average of 50.6% speedup
compared with Peregrine. Although GraphMiner implements
a specific FPM algorithm, GAMMA still has slightly better
performance, achieving 24.7% performance improvements.

CP (l = 5)
CL(l =

4)
CO(l = 4)

EA(l = 3)
ER(l = 5)

CL× 8(l =
4)
UK(l = 4)

IT (l =
4)

10
0

10
1

10
2

10
3

ru
n
n
in
g
ti
m
e(
se
c)

Pangolin-ST Pangolin-GPU GraphMiner

Peregrine GAMMA

Fig. 14. Performance of FPM compared with state-of-the-art works.

GAMMA’s performance superiority is due to the optimiza-
tion of aggregation primitive (Optimization 3 in Section V).
This alleviates the device memory limit and allows the ag-
gregation for huge embedding tables. Compared with the four
baselines, the optimized three-phase processing framework of
GAMMA guarantees performance superiority in FPM.

5 10 15 20

0

20

40

|E|/|V |

R
u
n
n
in
g
ti
m
e
(s
ec
)

FPM(|V | = 220)

FPM(|V | = 224)

kCL(|V | = 220)

kCL(|V | = 224)

Fig. 15. Different graph densities.

1 2 4 8 16 32 64 128256

10
0

10
1

10
1.6

Number of warps

S
p
ee
d
u
p
to

P
an

go
li
n
-S
T

FPM(CL)

FPM(CO)

kCL(CL)

kCL(CO)

Fig. 16. Different number of warps.

D. Scalability

We have evaluated the scalability of GAMMA ranging from
small graphs to billion-scale graphs in Section VI-C. As shown
in Fig. 11 and Fig. 14, GAMMA can process much larger
graphs than other works, and scales well with graph size.

Next, we focus on the scalability of graph density and warp
number. We generate kronecker graphs [38] with different
numbers of vertices and different graph densities. As shown in
Fig. 15, GAMMA has good scalability with respect to graph
density, and its running times increase approximately linearly
as the graph density increases.

Warp is the basic unit for memory access and thread col-
laboration on GPU. We present the performance of GAMMA
under different numbers of warps in Fig. 16, where we

CP
q1

CP
q2

CP
q3
CL

q1
CL

q2
CL

q3

CO
q1

CO
q2

CO
q3

EA
q1

EA
q2

EA
q3

ER
q1

ER
q2

ER
q3

CL
× 8 q1

CL
× 8 q2

CL
× 8 q3

SL
× 5 q1

SL
× 5 q2

SL
× 5 q3

UK
q1

UK
q2

UK
q3
IT

q1
IT

q2
IT

q3

TW
q1

TW
q2

TW
q3

10
0

10
1

ru
n
n
in
g
ti
m
e(
se
c) naive

dynamic alloc

dynamic alloc + pre-merge

Fig. 17. The effect of optimizations on SM.

use the performance of “Pangolin-ST” as a baseline, and
plot GAMMA’s normalized speedup. GAMMA outperforms
“Pangolin-ST” with one warp or two warps, and has approxi-
mately linear performance improvements as the warp number
increases.

E. Evaluation of Primitive Optimizations

CP (k = 5)
CL(k = 4)

ER(k = 6)
EA(k = 6)

CO(k = 4)
CL× 8(k = 4)

SL× 5(k = 4)

10
0

10
1

ru
n
n
in
g
ti
m
e(
se
c)

naive

dynamic alloc

dynamic alloc + pre-merge

Fig. 18. The effect of our optimizations on kCL.

In this subsection, we evaluate the effectiveness of the
three optimizations discussed in Section V-B. The first two
optimizations are related to the “extension” primitive. We de-
sign a dynamic memory allocation strategy, which is denoted
as “dynamic-alloc” in the following figures. We also avoid
duplicate computation by grouping embeddings with the same
prefix. This optimization is denoted as “pre-merge” in the
figures. As a baseline, “naive” method does not have either of
those two optimizations. Note that the third optimization for
out-of-core multiple lists intersection (denoted as “multimerge-
opt”) is only involved in FPM to compute the support of
patterns. Therefore, we evaluate the first two optimizations
in SM and kCL in Fig. 17 and 18, respectively.

Fig. 17 and 18 show that both “dynamic-alloc” and “pre-
merge” are effective in improving the performance signifi-
cantly, especially in some large graphs. “dynamic-alloc” helps
speed up the naive approach by 21.7% on average, and “pre-
merge” further achieves 25.4% performance improvements.

TABLE III
FPM PERFORMANCE OF DIFFERENT SORTING METHODS.

running time(sec) cpusort xrt2sort multimerge multimerge+opt
CL×8 42.37 33.12 35.87 31.14
SL×5 40.05 32.23 33.8 30.85

Sorting a list that exceeds device memory is an essential
operation for our aggregation primitive, and Optimization 3

reduces the computation time of this operation (which is called
“multimerge+opt”). Existing works of out-of-core GPU sort
usually involve considerable CPU processing [29], [30]. Thus,
they cannot achieve the maximum parallelism. We compare
“multimerge+opt” with “cpusort”, a popular sorting method
implemented by Thrust [39] on CPU, and “xtr2sort” [30], a
state-of-the-art out-of-core sort implementation on GPU that
replaces merging by data rearrangement and sorting twice.
We also include “multimerge”, which searches each item of
segments over other segments (see Fig. 9(b)). Not all datasets
need the external sort of the pattern table PT, and we give
the performance of two datasets as examples in Table III, in
which our approach runs the fastest compared with different
baselines.

1.1B4W 1.1B8W 1.5B4W 1.5B8W 2.2B4W 2.2B8W 4.3B8W 4.3B16W

0

20

40

60

Datasets size and partition number

ru
n
n
in
g
ti
m
e(
se
c)

xtr2sort

multimerge

multimerge-opt

Fig. 19. Effect of Optimization 3 on multi-merge.

To further analyze the effectiveness of Optimization 3 on the
sorting process alone, we generate 64-bit value sets of different
sizes and perform multi-merge with different methods. CPU-
based sorting is much worse than other GPU-based methods,
as shown in Table III, and we do not plot its results. In Fig.
19, labels of the horizontal axis denote tasks. For example,
“4.3B8W” indicates that 8-way multi-merge is performed
on 4.3 billion 64-bits values. From Fig. 19, we conclude
that this optimization achieves 34.2% speedup over the naive
implementation, and 20.9% speedup over xtr2sort.

F. Evaluation of Hybrid Memory Access

We evaluate GAMMA’s memory access determination strat-
egy over all three GPM workloads. The results are shown in
Fig. 20. We use unified memory alone and zero-copy memory
alone as baselines. As discussed earlier, host memory accesses
vary a lot, so neither single access method alone works well.
GAMMA’s combined memory access method achieves 47.4%
speedup over only using unified memory and 51.0% speedup
over only using zero-copy memory.

10
0

10
1

10
2

CP (k = 5)

CL(k
= 4)

CO(k = 4)

EA(k
= 6)

ER(k = 6)

CL× 8(k
= 4)

SL
× 5(k

= 4)
CP q3

CL q3
CO q3

CL× 8 q3

SL
× 5 q3

UK q3
IT

q3
TW

q3

CP (l =
5)

CL(l
= 4)

CO(l =
4)

EA(l
= 3)

ER(l =
5)

CL× 8(l
= 4)

SL
× 5(l

= 4)

UK(l =
4)

IT (
l =

4)

10
0

10
1

10
2

kCL SM FPM
ru
n
n
in
g
ti
m
e(
se
c)

unified memory
zero copy memory

combined methods

Fig. 20. The effect of our memory access mode.

Note that the performance gains brought about by primitive
optimizations and the hybrid access strategy are orthogonal,
because the former are algorithmic-level designs while the
latter is an optimization on the underlying memory access.

VII. RELATED WORK

A. Existing GPM Frameworks

Existing GPM frameworks are designed on disk-involved
platforms [6], [7], [40], distributed systems [5], [9], [34],
multi-core CPU systems [16] and GPU [8]. These works
distinguish graph mining algorithms (such as kCL, SM and
FPM) from graph traversal algorithms, and build universal
solutions for them.

Kaleido [7] is a single-machine GPM system. It uses a
lightweight checking strategy to solve labeled graph isomor-
phism problems. Arabesque [5] is a distributed system that de-
fines a high-level filter-process computational model. Rstream
[6] is a single-machine GPM system based on X-stream [41].
Peregrine [16] is a pattern-aware multi-core GPM system on
CPU, and it manages to reduce unnecessary computations by
carefully designing exploration plans.

Pangolin [8] is the only GPM framework on GPU. It gives
some optimizations in subgraph isomorphism check, reducing
memory usage and exploiting data locality. However, since
Pangolin is an in-core system that only uses device memory,
it cannot process GPM tasks on even moderate-size graphs.

B. Specific Graph Algorithms on GPU

There are many existing specific graph pattern mining
algorithms on GPU, including triangle counting [17], [19],
[42], [43] and subgraph matching [10], [14], [15]. Related
works of FPM and kCL [44] on GPU are much fewer than
those of the first two algorithms, because a large number of
intermediate results is not suitable for GPU.

There are some specific algorithms of large graphs on
GPU [15], [17], [20]. They all adopt dedicated methods for
graph partition or reorganization, which do not work for all
algorithms and bring about extra cost.

C. Host Memory Access on GPU

Basically, there are two methods for GPU to process graphs
larger than device memory. The first one is explicit data
transfer [17], [19], [20]: the required data are reorganized
and transferred to device memory in batches, then GPU

can directly access data on device. In this condition, data
reorganization is time-consuming; this also leads to extra data
transfer and low GPU utilization. The second one is on-
demand memory access [18], [25] using unified memory and
zero-copy memory. This method takes device memory and
host memory as unified memory space, and has significant
advantages in the simplicity of programming, thus more
suitable to design frameworks. Many works spend efforts on
improving the performance of unified memory or zero-copy
memory by compressing graphs [45], reordering graphs [25],
[45], coalesced and aligned memory access [26], or hardware-
level schedules [46], [47]. To the best of our knowledge,
GAMMA is the first work to propose a hybrid access strategy
based on analytic model in a framework, which is a significant
contribution of our work.

VIII. CONCLUSIONS

In conclusion, we present GAMMA, a GPM framework
on GPU for large graphs, which hides implementation details
from users and provides flexible and effective primitives. To
the best of our knowledge, it is the first framework to support
GPM on large graphs on GPU. We design data structures
resident in both host memory and device memory, and pro-
vide self-adaptive host memory access methods. Therefore,
GAMMA can cope with a large number of intermediate
results. Processing large graphs on GPU brings about some
challenges, and we give three optimizations to improve per-
formance. Extensive experiments show that GAMMA outper-
forms state-of-the-art GPM frameworks and some dedicated
graph algorithms on GPU.

ACKNOWLEDGMENT

This work was supported by NSFC under grant 61932001
and U20A20174. Özsu’s research was supported by Natural
Sciences and Engineering Research Council (NSERC) of
Canada. Lei Zou is the corresponding author of this work.

REFERENCES

[1] M. Deshpande, M. Kuramochi, N. Wale, and G. Karypis, “Frequent
substructure-based approaches for classifying chemical compounds,”
IEEE Transactions on Knowledge and Data Engineering (TKDE),
vol. 17, no. 8, pp. 1036–1050, 2005.

[2] W.-T. Chu and M.-H. Tsai, “Visual pattern discovery for architecture
image classification and product image search,” in Proceedings of the
2nd ACM International Conference on Multimedia Retrieval, 2012, pp.
1–8.

[3] L. Wu and H. Liu, “Tracing fake-news footprints: Characterizing so-
cial media messages by how they propagate,” in Proceedings of the
eleventh ACM international conference on Web Search and Data Mining
(WSDM), 2018, pp. 637–645.

[4] W. Eberle, J. Graves, and L. Holder, “Insider threat detection using a
graph-based approach,” Journal of Applied Security Research, vol. 6,
no. 1, pp. 32–81, 2010.

[5] C. H. Teixeira, A. J. Fonseca, M. Serafini, G. Siganos, M. J. Zaki, and
A. Aboulnaga, “Arabesque: a system for distributed graph mining,” in
Proceedings of the 25th Symposium on Operating Systems Principles
(SOSP), 2015, pp. 425–440.

[6] K. Wang, Z. Zuo, J. Thorpe, T. Q. Nguyen, and G. H. Xu, “Rstream:
marrying relational algebra with streaming for efficient graph mining
on a single machine,” in Proceeding of the 13th USENIX Symposium
on Operating Systems Design and Implementation (OSDI)), 2018, pp.
763–782.

[7] C. Zhao, Z. Zhang, P. Xu, T. Zheng, and J. Guo, “Kaleido: An efficient
out-of-core graph mining system on a single machine,” in Proceeding of
the 36th International Conference on Data Engineering (ICDE), 2020,
pp. 673–684.

[8] X. Chen, R. Dathathri, G. Gill, and K. Pingali, “Pangolin: An efficient
and flexible graph mining system on cpu and gpu,” Proceedings of the
VLDB Endowment (PVLDB), vol. 13, no. 8, pp. 1190–1205, 2020.

[9] V. Dias, C. H. Teixeira, D. Guedes, W. Meira, and S. Parthasarathy,
“Fractal: A general-purpose graph pattern mining system,” in Proceed-
ings of the ACM SIGMOD International Conference on Management of
Data (SIGMOD), 2019, pp. 1357–1374.

[10] L. Zeng, L. Zou, M. T. Özsu, L. Hu, and F. Zhang, “GSI: GPU-friendly
subgraph isomorphism,” in Proceedings of IEEE 36th International
Conference on Data Engineering (ICDE), 2020, pp. 1249–1260.

[11] E. Abdelhamid, I. Abdelaziz, P. Kalnis, Z. Khayyat, and F. Jamour,
“Scalemine: Scalable parallel frequent subgraph mining in a single
large graph,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (SC), 2016,
pp. 716–727.

[12] M. Elseidy, E. Abdelhamid, S. Skiadopoulos, and P. Kalnis, “Grami:
Frequent subgraph and pattern mining in a single large graph,” Pro-
ceedings of the VLDB Endowment (PVLDB), vol. 7, no. 7, pp. 517–528,
2014.

[13] Y.-W. Wei, W.-M. Chen, and H.-H. Tsai, “Accelerating the bron-
kerbosch algorithm for maximal clique enumeration using gpus,” IEEE
Transactions on Parallel and Distributed Systems (TPDS), vol. 32, no. 9,
pp. 2352–2366, 2021.

[14] L. Wang, Y. Wang, and J. D. Owens, “Fast parallel subgraph matching
on the gpu,” in Proceeding of the International Symposium on High
Performance Distributed Computing (HPDC), 2016.

[15] W. Guo, Y. Li, M. Sha, B. He, X. Xiao, and K.-L. Tan, “Gpu-accelerated
subgraph enumeration on partitioned graphs,” in Proceedings of the ACM
SIGMOD International Conference on Management of Data (SIGMOD),
2020, pp. 1067–1082.

[16] K. Jamshidi, R. Mahadasa, and K. Vora, “Peregrine: a pattern-aware
graph mining system,” in Proceedings of the Fifteenth European Con-
ference on Computer Systems, 2020, pp. 1–16.

[17] Y. Hu, H. Liu, and H. H. Huang, “Tricore: Parallel triangle counting
on gpus,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (SC), 2018,
pp. 171–182.

[18] M.-S. Kim, K. An, H. Park, H. Seo, and J. Kim, “Gts: A fast and
scalable graph processing method based on streaming topology to gpus,”
in Proceedings of the ACM SIGMOD International Conference on
Management of Data (SIGMOD), 2016, pp. 447–461.

[19] S. Pandey, Z. Wang, S. Zhong, C. Tian, B. Zheng, X. Li, L. Li, A. Hoisie,
C. Ding, D. Li et al., “Trust: Triangle counting reloaded on gpus,”
IEEE Transactions on Parallel and Distributed Systems (TPDS), vol. 32,
no. 11, pp. 2646–2660, 2021.

[20] A. H. N. Sabet, Z. Zhao, and R. Gupta, “Subway: Minimizing data
transfer during out-of-gpu-memory graph processing,” in Proceedings
of the Fifteenth European Conference on Computer Systems (EuroSys),
2020, pp. 1–16.

[21] S. Sun and Q. Luo, “Subgraph matching with effective matching order
and indexing,” IEEE Transactions on Knowledge and Data Engineering
(TKDE), vol. 34, no. 1, pp. 491–505, 2020.

[22] L. Lai, L. Qin, X. Lin, Y. Zhang, L. Chang, and S. Yang, “Scalable dis-
tributed subgraph enumeration,” Proceedings of the VLDB Endowment
(PVLDB), vol. 10, no. 3, pp. 217–228, 2016.

[23] A. Mhedhbi, C. Kankanamge, and S. Salihoglu, “Optimizing one-time
and continuous subgraph queries using worst-case optimal joins,” ACM
Transactions on Database Systems (TODS), vol. 46, no. 2, pp. 1–45,
2021.

[24] Z. Zeng, J. Wang, and L. Zhou, “Efficient mining of minimal distin-
guishing subgraph patterns from graph databases,” in Proceeding of
the Pacific-Asia Conference on Knowledge Discovery and Data Mining,
2008, pp. 1062–1068.

[25] P. Gera, H. Kim, P. Sao, H. Kim, and D. Bader, “Traversing large graphs
on gpus with unified memory,” Proceedings of the VLDB Endowment
(PVLDB), vol. 13, no. 7, pp. 1119–1133, 2020.

[26] S. W. Min, V. S. Mailthody, Z. Qureshi, J. Xiong, E. Ebrahimi, and W.-
m. Hwu, “Emogi: Efficient memory-access for out-of-memory graph-
traversal in gpus,” Proceedings of the VLDB Endowment (PVLDB),
vol. 14, no. 2, pp. 114–127, 2020.

[27] H. Wei, J. X. Yu, C. Lu, and X. Lin, “Speedup graph processing by
graph ordering,” in Proceedings of the ACM SIGMOD International
Conference on Management of Data (SIGMOD), 2016, pp. 1813–1828.

[28] J.-I. Aoe, K. Morimoto, and T. Sato, “An efficient implementation of
trie structures,” Software: Practice and Experience, vol. 22, no. 9, pp.
695–721, 1992.

[29] M. Gowanlock and B. Karsin, “Sorting large datasets with heterogeneous
cpu/gpu architectures,” in Proceeding of the International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), 2018, pp.
560–569.

[30] H. Sato, R. Mizote, S. Matsuoka, and H. Ogawa, “I/o chunking and
latency hiding approach for out-of-core sorting acceleration using gpu
and flash nvm,” in Proceeding of the International Conference on Big
Data (Big Data), 2016, pp. 398–403.

[31] D. P. Singh, I. Joshi, and J. Choudhary, “Survey of gpu based sorting
algorithms,” International Journal of Parallel Programming, vol. 46,
no. 6, pp. 1017–1034, 2018.

[32] L. Babai, W. M. Kantor, and E. M. Luks, “Computational complexity
and the classification of finite simple groups,” in Proceeding of the
Annual Symposium on Foundations of Computer Science (SFCS), 1983,
pp. 162–171.

[33] H. Park and M.-S. Kim, “Evograph: An effective and efficient graph
upscaling method for preserving graph properties,” in Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining (KDD), 2018, pp. 2051–2059.

[34] H. Chen, M. Liu, Y. Zhao, X. Yan, D. Yan, and J. Cheng, “G-miner:
an efficient task-oriented graph mining system,” in Proceedings of the
Thirteenth European Conference on Computer Systems (EuroSys), 2018,
pp. 1–12.

[35] X. Chen, “Graphminer,” https://github.com/chenxuhao/GraphMiner.
[36] X. Chen, T. Huang, S. Xu, T. Bourgeat, C. Chung, and A. Arvind,

“Flexminer: a pattern-aware accelerator for graph pattern mining,”
in Proceeding of the Annual International Symposium on Computer
Architecture (ISCA), 2021, pp. 581–594.

[37] X. Chen, R. Dathathri, G. Gill, L. Hoang, and K. Pingali, “Sandslash: a
two-level framework for efficient graph pattern mining,” in Proceedings
of the ACM International Conference on Supercomputing (ICS), 2021,
pp. 378–391.

[38] https://github.com/graph500/graph500.
[39] https://thrust.github.io.
[40] D. Mawhirter and B. Wu, “Automine: harmonizing high-level abstraction

and high performance for graph mining,” in Proceedings of the 27th
ACM Symposium on Operating Systems Principles (SOSP), 2019, pp.
509–523.

[41] A. Roy, I. Mihailovic, and W. Zwaenepoel, “X-stream: Edge-centric
graph processing using streaming partitions,” in Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Principles
(SOSP), 2013, pp. 472–488.

[42] L. Hu, N. Guan, and L. Zou, “Triangle counting on gpu using fine-
grained task distribution,” in Proceeding of the International Conference
on Data Engineering Workshops (ICDEW), 2019, pp. 225–232.

[43] A. Yaşar, S. Rajamanickam, J. W. Berry, and Ü. V. Çatalyürek, “A block-
based triangle counting algorithm on heterogeneous environments,”
IEEE Transactions on Parallel and Distributed Systems (TPDS), vol. 33,
no. 2, pp. 444–458, 2021.

[44] M. Almasri, I. E. Hajj, R. Nagi, J. Xiong, and W.-m. Hwu, “Parallel k-
clique counting on gpus,” in Proceedings of the 36th ACM International
Conference on Supercomputing (ICS), 2022, pp. 1–14.

[45] P. Gera, “Overcoming memory capacity constraints for large graph ap-
plications on gpus,” Ph.D. dissertation, Georgia Institute of Technology,
2021.

[46] C. Li, R. Ausavarungnirun, C. J. Rossbach, Y. Zhang, O. Mutlu, Y. Guo,
and J. Yang, “A framework for memory oversubscription management
in graphics processing units,” in Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2019, pp. 49–63.

[47] T. Zheng, D. Nellans, A. Zulfiqar, M. Stephenson, and S. W. Keckler,
“Towards high performance paged memory for gpus,” in Proceeding of
the International Symposium on High Performance Computer Architec-
ture (HPCA), 2016, pp. 345–357.

