
VEND: Vertex Encoding for Edge Nonexistence
Determination

Youhuan Li1, Hangyu Zheng1, Lei Zou2£, Xiaosen Li3£, Ziming Li1, Pin Xiao3, Yangyu Tao3, Zheng Qin1
1College of Computer Science and Electronic Engineering, Hunan University, China;

2Peking University, China;
3Tencent Inc., China;

1{liyouhuan,zhenghangyu,zimingli,zqin}@hnu.edu.cn
2zoulei@pku.edu.cn, 3{hansenli,payniexiao,brucetao}@tencent.com

Abstract—We propose to design vertex encoding for determi-
nations of no-result edge queries that should not be executed.
Edge query is one of the core operations in mainstream graph
databases, which is to retrieve the corresponding edges connect-
ing two given vertices. Real-world graphs may be too large to
be stored in memory and frequently accessing edge data on
disk usually incurs much overhead. Average degree of real-world
graph tends to be much less than the vertex number, and edges
may not exist in most pairs of vertices. Efficiently avoiding no-
result edge query executions will certainly improve performance
of graph database. In this paper, we propose a new and important
problem for determining no-result edge queries: vertex encoding
for edge nonexistence determination (VEND, for short). We build
a low dimensional vertex encoding for all vertices, and we can
efficiently determine most vertex pairs that are connected by
no edges just with their corresponding codes. With VEND, we
can utilize in-memory efficient operations to filter no-result disk
accesses for edge query. We also design maintenance algorithms
for the proposed solution when data updates happen. Extensive
experiments on many real-world datasets confirm the ability of
our solution on determining a quite high proportion of non-edge
vertex pairs, as well as the acceleration for edge queries.

Index Terms—Graph Database, Edge Query, Vertex Encoding

I. INTRODUCTION

Edge query is one of the fundamental operations in main
stream graph databases [1], [2], [3], [4], which is to retrieve
edges that connect two given vertices. It is frequently exe-
cuted in many important graph computations, such as relation
retrieval in knowledge graph [5], [6], clustering coefficient
[7], triangle counting [8], [9], [10] and subgraph matching
[11]. However, most vertex pairs in real-world graph are
connected by no edges. In fact, average degree of a large real-
world graph tends to be much less than the vertex number
[12]. Therefore, for each vertex, there are far fewer vertices
adjacent to it than those non-adjacent. It is just a waste
of time to execute edge queries over vertex pairs that are
not adjacent. What’s more, graph-structured data proliferated
from mobile applications is usually too large to be stored in
memory [13], and executing edge queries over them may incur
time-consuming disk accesses. Filtering no-result edge queries
before they are evaluated over graph storage can certainly
improve the system performance of graph databases.
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In this paper, we creatively propose a new and important
problem: vertex encoding for edge nonexistence determination
(VEND, for short) which could be used to filter no-result edge
queries. We design a mechanism (called as VEND solution) to
encode each vertex into a low-dimension vector, with which
we can efficiently detect and filter no-result edge queries as
many as possible. We require that both the space cost for
a vertex vector and the time cost for an edge nonexistence
determination be linear to the dimension number. In this
way, an edge nonexistence determination costs only constant
time and space, which is much more efficient than executing
an edge query over a large graph that is stored on disk.
Since vector of each vertex is low-dimension, we can persist
all vectors in memory. Essentially, VEND is to utilize in-
memory vertex encodings and the corresponding constant time
operations to filter no-result disk accesses for edge data.

A VEND solution may not be able to detect every no-
result edge query. If an edge query can not be determined
as no-result, it should still be executed over database since the
corresponding edge existence is uncertain. A VEND solution
should be updated efficiently in dynamic scenarios, which is
a must for database consistency and efficiency.

A. Applications

1) Relation Retrieval: Relation retrieval over entities is the
most basic application of edge query, such as friendship check
over social network, transactions search in payment graph and
predicates search over given subject and object in knowledge
graph [5], [6].

2) Triangle Counting: We demonstrate how VEND could
accelerate state-of-the-art (SOTA) triangle counting methods.
In scenarios of VEND, graph is stored on disk and our discus-
sions focus on external-memory algorithms. Since triangle is a
common sub-structure in graph, we also extend our discussions
to SOTA disk based subgraph matching solutions.

Edge iterator based method is the SOTA in-memory triangle
counting solution utilizing ordered adjacent lists intersections.
We extend it into an external-memory version by organizing
the adjacent lists with Key-Value store on disk. Algorithm 1
presents the corresponding framework. We can see that when
a vertex i is visited, for each edge (i, j) where j ∈ adj(i)
and i < j, we conduct VEND tests between j and every other



vertex j′ (j < j′) in adj(i). If j is confirmed to be not adjacent
to any such j′ in adj(i) (Line 5 in Algorithm 1), then we need
no disk access for adjacent list of j (Line 7 in Algorithm 1).
In this way, we save one costly disk access (O(|adj(i)|)) with
in-memory efficient VEND tests (O(|adj(j)|)).

Algorithm 1: Edge Iterator based Triangle Counting
Input: Graph G = (V,E)

1 count = 0
2 for each node i ∈ V do
3 Get adj(i) from storage on disk
4 for each edge (i, j) where i < j do
5 if V END(j, j′) = NO EDGE for each

j′ ∈ adj(i) ∧ j < j′ then
6 Continue;
7 Get adj(j) from storage disk
8 let K = {k ∈ adj(j) | j < k}
9 count = count+ |adj(i) ∩K|

10 return count

Algorithm 2: Disked based Triangle Counting [14]
Input: Graph G = (V,E) on disk, memory size M

1 Merge-sort E on disk into Edisk by source and destinations
2 Group edges into p = d|E|/Me partitions according to their

destinations w.r.t. p disjoint consecutive intervals
3 Let [LP , UP ) denote interval range of destinations in P
4 for each i and adj(i) in Edisk do
5 for each (i, j, LP , UP ) where i < j ∈ adj(i) do
6 Let K = {k ∈ adj(i) | j < k} ∩ [LP , UP )
7 if V END(j, k) = NO EDGE for ∀k ∈ K then
8 Continue;
9 Write triple < i, j,K > into P ’s companion file

10 count = 0
11 for each partition P loaded in memory do
12 for each triple < i, j,K > in P ’s companion file do
13 Let J denotes j’s neighbors in P // in-memory
14 count = count+ |J ∩K|
15 return count

Trigon [14] is the SOTA disk-based framework for triangle
counting. It divides the range [0,maxID] into several con-
secutive intervals, where edges with destination id falling in
the same interval are grouped together into a partition that can
be loaded into limited memory. For each partition P , Trigon
builds a companion file storing a series of triples < i, j,K >
where j ∈ adj(i) is a source vertex of at least one edge in
P , and K is the set of i’s neighbors within the range interval
of P . In this way, when P is loaded into memory, for each
triple < i, j,K > in the corresponding companion file, j’s
adjacent edges in P are already organized in memory and
conducting intersection between K and j’s neighbors in P
could enumerates all triangles containing i and j where the
third vertex is within the range of interval corresponding to
P . VEND could accelerate Trigon by reducing the number of
triples in companion files. Specifically, before we write a triple
< i, j,K > into a companion file, we can conduct VEND tests
between j and vertices in K (Line 7 in Algorithm 2). If j is

confirmed to be not adjacent to any vertex in K, this triple
can be discarded safely without incurring incorrectness for the
triangle counting. Since companion files shrunk, Trigon saves
the I/O cost for writing/loading discarded triples (Lines 9 and
12 in Algorithm 2), as well as the corresponding intersections
over them.

Algorithm 3: Diamond Query Evaluation in Graphflow
Input: Graph G = (V,E), diamond subgraph Q

1 Compute candidate set Cand(X) for X ∈ {A,B,C,D}
2 Let MA = Cand(A) for each a ∈MA do
3 Get adj(a) from database on disk
4 Let MAB = {(a, b) | b ∈ (adj(a) ∩ Cand(B))}
5 for each (a, b) ∈MAB do
6 Let MABC = {(a, b, c) | c ∈ (adj(a) ∩ Cand(C))}
7 for each (a, b, c) ∈MABC do
8 Get adj(b) from database on disk
9 if V END(c, d′) = NO EDGE for each

d′ ∈ adj(b) then
10 break;
11 Get adj(c) from database on disk
12 Let S = adj(b) ∩ adj(c) ∩ Cand(D)
13 Output {(a, b, c, d) | d ∈ S}

Fig. 1: A running example query in Graphflow [15].

3) Subgraph Matching with WCOJ: Graphflow [15] is
the SOTA external-memory subgraph matching solution,
which utilizes Worst-Case Optimal Join (WCOJ) over graph
databases. Intersection between adjacent lists is a common
operation in WCOJ, which is similar to edge iteration based
triangle counting. Hence, we extend our discussions on VEND
acceleration to Graphflow. For example, Figure 1(a) presents
a diamond subgraph Q that is used as a running example
query in Graphflow [15]. Let’s discuss how Q is evaluated
with WCOJ and how VEND could reduce the adjacent list
retrievals. Algorithm 3 presents the pseudo codes for the
evaluation. Let Cand(X) denotes the candidate vertices of X
∈ {A, B, C, D}. For each a ∈ Cand(A), Graphflow retrieves
adj(a) from the database and then conducts adj(a)∩Cand(B)
and adj(a) ∩ Cand(C) successively forming partial matches
of sub-query {A, B, C}. Assume that the subgraph {a, b, c}
in Figure 1(b) is a match of sub-query {A, B, C}. We know
that neither adj(b) nor adj(c) has been loaded from database
and hence they are not indexed in memory yet. To extend
subgraph {a, b, c} into a full match of Q, Graphflow would
retrieve both adj(b) and adj(c), and then conduct adj(b)∩
adj(c)∩ Cand(D) for full matches. In fact, at the time when
adj(b) is loaded while adj(c) not, we can conduct VEND tests
between c and each vertices in adj(b) (Line 9 in Algorithm



3). If c is confirmed to be not adjacent to any vertex in adj(b),
the I/O cost of retrieving adj(c) from database can be avoided
(Line 11 in Algorithm 3) since adj(b)∩adj(c) must be ∅. Note
that VEND accelerates the algorithm by reducing I/O cost for
loading adjacent lists, which are neither loaded nor indexed in
memory.

B. Our contributions

A VEND solution can reduce no-result edge query exe-
cutions and improve system performance, especially for the
graph that is too large to be stored in memory. We summarize
our contributions as follows:
• To the best of our knowledge, we are the first to propose

and solve VEND problem. We formally define VEND and
design an important measure (VEND score) to precisely
evaluate the performance of VEND solutions (Section
III). VEND problem is important since it can avoid no-
result edge query executions, which are primary and
frequently used operations in graph computations. We im-
plement many VEND solutions and we find that even the
baseline could bring performance improvements. Hence,
VEND is important.

• We propose an effective VEND solution. We first de-
sign a partial solution (Section IV) which can perfectly
determine all no-result edge queries related to a subset
of vertices. Then we further design range based and
hash based baselines over the partial solution (Section
V). We finally propose a uniform hybrid VEND solution
incorporating both range based ideas and hash based
methods (Section VI). We also design efficient update
algorithms over the final version.

• We conduct various experiments to evaluate our solutions.
We find that even the basic VEND solution can explicitly
improve the corresponding system performance. We also
confirm the effectiveness of optimizations we propose
when developing our final VEND solution and the corre-
sponding maintenance.

II. RELATED WORK

To the best of our knowledge, this is the first work that
proposes to design vertex encoding for edge nonexistence
determination. Let’s discuss some works that are semantically
similar to the proposed problem.

a) Graph Embedding: Graph embedding is to map each
vertex into a low-dimensional vector, which tries to preserve
the connection strength between vertices in the original graph
[16], [17], [18], [19], [20], [21], [22], [23], [24]. The key
similarity between graph embedding and VEND is that both of
them build vertex vectors. However, graph embeddings provide
no guarantees on the edge nonexistence, and graph embedding
can not be used to solve VEND problem.

b) Link Prediction: Link prediction focuses on how to
predict missing edges or future ones when the set of edges
is only partially given [25]. Existing works tend to compute
heuristic similarity between two vertices and predict the edge
existence with the similarity as likelihood, such as Common

Neighbors (CN) [26], [27] and Katz Index (KI) [28]. Although
link prediction methods pay close attention to the edge exis-
tence over a pair of vertices, their determinations rely heavily
on probabilities. It is possible that a link prediction method
makes a wrong prediction and cause a false negative, which
is not allowed in VEND. Therefore, link prediction methods
can not be applied to VEND problems.

c) Bloom Filter: A possible alternative for reducing no-
result edge queries is Bloom filter, which is a space-efficient
probabilistic membership query solution with an acceptable
false positive rate [29]. We can build bits based Bloom filter
(with maximum hash slot) over all edges and conduct the cor-
responding membership queries for edge existence determina-
tions. However, global Bloom filter is not easy to update since
a single deletion of edge would result in a total reconstruction
over entire edge set, which introduces huge update overhead.
In fact, there are also many variants of Bloom filter designed
for efficient element deletions [30], [31], [32], [33]. Counting
Bloom filter (CBF) [30] extends the bits based Bloom filter
by setting each position as a counter with multiple bits. In
this way, adjustment for inserting/deleting an element can be
done by increasing/decreasing the corresponding counters by
1. However, with the hash slot of size many times smaller than
that of bit based Bloom filter, CBF suffers from much higher
false positive rate. Deletable Bloom filter (DBF) [31] only
resets collision-free bits for a deletion, and more and more bits
would remain to be 1 forever with element deletions happen.
Hence, DBF can not be applied to VEND scenarios. Ternary
Bloom filter (TBF) [32] improves the DBF by allocating
two bits for each counter. However, counters where collisions
happen more than twice may lead to false negatives, which are
definitely not allowed in VEND. Blocked Bloom filter (BBF)
partitions hash slot into multiple blocks, each of which is a
small standard Bloom filter. The first hash value of an element
is used to select a block, inside which additional hash values
are then used to set or test bits as usual. When deletion of
an element happens, only the corresponding block need to be
reconstructed. However, we need to hash every element in the
entire set with the first hash function to determine elements
corresponding to the block for reconstruction, which makes
deletions quite inefficient.

We can see that existing methods of similar semantic can
hardly contribute to VEND and its maintenance. Since we are
the first that propose VEND problem and the corresponding
solution, our work is highly innovative and important.

III. PRELIMINARIES

In this section, we define the VEND. Before formally
introducing the problem, we present some important concepts.

Definition 1 (Data Graph). A data graph G = (V,E), where
V denotes the vertex set and E is the edge set. Without loss of
generality, G is assumed to be an undirected and unweighted
simple graph, namely, there is no loop (edge that connects a
vertex to itself) and at most one edge connecting a pair of
vertices. We use NG(v) to denote the neighbor set of v in G.



We use degrG(v) to denote the degree of vertex v in G. Also,
to make the context more clear, we may use V (G) (E(G),
resp.) to denote the vertex (edge, resp) set of G.

Definition 2 (Vertex Vector & Encoding Function f ). Given
a graph G = (V,E) and a dimension number k, encoding
function f is defined over V , where for each vertex v ∈ V ,
f(v) is a k-dimension vector of integers. We use f(v)[i] to
denote the corresponding i-th dimension.

We define vertex pair that is connected by no edges as
NEpair. For convenience, we regard NEpair as an equivalent
concept to no-result edge query.

Definition 3 (NEpair & NEneighbor). Given a graph G =
(V,E) and v1, v2 ∈ V , we say that (v1, v2) is an NEpair if
v1 6= v2 and there is not edge connecting v1 and v2 in G. We
use NE(G) to denotes the set of NEpairs in G, namely:

NE(G) = {(v1, v2) | v1 6= v2 ∧ (v1, v2) /∈ E}
If (v1, v2) is an NEpair, we say that v1 and v2 are NEneighbors
of each other.

The core target of VEND is to determine NEpairs as many
as possible. In consideration of efficiency, determinations from
VEND are required to be made just based on vertex vectors of
v1 and v2. We formally define a determination function over
vertex vectors.

Definition 4 (NEpair Determination Function F ). Given a
graph G = (V,E) and k-dimension encoding function f , an
NEpair determination function (NDF, for short) F is a boolean
function defined over f(V )×f(V ) that satisfies the following
conditions: ∀v1, v2 ∈ V
• F (f(v1), f(v2)) = 1 only if (v1, v2) is an NEpair, that is,

when F (f(v1), f(v2)) = 1, (v1, v2) must be an NEpair.
While for the case when F (f(v1), f(v2)) = 0, there is
no guarantee on whether (v1, v2) is an NEpair.

• F (f(v1), f(v2)) can always be computed in O(k) time.
Apparently, the set {(v1, v2) | F (f(v1), f(v2)) = 1} must be
a subset of NE(G). Also, if F (f(v1), f(v2)) = 1, we say
that NE pair (v1, v2) is detectable by F . We use F (v1, v2) to
denote F (f(v1), f(v2)) when the context is clear.

A good NDF can detect NEpairs as many as possible. We
define an indicator, VEND score, to evaluate f and F .

Definition 5 (VEND Score). Given a graph G = (V,E),
dimension number k, an encoding function f and an NDF
F , the VEND score over G is defined as the proportion of
NEpairs that can be detected by F . We use ScoreG,k(f, F )
to denote the corresponding VEND score, namely,

ScoreG,k(f, F ) =
Σv1∈V,v2∈V (F (f(v1), f(v2)))

|NE(G)|
We use Score(f, F ) to denote the VEND score when the
context is clear. Apparently, 0 ≤ Score(f, F ) ≤ 1.

With the concepts as above, we formally define our problem.

Definition 6 (Problem Definition). Given a graph G and
dimension number k, the proposed problem is to design an
encoding function f and an NDF F such that Score(f, F )
is as high as possible, and meanwhile, f can be updated
efficiently when edge updates happen. We call the 2-tuple
(f, F ) as a VEND solution for G with dimension number k.

Note that we make no assumptions on the form of edge,
since we only consider the edge (non)existence of two given
vertices in this paper. There could be some variants of VEND,
such as edge (non)existence with direction constraints, length
constrained reachability determination with vertex encoding
and so on, which could be future works.

a) Framework.: We discuss our method in Sections IV-
VI. In Section IV, we propose a partial VEND solution that
can optimally encode a part of vertices in data graph such that
all NEpairs related to these encoded vertices can be efficiently
determined. In Section V, we extend the partial VEND into
two full versions with range-based encoding and hash-based
encoding, respectively. Note that our discussions on these two
full versions are to introduce the range-based and hash-based
encoding ideas. We do not discuss their maintenance since
they are not the final version. In Section VI, we present our
final VEND solution incorporating both range-based and hash-
based methods. Further more, we discuss how to update the
proposed encoding when updates happen. We evaluate our
methods in Section VII and conclude in Section VIII.

IV. AN OPTIMAL PARTIAL VEND SOLUTION

In this Section, we introduce a partial VEND solution,
denoted as (fα, Fα), over graph G with dimension number k.
(fα, Fα) can optimally encode a part of vertices in G such that
all NEpairs related to these encoded vertices can be efficiently
determined. With (fα, Fα), the design of full VEND solution
over G need only consider the induced subgraph over vertices
that have not been encoded. We introduce the encoding
function fα in Section IV-A and NDF Fα in Section IV-B.

A. Encoding Function fα

Given a graph G = (V,E), we construct fα as follows:
• Step 0: We initial i = 1 and build a set of comparative

flag τi (∀i, τi < τi+1) that is distinguish from vertex ID.
For example, τi could be a negative integer.

• Step 1: For each vertex v of degree less than k, set
fα(v)[0] = τi and use the remaining k − 1 dimensions
of fα(v) to store all neighbors of v in Gi, i.e.,

fα(v) = [τi, v1, v2, · · · , v|NGi
(v)|] (1)

where v1, v2,· · · ,v|NGi
(v)| are neighbors in NGi(v).

• Step 2: Remove all vertices of degree less than k and
their corresponding adjacent edges from G. Update the
degree distribution of G after those removals. If there are
still vertices of degree less than k, let i = i+1 and repeat
Steps 1 and 2; otherwise, terminate.

After the construction of fα(v), the remaining subgraph of
G is denoted as CkG, where V (CkG) and E(CkG) denote the



corresponding vertex set and edge set, respectively. We call
CkG as core subgraph of G w.r.t. k, and in fact, the maximal
connected component of CkG is exactly k-Core of G [34].
We use V αk to denote V \ V (CkG), which exactly contains all
vertices encoded in fα. For example in Figure 2, let k = 3,
then fα(5) ={τ1, 3} while fα(8) ={τ1, 3, 7}. The subgraph
in red circle is exactly C3

G.

Fig. 2: A data graph example and the core subgraph.

B. NDF in Partial Solution

Let’s discuss how to design the NDF Fα over fα. We
know that in each iterator of the construction, the remaining
neighbors of each vertex v of degree less than k are fully
encoded in fα(v). Consider v1, v2 ∈ NG(v1). If v1 is in
V αk , then either v1 is encoded in fα(v2) (when fα(v1)[0] >
fα(v2)[0]) or v2 is encoded in fα(v1). Also, if both v1 and
v2 are not in V αk , whether (v1, v2) is an NEpair can not be
determined by fα. For example, consider fα over the graph
in Figure 2. 8 ∈ V α3 and fα(8) ={τ1, 3, 7}, hence, 1, 2, 4,
5, 6 can be determined to be NEneighbors of 8. With these
observations, we formally present Fα as followings:
• If both v1 and v2 are encoded by fα, then

Fα(v1, v2) =

{
(v2 /∈ fα(v1)) if fα(v1)[0] ≤ fα(v2)[0]

(v1 /∈ fα(v2)) if fα(v1)[0] > fα(v2)[0]
(2)

• If only one of v1 and v2 are encoded by fα, assuming
that v1 is encoded, then

Fα(v1, v2) = (v2 /∈ fα(v1))

• For any other case, we set Fα(v1, v2) = 0 which means
(v1, v2) can not be determined to be NEpair by (fα, Fα).

Apparently, NEpairs related to vertices in V αk (i.e., V \ V (CkG))
can be determined by Fα. Since fα does not encode any vertex
in V (CkG), when designing a full VEND solution over a graph
G, we can always safely use fα to encode vertices in V αk . We
then need only focus on designing VEND solution over CkG,
namely, designing vertex encoding over V (CkG) and the NDF
over vertex pairs where the two adjacent vertices are both in
V (CkG).

V. RANGE & HASH BASED BASELINES

Let’s consider the VEND solution over core subgraph CkG
of G. According to previous discussions, any VEND solution
over CkG can be easily merged with (fα, Fα), forming a
full VEND solution for G. We propose a range-based VEND
solution in Section V-A and a hash-based VEND solution in
Section V-B. The presentation of these two solutions is to

introduce range-based and hash-based ideas that will be used
in our finial VEND solution in Section VI.

A. Range-based Encoding

According to previous discussions, vertices in V (CkG) may
be of degree larger than k, and hence we can not just encode
all neighbor IDs into the vector. A straightforward method is to
set encoding vector of each vertex v with a subset of NCk

G
(v)

, leaving other neighbors not recorded. For example, ∀ v in
V (CkG), assuming that NCk

G
(v) = {v1, v2, · · · , vt} where t

≥ k and vi < vj for 1 ≤ i < j ≤ t, we can set encoding
vector of v with the smallest k neighbor IDs in NCk

G
(v), i.e.,

[v1, v2, · · · , vk]. Thus, ∀ v′ ∈ V (CkG) where v′ ≤ vk, either
v′ is in the vector of v ,or v′ is an NEneighbor of v, based on
which we can naturally build an NDF. Consider the C3

G in red
cycle in Figure 2. The basic range encoding of vertex 6 is {1,
2, 4} and vertex 3 can be easily detected as an NEneighbor
of vertex 6 since 3 < 4 while 3 /∈ {1, 2, 4}.

Actually, intuition of the basic range encoding is to set each
vector with a consecutive block of the corresponding ordered
neighbor sequence. While, there are more than one blocks
that can be used for build encodings and different selections
of block may result in different performance of VEND. We
formally define the consecutive block as neighbor block in
Definition 7, and then we will discuss how to select and use
these blocks for constructing more efficient VEND solution.

Fig. 3: Basic range VEND V.S. optimized range VEND.

Definition 7 (Neighbor Block). Given a graph G = (V,E),
a vertex v ∈ V (CkG). Assume that sequence s ={−∞, v1, v2,
· · · , v|NG(v)|,∞ } where v1, v2, · · · , v|NG(v)| are all neighbors
(IDs) of v and vi < vj for 1 ≤ i < j ≤ |NG(v)|. Then:

• Each nonempty subsequence of s is called as a neighbor
block of v. Neighbor block is usually called as block for
short, and we use B to denote a block.

• The size of B (i.e., |B|) is the number of items it
contains. There are |NG(v)| + 3 − k blocks of size k:
{−∞,v1,· · · ,vk−1},· · · , {v|NG(v)|−k+2, · · · ,v|NG(v)|,∞}.

• For a neighbor block B, we use B.head and B.tail to
denote the corresponding head and tail items, respec-
tively. And we define interval [B.head,B.tail] as the
range of B, denoted as R(B). For example, range of
block {−∞,v1,· · · ,vk−1} is interval (−∞,vk−1].

• We use BG(v) to denote the set of all blocks of v in G.



For a block B of v, vertices within R(B) is either an item
in B or an NEneighbor of v, hence the larger R(B) is, the
more NEneighbors of v we tend to determine. We can encode
a k-size block B of v into a k-dimension vector to determine
all NEneighbors of v within range R(B). We propose to select
the block B where the range R(B) covers most NEneighbors
of v. For example, consider the block B = {−∞,v1,· · · ,vk−1}
and the corresponding range R(B) = (−∞,vk−1]. There are
vk−1 vertices within R(B), and (vk−1 − (k− 1)) of them are
NEneighbors of v. Figure 3 shows that this VEND version can
detect more NEpairs than that of basic range VEND. We use
(fR, FR) to denote this VEND version, specifically,
• fR : for each vertex v ∈ V ,

– if v ∈ V αk , fR(v) = fα(v)
– if v ∈ V (CkG), fR(v) = B ∈ BCk

G
(v), where B

covers most NEneighbors of v.
• FR(v1, v2): for vertex pair (v1, v2),

– if v1 ∈ V αk or v2 ∈ V αk , FR(v1, v2) = Fα(v1, v2)
– if both v1 and v2 are in V (CkG), then:

FR(v1, v2) = (v1 ∈ R2 ∧ v1 /∈ fR(v2))

∨ (v2 ∈ R1 ∧ v2 /∈ fR(v1))

where R1 and R2 are the intervals bounded by head
and tail items in fR(v1) and fR(v2), respectively.

We call (fR, FR) as range version of VEND solution.

B. Hash-based VEND

Another solution for encoding vertex v in V (CkG) is to hash
neighbor IDs into a k-dimension vector. We incorporate a
straightforward hash based VEND solution, denoted as (fhash,
Fhash), where we hash each neighbor ID into an integer hash
value within {0, 1, · · · , k − 1} and set fhash(v)[i] = 1
(0 ≤ i < k) if and only if there exists a neighbor v′ (of
v) such that v′%k = i; otherwise, fhash(v)[i] = 0. Then,
vertex pair (v1, v2) is an NEpair if both fhash(v1)[v2%k] and
fhash(v2)[v1%k] are 0. Formally,

Fhash(v1, v2) = fhash(v1)[v2%k] = 0∧fhash(v2)[v1%k] = 0

We call VEND (fhash, Fhash) as the hash version. For
example, fhash(6) is {1, 1, 0} for vertex 6 of C3

G in Figure
2.

For each vertex v, value in each dimension of fhash(v) is
binary, namely, the value is either 1 or 0. It is easy to extent
(fhash, Fhash) into a bitset-based hash version, denoted as
(f bit, F bit), where we take k-dimension vector as an entire
bitset of size k · I . I is the number of bits for each dimension,
which is usually 32. We use b(v) to denote the corresponding
bitset of v. In this way, b(v)[i] = 1 if and only if there exists a
neighbor v′ (of v) such that v′%(k·I) = i. We call bitset-based
hash version as bit-hash version for short.

VI. FINAL VEND SOLUTION

We now present our final VEND solution, which is a hybrid
one incorporating range and hash based ideas. In hybrid VEND
solution, some dimensions of a vertex vector are used for range

based encoding while the remaining ones are taken together
as a bitset for hash based method. We present a hybrid VEND
example in Section VI-A, based on which we discuss some
important extensions in Section VI-B. We formally introduce
our hybrid VEND solution in Section VI-C and discuss the
corresponding maintenance in Section VI-D.

A. An Example for Hybrid VEND

Let’s start with an example hybrid VEND solution (f ′, F ′)
where we use two dimensions for range based encoding while
the remaining k − 2 for the hash based method.
• f ′: for each vertex v ∈ V ,

– if v ∈ V αk , f ′(v) = fα(v)
– if v ∈ V (CkG) (i.e., v ∈ V − V αk ), assume that
NCk

G
(v) = { v1, · · · , v|N

Ck
G
(v)| }. We set the first two

dimensions of v’s vector as v1 and v2, i.e., f ′(v)[0]
= v1 and f ′(v)[1] = v2. We then build a bitset based
hash slot on the remaining k−2 dimensions and hash
neighbors in NCk

G
(v)/{v1, v2} into the bitset as what

we do in hash-based version.
• F ′: for vertex pair (v1, v2),

– if v1 ∈ V αk or v2 ∈ V αk , F ′(v1, v2) = Fα(v1, v2)
– if neither v1 nor v2 is in V αk (i.e., both v1 and v2 are

in V (CkG)), let b(v1) and b(v2)) denote the bitsets
over the last k − 2 dimensions of vectors of v1 and
v2, respectively, and h is the hash function, , then
F ′(v1, v2) = 0 if and only if one of the following
conditions holds:
1) v1 = f ′(v2)[0] or v1 = f ′(v2)[1];
2) v2 = f ′(v1)[0] or v2 = f ′(v1)[1];
3) (v1 > f ′(v2)[1]) ∧ (v2 > f ′(v1)[1])
∧ b(v2)[h(v1)] ∧ b(v1)[h(v2)], where b(v1)
(b(v2), resp.) is the bitset of v1 (v2, resp.).

Otherwise F ′(v1, v2) = 1.
Apparently, F ′ can be computed in O(k) time.

It is easy to understand that (f ′, F ′) incorporates both range
and hash ideas. We call f ′(v) as a 2-hybrid encoding for v
under parameter k. Formally, given 1 < k′ < k, the vertex
encoding with k′ dimensions for range based method while
the remaining k − k′ for hash based method is called as k′-
hybrid encoding.

B. Extensions

We introduce a series important optimizations over the
example hybrid version, which together forms the final VEND
solution in Section VI-C.

Dynamic selection of block. We can strategically select
a uniform k′ to encoding vertex in V (CkG) by maximizing
VEND score as much as possible. However, a uniform k′

may not be a best choice for some vertices. Therefore, we
extend the hybrid VEND solution in a finer grained way:
independently select k′ for each vertex. To achieve this, we can
take out log2(k) bits from the hash slot to indicate the specific
k′ for v. Actually, for each vertex v, we can build different
vectors with all possible selections of block in BCk

G
(v) and



choose one of them as the target vector. More details on block
selection are available in Section VI-C3.

Encoding compression. The essence of a block is an
ordered integer sequence. Lots of methods can be used to com-
press ordered integer sequence and reduce the corresponding
overhead [35]. We need to find a compression strategy that
will not cause too much decompression overhead compared
to NDF computation. In fact, the number of bits for a vertex
ID can be set as a tunable parameter I ′ where dlog2(|V |)e
≤ I ′ ≤ I (number of bits in each dimension). In this way,
there could be more bits in the corresponding hash slot. We
may need to adjust I ′ since the vertex number would change,
which will be discussed in Section VI-D on the maintenance
of VEND.

One bit to distinguish vertices in V αk from those in
V (CkG). Recall the partial VEND solution (fα, Fα) where we
use the first dimension of fα(v) as a flag to indicate whether
v is in V αk (See Equation 1 in Section IV-A). In fact, we can
just use one bit as a flag to indicating whether a vertex v is in
V αk or not. In this way, for the vertex v ∈ V αk , the maximum
number of neighbors that can be encoded changes to (k·I−1)/
I ′ from (k − 1). We turn Equation 2 into the following one
to remove the dependency on fα(v)[0]:

Fα(v1, v2) = v1 /∈ fα(v2) ∧ v2 /∈ fα(v1)

Indicating infinite flags with only two bits. For vertex v
in V (CkG), assume that NCk

G
(v) ={v1, v2, · · · , vx} where

x = |NCk
G

(v)|. There are (x + 3 − k) blocks of size k:
{−∞,v1,· · · ,vk−1},· · · , {vx−k+2, · · · ,vx ,∞}. We can see
that there are 3 types of k-size blocks: the leftmost block
containing −∞, the rightmost block containing ∞ and the
remaining blocks consisting of k neighbor IDs. Once a block
containing infinite flag (−∞ or ∞) is selected to be encoded,
consuming I ′ for each flag will be an obvious waste of bits,
which should be avoided. Therefore, we take 2 = dlog2(3)e
bits to indicate the type of selected block. In this way we can
enlarge the first block {−∞,v1,· · · ,vk−1} and the last block
{vx−k+2, · · · ,vx ,∞} into {v1, · · · ,vk} and {vx−k+1, · · · ,vx},
respectively.

C. Formal Hybrid VEND solution

Let’s formally introduce our final VEND solution with those
optimizations in Section VI-B. We use (fhyb, Fhyb) to denote
our final hybrid version.

1) Encoding Function fhyb: We take each vertex vector
as a bitset of size k · I where I is the number of bits for
storing an integer in the system (I = 32 in the experiments).
For simplicity, we use k∗ to denote the maximum number of
vertices that can be encoded in a vector, i.e., k∗ = (k·I−1)/I ′.
V αk∗+1 and Ck

∗+1
G can be computed according the construction

of partial version in Section IV. Every bit of each fhyb(v) is
cleared as 0 before we build the encoding. We use fhyb[i] (v) to
denote the i-th bit of fhyb(v).

For each v ∈ V αk∗+1, we set the first bit of fhyb(v) as 0,
namely, fhyb[0] (v) = 0. The remaining k · I − 1 bits will be

used to encode not more than k∗ neighbor IDs of v. Since
v ∈ V αk∗+1, at the time when we encode v, the number of
remaining neighbors of v must be not more than k∗. Note that
we do not need to specify the number of encoded neighbor IDs
in the bitset since the remaining unused bits are all cleared.
When decoding fhyb(v), we can just terminate when an ID
of 0 is encountered. We omit details on building fhyb(v) for
v ∈ V αk∗+1 since they are quite similar to those in Section IV.

For each vertex v ∈ V (Ck
∗+1
G ) (i.e., V− V αk∗+1), we set the

first bit of fhyb(v) as 1. The next two bits are used to indicate
the type of encoded block B (We will discuss block selection
in Section VI-C3). For example, we can use ‘00’ to indicate
the leftmost block, ‘11’ for the rightmost while ‘01’ for those
neither leftmost nor rightmost. The further dlog2(k∗)e bits will
store the size of B, i.e., |B|. Let x = 1 + 2 + dlog2(k∗)e
= dlog2(k∗)e+3. The |B| ·I ′ bits starting from the (x+1)-th
position to the right are used to store |B| vertex IDs. Finally,
the remaining (k · I − |B| · I ′ − x) bits will be used as hash
slot, where we will hash each vertex ID in N

Ck∗+1
G

(v) \B by
setting the corresponding bit as 1.

We use HybEncode(v, V ′) to denote the process for en-
coding fhyb(v) w.r.t. neighbor set V ′, where V ′ is the set
of neighbors to be encoded if v ∈ V αk∗+1, and otherwise, V ′

= N
Ck∗+1

G
(v). We can use the size of V ′ to indicate whether

v is in V αk∗+1 or not, since v ∈ V αk∗+1 if and only if |V ′| ≤ k∗.
2) NDF Fhyb: Let’s discuss the computation of Fhyb. For

the sake of presentation, we propose an important concept,
called NE-test, that will be frequently used in the discussion.

Definition 8 (NE-test). Consider a data graph G, a dimension
k, the corresponding V αk∗+1 and fhyb. For any two vertices v
and v′, we say that v′ can pass the NE-test of fhyb(v) if and
only if one of the following conditions hold:
• If fhyb[0] (v) = 0, v′ is not one of the IDs in fhyb(v).
• If fhyb[0] (v) = 1 (i.e., v ∈ V (Ck

∗+1
G )), assuming that B is

the block encoded in fhyb(v), then v′ satisfies that either
v′ ∈ R(B) ∧v′ /∈ B, or v′ /∈ R(B) while v′ misses the
hash in the corresponding slot of fhyb(v).

We use v′ NE7→ fhyb(v) to denote that v′ can pass the NE-test
of fhyb(v). Also, the set of vertices that can pass NE-test of
fhyb(v) is denoted as NT (fhyb(v)), namely:

NT (fhyb(v)) = {v′ ∈ V | v′ NE7→ fhyb(v)}
We define |NT (fhyb(v))| as NT-size of vector fhyb(v). Sym-
metrically, we define a set NT (v) containing such vertex v′

that v NE7→ fhyb(v′), namely:

NT (v) = {v′ ∈ V | v NE7→ fhyb(v′)}
Apparently, NE-test can be computed in O(k) time.

It is easy to prove that if v′ can pass the NE-test of fhyb(v),
we can conclude that v′ is not a neighbor of v in Ck

∗+1
G .

However, v′ can still be a neighbor of v in G since (v, v′)
may be one of the edges in E \E(Ck

∗+1
G ) that are removed

for computing the core subgraph Ck
∗+1
G .



Theorem 1. Consider a data graph G, a dimension k, the
corresponding V αk∗+1 and encoding function fhyb. For any
two vertices v1 and v2, if v1

NE7→ fhyb(v2) and v2
NE7→ fhyb(v1),

then (v1, v2) is an NEpair.

Proof. We prove this by reduction to absurdity. Assume that
there is an edge (v1, v2) ∈ E where v1

NE7→ fhyb(v2) and
v2

NE7→ fhyb(v1).
• 1© If fhyb[0] (v1) = 0 and fhyb[0] (v2) = 0, then edge (v1, v2)

is removed either at the time when we build fhyb[0] (v1)

or at the time building fhyb[0] (v2). Hence, either v1 can
not pass the NE-test of fhyb[0] (v2) or v2 can not pass
the NE-test of fhyb[0] (v1), which is a contradiction to the
assumption.

• 2© If fhyb[0] (v1) = 1 and fhyb[0] (v2) = 1, then v1 (v2, resp.)
must be encoded in fhyb[0] (v2) (fhyb[0] (v1) , resp.) either with
range based method or with hash based one according to
the corresponding vector constructions. Hence, v1 (v2,
resp.) can not pass the NE-test of fhyb[0] (v2) (fhyb[0] (v1),
resp.), which is also a contradiction to the assumption.

• 3© If fhyb[0] (v1) = 0 and fhyb[0] (v2) = 1 (We omit the
discussion for the symmetrical case), then v2 must be
encoded in fhyb[0] (v1) according to the corresponding
vector constructions. Hence, v2 can not pass the NE-test
of fhyb[0] (v1), which is a contradiction to the assumption.

Since the assumption never holds, this theorem is proved.

With Theorem 1, we can compute Fhyb(v1, v2) as follows:

Fhyb(v1, v2) =
(
v1

NE7→ fhyb(v2)
)
∧
(
v2

NE7→ fhyb(v1)
)

3) Block Selection: Let’s consider the selection of block
to be encoded in fhyb(v) for each vertex v in V (Ck

∗+1
G ).

Intuitively, we always target the block that maximizes
|NT (fhyb(v))|, i.e., the number of vertices which can pass
the NE-test of fhyb(v). For each block B ∈ B

Ck∗+1
G

(v) where
N
Ck∗+1

G
(v) = {v1, v2, · · · , vx } (x = |N

Ck∗+1
G

(v)|), we first
encode the bitset fhyb(v) and then we discuss the computation
of |NT (fhyb(v))| as follows:
• If B is empty, then k ·I−3−dlog2(k∗)e bits in the vector

will be used as hash slot. We can compute |NT (fhyb(v))|
by counting the number of vertices missing the hash in
fhyb(v).

• If B is a leftmost block, assume that B = {v1, v2, · · · ,
v|B| }, according to the definition of NE-test, for v′ ≤
v|B|, v′ ∈ NT (fhyb(v)) if and only if v′ /∈ B; while, for
v′ > v|B|, v′ ∈ NT (fhyb(v)) if and only if v′ misses the
hash in fhyb(v). Hence, |NT (fhyb(v))| is equal to v|B|
−|B| +c where c is the number of such vertex v′ that
v′ > v|B| and v′ misses the hash in fhyb(v).

• If B is a rightmost block, the computation of
|NT (fhyb(v))| is symmetrical to that of leftmost block.

• If B is neither a leftmost block nor a rightmost one, the
computation of |NT (fhyb(v))| is still similar to that of
leftmost/rightmost block. Assuming that B = {vi, vi+1,

· · · , vj }, |NT (fhyb(v))| is equal to vj − vi −(j − i)
+c where c is the number of such vertex v′ that not only
v′ < vi or v′ > vj , but also v′ misses the hash in fhyb(v).

The time cost building fhyb(v) for each block is
O(|N

Ck∗+1
G

(v)|). For computing |NT (fhyb(v))| with fhyb(v),
a brute force way is to enumerate every vertex not in R(B) and
count the number of vertices that miss the corresponding hash,
which cost O(|V |) time. In fact, the modular hash function in
our method is periodic and time for computing |NT (fhyb(v))|
with fhyb(v) can be optimized to O(m). Specifically, assume
that the slot size is m. For any integer i where (i + 1)m
≤ |V |, it is easy to understand that the number of vertices
within interval [i ·m, (i+ 1)m) that miss the hash is exactly
the number of bits of value 0 in the slot. Therefore, for a block
B where R(B) = [vi, vj], we can partition vertices outside
R(B) into six parts: [1, m), [m, t1 ·m), [t1 ·m, v1), (v2, t2 ·m),
[t2 · m, t3 · m), [t3 · m, |V |] where t1 = b v1m c, t2 = d v2m e,
t3 = b |V |m c. And the number of vertices outside R(B) that
miss the corresponding hash in fhyb(v), denoted as c, can be
compute as following:

c = Z(m)− Z(1) + (t1 − 1) · Z(m) + Z(v1%m)

+ Z(m)− Z(v2%m) + (t3 − t2) · Z(m) + Z(|V |%m)

= (t1 + t3 − t2 + 1) · Z(m)

+ Z(v1%m) + Z(|V |%m)− Z(v2%m)− Z(1)
(3)

where Z is a function such that Z(i) is the number of value
0 in the first i positions of the corresponding hash slot in
fhyb(v). Computing Z(i) costs O(m) time and hence, the
time for computing |NT (fhyb(v))| with fhyb(v) is optimized
to O(m). Thus, the total time cost for block selection for v is

O
(
|B
Ck∗+1

G
(v)| · (|Nk∗+1

G (v)|+m)
)

= O
(
k∗ · |Nk∗+1

G (v)| · (|Nk∗+1
G (v)|+m)

)
= O (k · |NG(v)| · (|NG(v)|+m))

= O (k · |NG(v)| · (|NG(v)|+ k · I)) (4)

where I is the number of bits in a dimension and the upper
bound of m is k · I .

In fact, the key to computing |NT (fhyb(v))| for block
B is the function Z according to Equation 3. We propose
a sliding-window like optimization on computing Z with-
out generating fhyb(v) for each block, which costs only
O(m) time for computing |NT (fhyb(v))| for each block, and
O(k∗ · |Nk∗+1

G (v)| ·m) time in total for block selection.
Consider all t-size blocks in B

Ck∗+1
G

(v) over N
Ck∗+1

G
(v) =

{v1, v2, · · · , vx } where x = |N
Ck∗+1

G
(v)|: B1 = {v1, · · · , vt},

· · · , Bx−t+1 = {vx−t+1, · · · , vx}. We first build an array HB1

of size m where HB1
[i] (0 ≤ i < m) record the number of

such vertex v′ ∈ N
Ck∗+1

G
(v)\B1 that v′ %m = i. Apparently,

for block B1, Z(i) is exactly the number of value 0 in the first
i items in HB1

. We can instantiating Z(i) as a m-size array
over HB1

, which costs O(m) time, and hence, computing
|NT (fhyb(v))| for block B1 with Z costs O(1) time (Equation



3). In addition, we can construct HB2
based on HB1

in O(1)
time. Specifically, the difference between N

Ck∗+1
G

(v)\B1 and
N
Ck∗+1

G
(v)\B2 are the join of vt+1 and the exit of v1, which

is quite similar to a window of size t “slides” from B1 to
B2 over the sorted neighbor sequence of N

Ck∗+1
G

(v). In this
way, HB2

can be constructed by conducting HB1
[v1%m]--

and HB1
[vt+1%m]++, which costs only O(1) time. Also, with

HB2
, it take O(m) time to compute Z for block B2, which can

be use to figure out the corresponding |NT (fhyb(v))| in O(1)
time. Similarly, we can construct HB3 , HB4 , · · · , HBx−t+1

successively in O(1) time for each. Therefore, the total time
cost for computing |NT (fhyb(v))| for all t-size blocks is

O
(
|N

Ck∗+1
G

(v)|+ (|N
Ck∗+1

G
(v)| − t) ·m

)
= O (|NG(v)| · k · I) (5)

where 0 ≤ t ≤ k∗. Hence, the total time cost for block
selection is

O (k∗ · |NG(v)| · k · I) = O
(
k2 · |NG(v)| · I

)
(6)

Thus, the time cost for block selection of v is linear to
|NG(v)|. Building fhyb(v) for a block costs O(NG(v)) time,
and hence, time cost for computing HybEncode(v, V ′) is
linear to |V ′|.

Actually, we can further optimize the computation. When
building HBi+1

over HBi
(1 ≤ i ≤ x − t + 1),

if Bi.head%m = Bi+1.tail%m or HBi
[Bi.head%m] >

1 ∧ HBi
[Bi+1.tail%m] > 0, then the distribution of

Z will remain after conducting HBi [Bi.head%m]-- and
HBi [Bi+1.tail%m]++, which means we can save the scan
over HBi+1

for reconstructing Z.

D. Maintenance

Let’s discuss the maintenance of VEND solution
(fhyb, Fhyb). There are four types of graph updates,
i.e., vertex/edge insertion/deletion. We use Ins(v)/Del(v)
to denote the insertion/deletion of vertex v, and
Ins(v1, v2)/Del(v1, v2) for insertion/deletion of edge
(v1, v2).

For the sake of presentation, we propose some important
concepts that will be used in the illustration of maintenance.
For vertex v, if fhyb[0] (v) = 0, then we can fully recover the
neighbor set encoded in fhyb(v). While, if fhyb[0] (v) = 1, some
neighbors are hashed in the slot and can not be recovered.
Hence, we say that a vector fhyb(v) is decodable if fhyb[0] (v)

= 0, and otherwise, fhyb(v) is non-decodable. We say that
a decodable vector fhyb(v) is full if the number of encoded
vertex IDs is k∗ (there is not enough unused bits for storing
an extra ID), and otherwise, fhyb(v) is unfilled.

We discuss the adjustment of fhyb separately for each type
of update, while for the sake of presentation, we use Gu (G,
resp.) to uniformly denote the data graph after (before, resp.)
the update. Note that HybEncode(v, V ′) (See Section VI-C)
will be frequently used in maintenance discussion. We first

discuss the adjustment for edge update, which will be extended
for handling vertex update.

1) Insertion of edge (v1, v2): If Fhyb(v1, v2) = 0, (fhyb,
Fhyb) is still adaptive for Gu and we do not need to update
anything since edge query over (v1, v2) will not be erroneously
filtered. While, if Fhyb(v1, v2) = 1, then:
• If one of fhyb(v1) and fhyb(v2) is unfilled decodable

vector, assuming that it is fhyb(v1), then we can just
conduct encoding v2 in the extra unused bits of fhyb(v1)
and finish the maintenance. Note that we can easily locate
the bits for storing v2 by decoding fhyb(v1).

• If both fhyb(v1) and fhyb(v2) are full decodable vec-
tors, assume that V ′1 and V ′2 are two set of vertex
IDs decoded from fhyb(v1) and fhyb(v2), respectively.
We can conduct either HybEncode(v1, v′1 ∪ {v2}) or
HybEncode(v2, v

′
1 ∪ {v1}) for maintenance. In fact, we

always reconstruct the vector that will result in larger NT-
size (Definition 8) than that of the other. Specifically, let
c1 and c2 denote vectors built by HybEncode(v1, v

′
1 ∪

{v2}) and HybEncode(v2, v′1 ∪ {v1}), respectively. As-
suming that |NT (c1)| > |NT (c2)|, then we set fhyb(v1)
= c1 and fhyb(v2) remains, otherwise, fhyb(v2) = c2
while fhyb(v1) remains. Since V ′1 (V ′2 , resp.) can be
directly recovered by decoding from fhyb(v1) (fhyb(v2),
resp.), reconstructing the vector need no storage accesses.

• If both fhyb(v1) and fhyb(v2) are non-decodable vectors,
similar to the above case, we always reconstruct the
vector that will result in larger NT-size. However, the
reconstruction is not easy since we can not recover the
set of vertex IDs encoded in a non-decodable vector.
A naive method is to retrieve the entire neighbor set
NG(v1) (NG(v2), resp.) and conduct reconstruction w.r.t.
NG(v1) ∪ {v2} (NG(v2) ∪ {v1}, resp.) for building
new vector. In fact, it is easy to understand that, for
vertex v′ ∈ NG(v1), if v1 cannot pass the NE-test of
fhyb(v′), encoding v′ into fhyb(v1) contributes nothing
to NEpair determinations. While, if v1 can pass the NE-
test of fhyb(v′), it is a must to encode v′ into fhyb(v1)
for the correctness. Hence, for reconstructing fhyb(v1)
and fhyb(v2), we need only conduct Hyb(v1, V ′1) and
Hyb(v2, V

′
2), respectively, where

V ′1 =
{
v ∈ NG(v1) | v1 NE7→ fhyb(v)

}
∪ {v2}

V ′2 =
{
v ∈ NG(v2) | v2 NE7→ fhyb(v)

}
∪ {v1}

Note that computing V ′1 and V ′2 only costs O(k∗|NG(v)|)
time where the dimension number k is a constant.

• If only one of fhyb(v1) and fhyb(v2) is full decodable
vector while the other is non-decodable, we tend to
reconstruct the decodable one to avoid storage accesses.

2) Deletion of Edge (v1, v2): Similar to the edge insertion
in Section VI-D1, we also discuss the adjustment of edge dele-
tion according to the types of vectors fhyb(v1) and fhyb(v2).
• If both fhyb(v1) and fhyb(v2) are decodable vectors, we

can just remove v1 (v2, resp.) from neighbor set encoded



in fhyb(v2) (fhyb(v1), resp.) for vector reconstructions.
• If both fhyb(v1) and fhyb(v2) are non-decodable vectors,

without loss of generality, assume that v can not pass
the NE-test of fhyb(v2). If v2 can pass the NE-test of
fhyb(v1), then v2 is not encoded in fhyb(v1) before, and
hence, we need only reconstruct fhyb(v2) by conducting
HybEncode(v2, NG(v2)\{v1}). However, if v2 can not
pass the NE-test of fhyb(v1), then we need to reconstruct
both fhyb(v1) and fhyb(v2).

• If fhyb(v1) is decodable while fhyb(v2) is non-decodable
(We omit the discussions for the symmetrical case), 1©
for fhyb(v1), if v2 is encoded in fhyb(v1), then we can
reconstruct fhyb(v1) by removing v2; otherwise, we need
no update on fhyb(v1). 2© For fhyb(v2), if v1 passes the
NE-test of fhyb(v2), then v1 is not encoded in fhyb(v2)
before and we need no update on fhyb(v2); while, if v1
cannot pass the NE-test of fhyb(v2), we can reconstruct
fhyb(v2) by conducting HybEncode(v2, NG(v2)\{v1}).

Note that our adjustment of encoding function for edge dele-
tion provides no guarantee on detecting new NEpair (v1, v2).
A VEND solution may not be able to detect all NEpairs since
the corresponding performance is heavily influenced by the
graph distribution and the dimension parameter k.

3) Insertion/Deletion of vertex v: For insertion of vertex v,
we can just allocate a vector fhyb(v) for v where every bit
of fhyb(v) is initialized with value 0. An issue we need to
consider is that with the growth of vertex number, the bits
used for storing a vertex ID (i.e., I ′) may be not enough and
we need to reconstruct all vertex vectors. In fact, this case
will happen only when the data graph double in the vertex
number, and the amortized cost for each vertex insertion is
O(degr(G)), where degr(G) is the average degree of G. For
deletion of vertex v, we reconstruct all such vector fhyb(v′)
where v′ ∈ NG(v) and v can not pass the NE-test of fhyb(v′).
We also clear every bit in fhyb(v) with value 0. We omit the
discussion on the extra bits as the vertex volume shrinks since
it is a symmetrical case to that of vertex insertion.

4) Analysis: Time cost for vertex update is constant. While,
the time for insertion/deletion of edge (v1, v2) is equal to that
for computing Hyb(v1, V

′
1) and Hyb(v2, V

′
2), i.e., O(k2 · I ·

(|V ′1 | + |V ′2 |)), where V ′1 (V ′2 , resp.)is a subset of NG(v1)
(NG(v2), resp.). Therefore, the time cost for edge update is
linear to the neighbor number of the adjacent vertices.

VII. EXPERIMENTAL EVALUATION

All methods are implemented in C++ and run on a CentOS
machine of 128G memory and two Intel(R) Xeon(R) Silver-
4210R 2.40GHz CPUs. Codes are available on Github [36].

We use five real world datasets in our experiments. As-
Skitter [37] dataset is an Internet topology graph generated
from trace-routes. Wiki-topcats [38] is a graph of Wikipedia
hyperlinks. Uk-2005 [39] is a 2005 crawl of the .uk domain
performed by UbiCrawler [40]. Gsh-2015 is a large snapshot
of the web taken in 2015 by BUbiNG [41]. Orkut [42] dataset
is created from a free online social network where users
form friendships each other. Table I presents the statistical

information about these datasets. The default storage backend
for adjacent list is RocksDB [43] (on disk). Each graph is taken
as undirected and the adjacent list of each vertex contains both
in and out neighbors.

TABLE I: Summary of Datasets

Datasets |V | |E| d = 2|E|
|V |

|V k
α |/|V |

k = 6 k = 8 k = 10
As-Skitter [37] 1,696,415 11,095,298 13 54.08% 73.35% 80.75%

Wiki-topcats [38] 1,791,489 25,444,207 28 21.52% 34.89% 46.08%
Uk-2005 [39] 39,454,463 783,027,125 40 29.25% 34.98% 40.17%
Gsh-2015 [39] 988,490,691 25,690,705,118 52 22.29% 33.09% 37.98%

Orkut [42] 3,072,441 117,185,083 76 7.4% 9.93% 12.56%

A. Comparative Setting

We evaluate our solutions against four Bloom filter (BF)
based methods. The first is standard BF (SBF) built over
a bitset of size |V | · k · I , where we hash each edge with
the corresponding two adjacent vertices as input. Note that
edge deletion requires reconstruction to guarantee consistency.
The second is Counting BF (CBF) [30] where each counter
consists of dlog(|E|)e bits. Apparently, edge insertion/deletion
over CBF can be done efficiently by increasing/decreasing
1 for the corresponding counters. The third one is Blocked
BF (BBF) [33] where bitset are partition into a series of
smaller standard BF (blocks) and when a deletion happens,
only the affected block need to be reconstructed. We set block
size of 512 according to [33]. The last one is the variant of
the BF that is only applied to encode vertices in the core
subgraph. Similar to the hybrid version, vertices not in K-
core are explicitly encoded. We denote this version as local
BF (LBF), which apparently can be efficiently update without
global reconstruction, and hence we only applied standard BF
there in view of its highest false positive rate. Apparently, bit-
hash version in Section V-B is essence a special case of LBF.
The optimal number of hash functions in BF can be computed
by (ln 2 ·m)/n where m is the average number of items to
be hashed and n is the fixed size of hash slot [29]. We also
include the range version (Section V-A) for comparison, which
can be maintained in a similar way to that of hybrid.

We first evaluate these VEND solutions from three aspects:
VEND score, edge queries acceleration and the maintenance
efficiency (Sections VII-F and VII-D). For each dataset, we
set three different dimension numbers k: 6, 8, 10. We then
present case studies of VEND in Section VII-F.

B. VEND Score

We evaluate the VEND score of each version over given
datasets. Note that we did not enumerate all vertex pairs
in V× V to count the precise number of NEpairs, which
is more than a thousand billions. In fact, we continuously
and randomly generating vertex pairs and compute the latest
proportion of detected NEpairs. We terminate this process
when the monitored proportion is converged. We find that,
for each dataset, the generated vertex pairs are more than
one billion. We also create another set of edge queries where
the corresponding two vertices are close to each other in
light of the locality of many edge query related computation,
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Fig. 4: VEND Score over Different Datasets on Randomly Generated Vertex Pairs
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Fig. 5: VEND Score over Different Datasets on Vertex Pairs of Common Neighbor

such as clustering coefficient (triangle counting) and subgraph
matching. We generate this edge query set by sampling pairs
of vertices having at least one common neighbor. The VEND
scores over these two query sets are presented in Figures 4
and 5, respectively. We can see that our method and SBF
score almost equally highest. Apparently, CBF can hardly be
used as a VEND solution since the corresponding score is so
much lower than that of others. Score of CBF in Ak-Skitter
dataset is much higher than those in other datasets since the
average degree of Ak-Skitter dataset (i.e., 13) is close to the
slot size (i.e.,k) of CBF. The advantages of our method over
range and hash based ones are even more obvious on vertex
pairs of common neighbors than that on randomly generated
ones, which strengthens the applicability of our method in real
world scenarios.

C. Edge Query Acceleration

For edge queries acceleration, we generate two query sets
where the first contains one million randomly generated vertex
pairs (denoted as RandPair) while the second are built by
sampling one million vertex pairs over those of common
neighbor (denoted as CommPair). We report the total time
for answering these edge queries in Figure 6. We can see from
that all VEND solutions exhibits considerable acceleration on
edge queries except CBF. Our method still perform similarly
to SBF and outperform the rest. An interesting observation is
that our method performs better than SBF on CommPair ,
but the opposite on RandPair, which may be because we
focus on local neighborhood when building encodings while
SBF just hashes edges over a global slot. In view of the
locality of edge queries for many graph computation (such
as triangle counting and subgraph matching), this observation
further confirms advantages of our method over SBF.

D. Maintenance Evaluation

We compare our work against comparative ones on main-
tenance efficiency. We sample 100, 000 existing edges for

conducting edge deletions and randomly generate another
100, 000 new edges for edge insertion. Note that we do not
include insertion/deletion of vertices in our evaluation since
they are trivial compared to those of edges. Edge insertions
and deletions are evaluated independently and we report
throughput for addressing these updates in each group. We
only consider the time cost for updating vectors and we omit
the time for committing updates in storage, which varies a lot
on different graph databases.

We can see from Figure 7 that although comparative works
are more efficient than our method on insertion, we can still
address nearly tens of thousands edge insertions per second.
An important observation is that performances of SBF and
BBF are so terrible that they can hardly be applied in real-
world scenarios. In general, our method is apparently the best
with high VEND score and efficient maintenance.

TABLE II: Index Construction and Memory Efficiency

Datasets Graph Space
|G|

Index Space |f | (1− |f |/|G|) Construction Time (k=8)
k = 6 k = 8 k = 10 Thread = 1 Thread = 10

As-Skitter 169M 38M (77%) 51M(69%) 64M(61%) 33 s 8 s
Wiki-topcats 388M 41M(89%) 54M(86%) 68M(82%) 109 s 16 s

Uk-2005 11.66G 903M(92%) 1203M(89%) 1505M(87%) 64 min 7.65 min
Gsh-2005 382.82G 520M(94%) 694M(92%) 867M(90%) 23.57 h 3.12 h

Orkut 1.74G 70M(96%) 93M(95%) 117M(93%) 9.7 min 1.07 min

E. Index Construction and Space Usage

We report the space cost and construction time of the
proposed hybrid VEND in Table II. Percentage numbers in
red present the corresponding proportion of space saved by
VEND. We can see that VEND could save a large proportion
of memory usage. We evaluate construction in multi-thread
way since encoding of vertices is highly parallelizable. We
can see that the construction computation is of good speedup
when implemented in multi-thread. For example, construction
over Gsh-2005 dataset cost almost 24 hours in single thread
while the time cost with 10 threads is a little over 3 hours.
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Fig. 6: Total Time over Different Edge Query Sets (k = 8)
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Fig. 7: Throughput for Addressing Edge Updates (k = 8)
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F. Case Study

We conduct case studies over acceleration of hybrid VEND
on SOTA external triangle counting and acceleration over
SOTA graph database Neo4j [1]. Note that we do not report
the result on Gsh-2015 (of more than 25 billion edges) here
since it does not finish on triangle counting in 100 hours and
the estimated time is more than one month. We fix k = 8.

We implement Trigon [14] and the external-memory version
fo edge iterator based solution (denoted as EdgeIter) for
evaluation. We set the memory available to Trigon exactly as
that of VEND. We can see from Figure 8 that our method can
accelerate Trigon by 40%∼50% and EdgeIter by 10%∼15%.
In fact, Trigon is the SOTA external triangle counting method
that outperforms EdgeIter, and hence the acceleration of
VEND is of great significance.

We also evaluate the VEND acceleration for edge query
and triangle counting of SOTA graph database Neo4j [1]
(Community Edition 3.4.5 with C++ driver), which is the well-
known and widely-used graph database all over the world.
Neo4j always ranks first in DB-Engines Ranking of graph
database [44]. Without the ability to access the underlying
storage of Neo4j, only edge iterator based triangle counting is

implemented and we build index for improving the efficiency
of adjacent list retrieval. Even with index, it takes much more
time to retrieve adjacent list in well functional Neo4j than
that in lightweight Key-Value store. Hence, we only report the
results over three smaller datasets, namely, As-Skitter, Wiki-
topcats and Orkut. We can see from Figure 9 that VEND
improves the overall edge query performance of Neo4j by
more than 71.9%, and 10%∼15% for triangle counting.
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Fig. 9: VEND Acceleration over Neo4j (k = 8)

VIII. CONCLUSIONS

Edge query is one of the fundamental operations in graph
databases. We first proposes to study vertex encoding for edge
nonexistence determination (VEND) for accelerating edge
queries by efficiently filtering no-result ones (vertex pairs con-
nected by no edges). We formally define VEND as designing
vertex encoding f and NEpair determination function (NDF)
F . We propose VEND score to evaluate the performance of
VEND. We first design an efficient optimal partial VEND
solution over a subset of vertices such that no-result edge
queries related to these vertices can be precisely detected.
We also illustrate range-based and hash-based extensions over
the optimal partial version, after which we propose a final
hybrid VEND solution incorporating range and hash ideas.
Furthermore, we propose efficient maintenance algorithm over
the hybrid VEND solution. Extensive experiments show that
our solution performs well on real-world datasets and is able to
detect most no-result edge queries. Since there is no previous
work on VEND, our work is highly innovative and efficient.
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Magalhães, “The deletable bloom filter: a new member of the bloom
family,” IEEE Commun. Lett., vol. 14, no. 6, pp. 557–559, 2010.
[Online]. Available: https://doi.org/10.1109/LCOMM.2010.06.100344

[32] H. Lim, J. Lee, H. Y. Byun, and C. Yim, “Ternary
bloom filter replacing counting bloom filter,” IEEE Commun.
Lett., vol. 21, no. 1, pp. 278–281, 2017. [Online]. Available:
https://doi.org/10.1109/LCOMM.2016.2624286

[33] F. Putze, P. Sanders, and J. Singler, “Cache-, hash-, and space-efficient
bloom filters,” ACM J. Exp. Algorithmics, vol. 14, 2009. [Online].
Available: https://doi.org/10.1145/1498698.1594230

[34] S. B. Seidman, “Network structure and minimum degree,” Social net-
works, vol. 5, no. 3, pp. 269–287, 1983.

[35] J. Wang, C. Lin, Y. Papakonstantinou, and S. Swanson, “An experi-
mental study of bitmap compression vs. inverted list compression,” in
Proceedings of the 2017 ACM International Conference on Management
of Data, 2017, pp. 993–1008.

[36] “Codes,” https://github.com/hnuGraph/VEND, 2022.
[37] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graphs over time:

densification laws, shrinking diameters and possible explanations,” in
Proceedings of the eleventh ACM SIGKDD international conference on
Knowledge discovery in data mining, 2005, pp. 177–187.

[38] H. Yin, A. R. Benson, J. Leskovec, and D. F. Gleich, “Local higher-
order graph clustering,” in Proceedings of the 23rd ACM SIGKDD
international conference on knowledge discovery and data mining, 2017,
pp. 555–564.

[39] P. Boldi, B. Codenotti, M. Santini, and S. Vigna, “uk-
2005: A crawl of the .uk domain performed by ubicrawler,”
https://law.di.unimi.it/webdata/uk-2005/, 2005.

[40] P. Boldi, B. Codenotti, M. Santini, and S. Vigna, “Ubicrawler: a
scalable fully distributed web crawler,” pp. 711–726, 2004. [Online].
Available: https://doi.org/10.1002/spe.587

[41] P. Boldi, A. Marino, M. Santini, and S. Vigna, “Bubing: Massive
crawling for the masses,” ACM Trans. Web, vol. 12, no. 2, pp.
12:1–12:26, 2018. [Online]. Available: https://doi.org/10.1145/3160017

[42] J. Yang and J. Leskovec, “Defining and evaluating network communities
based on ground-truth,” Knowledge and Information Systems, vol. 42,
no. 1, pp. 181–213, 2015.

[43] S. Dong, A. Kryczka, Y. Jin, and M. Stumm, “Rocksdb: Evolution of
development priorities in a key-value store serving large-scale applica-
tions,” ACM Transactions on Storage (TOS), vol. 17, no. 4, pp. 1–32,
2021.

[44] “Db-engines,” https://db-engines.com/en/ranking/graph+dbms, 2022,
[Online; accessed 15-January-2022].


