
IFCA: Index-Free Community-Aware Reachability
Processing Over Large Dynamic Graphs

Yue Pang
Peking University
Beijing, China

michelle.py@pku.edu.cn

Lei Zou
Peking University
Beijing, China

zoulei@pku.edu.cn

Yu Liu
Peking University
Beijing, China

dokiliu@pku.edu.cn

Abstract—Reachability is a fundamental graph operator. State-
of-the-art index-based reachability processing frameworks can
efficiently handle static graphs, but the recent advent of dynamic
graph data poses new challenges. To address these challenges,
we propose an index-free, community-aware (IFCA) reacha-
bility processing framework inspired by efficient Personalized
PageRank approximation algorithms, which identifies community
structures on-the-fly to accelerate query processing. On top of
it, we devise a community contraction technique to bridge the
gap between vertices in distinct communities, and a cost-based
strategy selection procedure to efficiently handle the resulting
reduced graph. We conduct experiments with realistic query
workloads over large-scale real dynamic graphs, showing our
approach’s superior efficiency compared with index-based and
index-free state-of-the-art methods.

Index Terms—Reachability, Index-free, Community, Dynamic
graphs, Large graphs

I. INTRODUCTION

The reachability query, which checks whether a path exists
from a source vertex to a destination vertex on a directed
graph, is a fundamental graph query operator [1]. It is integral
to various applications, including but not limited to social
networks, semantic web, and biological networks, and has thus
been extensively studied for years.

Existing approaches. The majority of existing approaches pre-
compute offline indexes to speed up online query processing.
We call them index-based approaches. On static graphs, state-
of-the-art index-based approaches can answer a query within
a microsecond on graphs with millions of vertices and edges.
Recently, an index-free framework [2] has been proposed,
which answers reachability queries approximately on-the-fly
without any index. Sec. II gives a more comprehensive survey.

Challenges. The recent advent of dynamic graph data poses
new challenges to efficient reachability processing. Graphs
such as e-commerce activity graphs, social networks, and
web graphs are naturally highly dynamic. For example, up
to 20,000 edges are updated per second at the sales peak in
the Alibaba e-commerce graph [3]. On these graphs, efficient
reachability processing is of critical importance. For example,
reachability queries can help detect fraudulent activities in e-
commerce graphs [3] and conduct access control on social
networks [4]. These highly dynamic scenarios challenge reach-
ability frameworks to handle frequent updates while offering
near real-time query performance.

Under such circumstances, the existing index-based ap-
proaches are rendered increasingly ineffectual. For static in-
dexes, significant overhead occurs when reconstructing them
as the graph evolves; for the indexes that support dynamic
updates, the maintenance cost is still high when updates
are frequent. Index-free approaches are advantageous in such
scenarios since they are free of index reconstruction and main-
tenance costs. However, the existing index-free framework [2]
cannot meet the established demand for result accuracy in
some applications, such as fraud detection, where both false
positives and false negatives are intolerable.

The most straightforward index-free approach to ensure
accuracy is bidirectional breadth-first search (BiBFS). How-
ever, it is structure-agnostic in that it always constructs two
spanning trees rooted at the source and destination vertices
respectively, until they intersect on positive queries or cannot
extend further on negative queries. Contrarily, many classes of
real-world graphs are rich in community structures [5], which
are dense subgraphs sparsely connected with their peripheries.
Positive queries with source and destination vertices in the
same community are under-optimized by BiBFS: a query
vertex pair in a community with n′ vertices and m′ edges
is processed by BiBFS in O(n′ + m′) time, where the edge
access time is the bottleneck since m′ ≫ n′ in the community.
We analyze this bottleneck in detail in Section IV.

Our approach. We propose an index-free, community-aware
(IFCA) approach that leverages the community structures in
real-world graphs to accelerate reachability queries on-the-
fly. Due to the correlation between Personalized PageRank
(PPR) and community structures [6], we adapt efficient PPR
approximation algorithms to guide the search, which we call
the probability-guided search strategy. For positive query
vertex pairs within a community, which are typically reachable
via multiple paths, such a strategy is more efficient since it can
find a path without visiting the majority of edges. For positive
query vertex pairs that are not in the same community, we
propose a graph reduction technique, community contraction,
that puts them into the same community in the reduced
graph by periodically contracting the identified communities
into super-vertices. Note that although stand-alone probability-
guided search is approximate, IFCA is an exact algorithm,
since community contraction guarantees that all reachable

vertices are visited before termination.
After community contraction, the reduced graph is not

only smaller but also has fewer community structures, which
becomes more favorable for BiBFS. Therefore, we design a
cost model that evaluates the cost of either continuing the
guided search or switching to BiBFS on the reduced graph. If
the estimated cost of BiBFS is lower than the guided search,
we switch to BiBFS. We call such a procedure cost-based
strategy selection. By appropriately setting the parameters, our
approach has lower asymptotic complexity than BiBFS on both
positive and negative queries on scale-free graphs.

Although IFCA primarily optimizes reachability querying
on dynamic graphs with communities, it can also efficiently
handle graphs that lack discernible community structure. In-
terestingly, we find that BiBFS is actually more efficient
than state-of-the-art reachability algorithms on dynamic graphs
when considering both query and update time, while IFCA
performs at least comparably with BiBFS on graphs without
discernible communities since the cost-based strategy selec-
tion can effectively switch to BiBFS when it fails to detect
communities (Sec. VI-C).

Contributions. Our contributions are summarized as follows:
• We are the first to propose an index-free reachability pro-

cessing framework based on PPR approximation that identi-
fies community structures on-the-fly to accelerate querying.

• We devise a community contraction technique to bridge the
gap between vertices in distinct communities and a cost-
based strategy selection procedure to handle the reduced
graph with less discernible community structures adaptively.

• We theoretically guarantee that our approach has lower
asymptotic complexity than BiBFS on scale-free graphs
given appropriate parameters.

• We empirically validate our approach’s effectiveness on
large-scale, real dynamic graphs with realistic workloads.

II. RELATED WORK

Existing work in reachability can be divided into two
categories based on whether they rely on indexes, which
are synopses of partial or complete reachability information
precomputed from the graph.

Index-based approaches. There is a plethora of research
in index-based reachability processing on static graphs. Fol-
lowing the taxonomy first proposed in [7], the index-based
approaches can be further categorized into Label-Only and
Label+G. Label-Only approaches, including [8–20], answer
all queries accurately by only accessing the index; while
Label+G approaches, including [7, 21–30], may also traverse
the graph. Though these approaches are efficient in answering
reachability queries on static graphs, they are unsuited for
handling dynamic graphs, since they can only reconstruct their
indexes from scratch in the case of graph updates, which is
expensive when updates are frequent.

Recently, some reachability indexes have been developed
to support incremental maintenance [7, 31–36]. The majority
of them construct their indexes on the directed acyclic graph

(DAG) resulting from condensing the strongly connected com-
ponents (SCCs) of the original graph. DAGGER [35] proposes
index maintenance procedures based on DAG maintenance
when some SCCs merge or split due to edge insertions or dele-
tions. TOL [34] and IP [7] achieve significant improvement
in query efficiency compared with DAGGER, but their index
maintenance algorithms are designed on the premise that SCCs
never merge or split. DBL [36], on the other hand, constructs
two lightweight, complementary indexes on the original graph
without maintaining the DAG. However, it has the inherent
drawback of not being able to handle edge deletions.

Index-free approaches. Index-free reachability processing has
been amply studied theoretically [37–40]. A recent index-
free framework, ARROW [2], aims for practical performance
on large-scale graphs. However, since it is based on random
walks, it is by nature an approximate algorithm and thus
inapplicable in real scenarios that demand accuracy. It also
requires a large number of random walks to obtain high
precision, which can be inefficient on large-scale real graphs.

Although community structures are prevalent in many real-
world graphs, such as social, biological, and communication
networks [5], none of the existing reachability frameworks
optimizes query processing over community structures to our
knowledge, regardless of whether they are index-based.

III. PRELIMINARY

Def. 1 formally defines the reachability problem over a
directed graph. Note that our method belongs to the index-
free category and can naturally handle dynamic graphs without
maintaining any index. The notations frequently used in this
paper are summed up in Tab. I.
Definition 1 (Reachability). Given a directed graph G =
(V,E) and a pair of vertices s, t ∈ V , the reachability query
answers if there exists a directed path from s to t in G; if so,
we say t is reachable from s, denoted as s → t.

TABLE I: Frequently used notations.

Notation Description

G = (V,E) a directed graph
n the total number of vertices
m the total number of edges

Nout(v), Nin(v) the set of vertex v’s out- or in-neighbors
dout(v), din(v) the out- or in-degree of vertex v

s → t t is reachable from s
ppru the PPR vector with respect to source vertex u

ppru(v) the PPR value of vertex v with respect to u
α the teleportation constant
ϵ the residue threshold
χu the vector with all 0’s except the u-th element,

which is 1
ru the residue vector from u
π◦
u the reserve vector from u

A. Personalized PageRank and Baseline

To make the paper self-contained, we briefly introduce the
concept of Personalized PageRank (PPR) and PPR computa-
tion techniques.

PPR. First defined in [41], PPR has since been widely adopted
as a measure of localized interest and relevance in graphs [42].
The PPR vector pprs concerning a given source vertex s is
defined as the solution to the following equation:

pprs = α · χs + (1− α) · pprs ·M,

where α is a constant in (0, 1) called the teleportation constant;
χs is the row vector with length n of all 0’s except for the s-th
element, which is 1, and n is the number of vertices in G; and
M is the n×n matrix given by M = D−1

outA, where Dout is the
diagonal matrix of out-degrees (Dout[i][j] = dout(i) if i = j
and 0 otherwise), and A is the adjacency matrix (A[i][j] = 1
if the edge ⟨i, j⟩ ∈ E and 0 otherwise). The t-th element in
s’s PPR vector, pprs(t), is vertex t’s PPR value concerning
s. It can alternatively be defined by random walks:

pprs(t) = Pr[a random walk starting from s of
length X ∼ geometric(α) stops at t],

where the walk length X follows the geometric distribution
with regard to α, i.e., Pr[X = k] = (1− α)k · α.

There are mainly three categories of PPR computation
techniques. The first category is based on Monte Carlo
simulation [43], i.e., starting a certain number of random
walks from the source vertex and taking the frequency of
these walks terminating at a vertex as its approximate PPR
value. The second category is generally called push-based
techniques [6, 44], in which each vertex is associated with
a reserve value, which will eventually be its approximate
PPR value, and a residue value, which is a byproduct of the
algorithm. All the vertices’ residue and reserve are initialized
as 0 except for the source’s residue, which is initialized as
1. In each iteration, if a vertex has large enough residue,
part of its residue is pushed to its neighbors, while the rest
accumulates into the vertex’s reserve. The residue and reserve
values are propagated iteratively until no vertex has large
enough residue. The third category is power iteration, which
gradually refines the estimate of the PPR vector pprs by
iterative matrix operations, and provably has an equivalence
connection with a push-based method, forward push [45].

As mentioned in Sec. I, our reachability processing method
is based on the following interesting property, which directly
follows from the alternative definition above:
Property 1. Given a directed graph G = (V,E) and a pair
of vertices s, t ∈ V , s → t ⇔ pprs(t) > 0, where pprs(t)
denotes the Personalized PageRank (PPR) value of vertex t
with respect to s.

Thus a baseline solution to use PPR for reachability process-
ing is to employ state-of-the-art PPR algorithms for computing
pprs(t) and check whether it is non-zero. We adopt push-
based techniques because they can identify high-PPR vertices
more efficiently than Monte Carlo simulation [6, 46].
Baseline. According to Property 1, the push-based framework
can be adapted as a baseline solution for reachability process-
ing, as shown in Alg. 1. Line 1 initializes the residue vector.

Each iteration (Lines 2-8) arbitrarily selects a vertex whose
residue is above the threshold and pushes its residue to its
neighbors. There are two changes in the baseline compared
with the original push-based technique. Firstly, the baseline
immediately returns true as soon as it reaches the destination
vertex (Lines 5-6). Secondly, since we are now concerned only
with whether a vertex’s PPR is greater than zero instead of
its exact value, the reserve maintenance can be eliminated.
Since push-based techniques always generate underestimates
of PPR, this baseline is an approximate algorithm that may
produce false negatives.

The classic push-based techniques, forward push [6] and
backward push [44], are both fit for Alg. 1 but differ in the
following respects:

• Neighbor weights: a vertex’s residue is distributed to
its neighbors according to their weights, denoted as
fdist(u, ui) (Line 7). Forward push distributes a vertex’s
residue evenly to its out-neighbors, i.e., fdist(u, ui) =
dout(u); while backward push distributes more of a
vertex’s residue to its out-neighbors with smaller in-
degrees, i.e., fdist(u, ui) = din(ui).1

• Threshold normalization: both forward and backward
push have a residue threshold ϵ (Lines 2-3). How-
ever, forward push has an additional normalization fac-
tor fnorm(u) = dout(u), while for backward push,
fnorm(u) = 1.

Algorithm 1: Baseline
Input: The source vertex s, the destination vertex t, the

teleportation constant α, the threshold ϵ
Output: Whether t is reachable from s

1 rs ← χs

2 while maxu∈V
rs(u)

fnorm(u)
≥ ϵ do

3 Choose any u ∈ V with rs(u)
fnorm(u)

≥ ϵ

4 forall ui ∈ Nout(u) do
5 if ui = t then
6 return true

7 rs(ui)← rs(ui) + (1− α) · rs(u)
fdist(u,ui)

8 rs(u)← 0

9 return false

IV. ANALYSIS OF BASELINE: STRENGTHS, WEAKNESSES
& OPPORTUNITIES

In the previous section, we show the applicability of the
baseline to answering reachability queries. However, it has
great room for improvement in terms of query efficiency. We
illustrate the improvement opportunities by the example below.

Motivating example. We use Highschool, a social network
obtained from KONECT [47], as an example. Highschool is
a real graph with 70 vertices and 366 edges, representing the
friendships between high school students. We show the frontier

1We essentially conduct a backward push on the transpose graph (i.e., the
graph with all the edge directions reversed).

(a) Baseline, 𝜖 = 3e-2, 18 edge accesses (b) BFS, 18 edge accesses

source
intra-community
destination
inter-community
destination

(c) Baseline, 𝜖 = 1e-5, 6023 edge accesses (d) BFS, 344 edge accesses

inter-com
m

unity
intra-com

m
unity

Fig. 1: The frontier expansion of BFS and Alg. 1 at different
ϵ’s in relation to the number of edge accesses.

evolution of the baseline with two different ϵ values and the
most straightforward index-free approach, BFS, in Fig. 1. The
visited vertices and edges are marked in red, and the unvisited
in grey. The star-shaped vertex is the source, and the triangle
and square vertices are the destinations of two distinct queries.
The number of edge accesses is the main factor influencing
the query processing time of these methods. The blue box at
the center of each graph, zoomed in on the right, encloses the
set of vertices with the largest PPR concerning the source. The
set of vertices with sufficiently large PPR concerning a source
vertex can be defined as the community around it, since such
a set provably has low conductance [6], which is the classic
discerning metric of communities.

Intra-community reachable pairs. The baseline performs
significantly better than BFS on intra-community reachable
pairs, which are pairs of source and destination vertices in the
same community, typically connected via many paths. The
star-shaped and square vertices in Fig. 1 form such a pair.
In this case, the baseline reaches the destination with fewer
edge accesses (18) than BFS (344) with both ϵ values, because
it quickly finds one of the many paths from the star-shaped
vertex to the square vertex without traversing the majority of
edges. On the other hand, BFS is unaware of the community
structure. At 18 edge accesses, BFS leaves four vertices
in the community unvisited, including the destination, only
returning to it much later. Such a performance gap can be more
remarkable on large real graphs with denser communities.

Inter-community reachable pairs. The baseline performs
worse than BFS on inter-community reachable pairs, which
are pairs of source and destination vertices in different com-
munities. The star-shaped and triangle vertices in Fig. 1 form
such a pair. In this case, the baseline with a larger ϵ quickly
runs out of vertices that satisfy the condition in Line 2
(Alg. 1) and terminates without advancing its frontier beyond
the community, resulting in a false negative. The baseline
with a smaller ϵ, on the other hand, can eventually visit the
destination vertex, but with much more edge accesses (6023)
than BFS (344). This is because a smaller ϵ allows residue
to continuously propagate along cycles in the graph, causing
already visited vertices and edges to be accessed repeatedly.
Such a performance gap can be more remarkable on large real

graphs with more communities.
Other limitations. In addition to its inefficiency in handling
inter-community reachable pairs, the baseline also has the
following limitations:

• No complexity bound: there is no guarantee that the
baseline’s performance will not be worse than BFS
asymptotically.

• Approximate results: the baseline may produce false
negatives.

• Handling graphs without discernible communities: the
baseline assumes that the graph has community struc-
tures, which is not true of all real graphs.

Solution. We devise two techniques on top of the baseline in
order to address these problems.

• Community contraction: when the set of visited vertices
form a community, we contract them into a super-vertex
and reinitialize the search on the reduced graph. This
technique accelerates the processing of inter-community
reachable pairs by reducing them to intra-community
pairs, and also solves the approximate results problem.

• Cost-based strategy selection: we design a cost model
to assess the cost of continuing the probability-guided
search and switching to BiBFS. If BiBFS is cheaper
than the probability-guided search, we switch to it. This
technique can accelerate the search on the sparsified
reduced graph resulting from community contraction, and
also helps handle graphs without discernible communities
in general. Given appropriate parameters, this technique
also helps provide a bound on the time complexity for a
class of scale-free graphs (Sec. V-D).

V. OUR SOLUTION: IFCA
A. Algorithm Overview

To address the challenges in the different scenarios men-
tioned in Sec. IV, we design IFCA with the following com-
ponents:
• Probability-guided search (Sec. V-B, Alg. 3), an optimized

version of the baseline (Alg. 1) that efficiently handles intra-
community reachable pairs with relatively large ϵ;

• Community contraction (Sec. V-C, Alg. 4), which efficiently
handles inter-community reachable pairs by contracting the
community discovered by probability-guided search into
a super-vertex and reinitializing the search on the re-
duced graph, thus reducing inter-community pairs to intra-
community pairs;

• Cost-based strategy selection (Sec. V-D, Alg. 6), which
efficiently handles the case where the original graph or the
reduced graph resulting from community contraction has
no discernible community structures by estimating the cost
of probability-guided search and BiBFS, and switching to
BiBFS (Alg. 5) when it is cheaper.
Alg. 2 is the main algorithm of IFCA. Across all algorithms,

f and r denote the forward and reverse directions of search,
which follow the original and reversed edge directions, respec-
tively. Lines 1-5 initialize the data structures and statistics. The

work is mainly done inside a while loop, which gradually
shrinks the current residue threshold ϵcur (Line 15). We
find that the shrinking step does not impact IFCA’s query
efficiency substantially via the experiment in Sec. VI-A. In
each iteration, probability-guided search (Alg. 3) is invoked
in the forward and reverse directions (Lines 9, 12), followed
by Alg. 4 (Sec. V-C), which detects if the visited vertices
form a community and contracts them into a super-vertex if
so (Lines 11, 14). The loop terminates when the cost-based
strategy selection procedure (Alg. 6) estimates BiBFS to be
cheaper (Lines 7-8) and switches to BiBFS (Alg. 5) from the
current frontiers (Lines 18-20).

IFCA terminates when the probability guided search finds
a path from the source to the destination (Lines 10, 13), the
super-vertices have 0-degree (Lines 16-17, to be explained
in Sec. V-C), or during BiBFS (Line 20). IFCA is an exact
algorithm that can handle both positive and negative queries
with 100% precision, and has lower asymptotic complexity on
positive queries than BiBFS for a class of scale-free graphs
given appropriate parameters. (Please refer to Sec. V-E for
the correctness and complexity proofs.) It is a natural fit for
handling dynamic graphs, since no index is precomputed and
maintained. When the graph is updated, only the adjacency
lists are modified accordingly, incurring no extra overhead nor
affecting the algorithmic procedure.

Algorithm 2: IFCA
Input: The source vertex s, the destination vertex t
Output: Whether t is reachable from s

1 rs ← χs, rt ← χt

2 viss ← χs, vist ← χt

3 exps ← 0, expt ← 0
4 intEdgess ← 0, intEdgest ← 0
5 ϵcur ← ϵinit

6 while true do
/* Cost-based strategy selection (Alg. 6) */

7 if CostBasedStrategySelection() then
8 break

/* Forward probability-guided search (Alg. 3) */

9 if ProbabilityGuidedSearch(ϵcur, f) then
10 return true

/* Try forward community contraction (Alg. 4) */

11 CommunityContraction(ϵcur , f)
/* Reverse probability-guided search */

12 if ProbabilityGuidedSearch(ϵcur, r) then
13 return true

/* Try reverse community contraction */

14 CommunityContraction(ϵcur , r)
15 ϵcur ← ϵcur/step
16 if dout(vfsuper) = 0 and din(v

r
super) = 0 then

17 return false

/* BiBFS takes over (Alg. 5) */

18 frontierf ← {vi|residuef (vi) > 0}
19 frontierr ← {vi|residuer(vi) > 0}
20 return BiBFS(frontierf , frontierr)

B. Bidirectional Probability-Guided Search

Bidirectional search has been proven a simple yet effec-
tive strategy in reachability processing [48] since it prevents
the frontier from expanding to enormous sizes by reducing
the search depth in both direction approximately by half.
We hence propose a bidirectional probability-guided search
scheme based on the baseline (Alg. 1).

The pseudocode of the probability-guided search from the
forward direction is shown in Alg. 3. For the reverse direction,
we simply reverse all the edge directions. Since we adopt a
bidirectional search scheme, we can return true as soon as
a vertex has been visited from both directions (Line 9). In
addition, exps (or expt) keeps track of whether a vertex has
been explored (i.e., whether its out-neighbors has been visited
from it). When a vertex is explored for the first time, its out-
degree is accumulated into intEdgess (or intEdgest), which
is the estimate of internal edges in the current community, to
be used in the cost-based strategy selection (Sec. V-D).

Algorithm 3: Probability-Guided Search
Input: The current residue threshold ϵcur , the direction for

performing push (assume f w.l.o.g.)
Output: Whether a path can be found from the source

vertex s to the destination vertex t at ϵcur
1 while maxu∈V

rs(u)
fnorm(u)

≥ ϵcur do
2 Choose any u ∈ V with rs(u)

fnorm(u)
≥ ϵcur

3 if !exps(u) then
4 exps(u)← true
5 intEdgess ← intEdgess + dout(u)

6 forall ui ∈ Nout(u) do
7 if !viss(ui) then
8 if vist(ui) then
9 return true

10 viss(ui)← true

11 rs(ui)← rs(ui) + (1− α) · rs(u)
fdist(u,ui)

12 rs(u)← 0

13 return false

C. Community Contraction

As analyzed in Section IV, when processing inter-
community reachable pairs, the probability-guided search may
cause already visited vertices and edges to be accessed repeat-
edly within communities. To reduce repeated accesses, after
each iteration of the search (Alg. 3), we contract communities
into super-vertices.

The criterion for a local community is that it should be
sparsely connected with its peripheries but densely connected
within; that is, it should have far fewer external edges (i.e.,
edges between vertices inside the community and those outside
it) than internal edges (i.e., edges between vertices inside the
community), which is reflected by conductance [49], a metric
widely used in community discovery. Conductance is defined
over a set of vertices S as follows:

Φ(S) =
|θ(S)|

min(vol(S), 2m− vol(S))

where θ(S) = {⟨u, v⟩|u ∈ S, v /∈ S} is the set of external
edges, m is the number of edges in G, and vol(S) =∑

v∈S(dout(v) + din(v)) is an approximate number of inter-
nal edges. (2m − vol(S)) keeps the denominator below m,
preventing the false classification of overly large vertex sets
as communities. The lower the conductance, the more densely
connected the community is.

It is best to perform contraction as soon as the set of visited
vertices has sufficiently low conductance. However, accurately
collating |θ(S)| requires at least O(m) and is too expensive
to conduct in each iteration. Instead, we exploit the relation
between PPR and conductance; that is, a community around
the source vertex is formed from the vertices with top-ranking
PPR [6]. Therefore, we tune a parameter ϵpre (Sec. VI-A) and
perform contraction as soon as the current residue threshold
ϵcur reaches below it, since this indicates that the PPR of all
the visited vertices are above O(ϵpre), thus forming a superset
of the top-ranking PPR vertices.

The contraction procedure is presented in Alg. 4, assuming
the forward direction without loss of generality. When con-
traction is performed for the first time in the current direction,
a super-vertex (vfsuper) is added to the graph (Lines 3-4).
The frontier vertices’ neighbors are added to the adjacency
list of the super-vertex with duplicates removed (Lines 6-9).
All the visited vertices are then deleted (Line 10), resulting
in a reduced graph. In order to reduce overhead, we perform
virtual updates on all the affected vertices’ adjacency lists
after contraction: instead of removing the contracted vertices
from the adjacency lists, they are mapped to the super-vertex.
The residue of the super-vertex is reset to 1 since it is now
the new source vertex in the reduced graph (Line 11); the
threshold ϵ is also restored to the initial value. The super-vertex
is visited but not explored since its neighbors have not been
visited yet (Lines 12-13). The estimated number of internal
edges is reinitialized as zero (Line 14), while that of external
edges does not change since it is still equal to the number of
the super-vertex’s out-neighbors.

Note that if we keep performing contraction, a super-vertex
will eventually be formed in the forward direction with zero
out-degree (or in the reverse direction with zero in-degree),
which is representative of all the vertices that are reachable
from the source (or reachable to the destination). Therefore,
community contraction also helps achieve full precision.

D. Cost-Based Strategy Selection

Each iteration of community contraction (Sec. V-C) results
in a reduced graph that is smaller and has fewer communities
than the original. It is thus more and more favorable for
BiBFS to take over the remaining search process. We thus
design a cost model to help decide when to switch from
bidirectional probability-guided search to BiBFS by assessing
and comparing the costs of these two strategies.

1) BiBFS: Alg. 5 shows the BiBFS algorithm we adopt,
initiated from vertex frontiers instead of source and destination
vertices. The forward and reverse input frontiers contain ver-
tices with positive residue in the corresponding direction (Alg.

Algorithm 4: Community Contraction
Input: The current residue threshold ϵcur , the direction for

performing contraction (assume f w.l.o.g.)
Output: ress, viss, exps, and intEdgesf

1 if ϵcur ≥ ϵpre then
2 return

3 if vfsuper ̸∈ V then
4 V ← V + {vfsuper}
5 forall vi ∈ V s.t. viss(vi) and vi ̸= vfsuper do
6 if !exps(vi) then
7 forall ui ∈ Nout(vi) do
8 if ui ̸∈ Nout(v

f
super) then

9 Nout(v
f
super)← Nout(v

f
super) + {ui}

10 V ← V − {vi}
11 ress(v

f
super)← 1

12 viss(v
f
super)← true

13 exps(v
f
super)← false

14 intEdgesf ← 0
15 ϵcur ← ϵinit

2, Lines 18-19). Lines 3-12 take care of the forward direction,
and lines 13-22 the reverse direction. The vis vectors are
inherited from Alg. 3. Traversals from the two directions are
interleaved at the granularity of a layer; that is, the algorithm
switches to the other direction when all the neighbors of the
vertices on the current frontier have been visited.

Algorithm 5: BiBFS
Input: The forward frontier frontierf , the reverse frontier

frontierr
Output: Whether t is reachable from s

1 nextf ← ϕ, nextr ← ϕ
2 while frontierf ̸= ϕ ∨ frontierr ̸= ϕ do
3 while frontierf ̸= ϕ do
4 Choose any u ∈ frontierf
5 frontierf ← frontierf − {u}
6 forall ui ∈ Nout(u) do
7 if !viss(ui) then
8 if vist(ui) then
9 return true

10 viss(ui)← true
11 nextf ← nextf + {ui}

12 swap(frontierf , nextf)
13 while frontierr ̸= ϕ do
14 Choose any u ∈ frontierr
15 frontierr ← frontierr − {u}
16 forall ui ∈ Nin(u) do
17 if !vist(ui) then
18 if viss(ui) then
19 return true

20 vist(ui)← true
21 nextr ← nextr + {ui}

22 swap(frontierr, nextr)

23 return false

2) The cost model: The key insight behind our cost model
is that both the probability-guided search and BiBFS are
composed of similar basic operations: that of accessing and
executing some computation on one of the current vertex’s
neighbors. Therefore, when evaluating the costs of these
strategies, we need to take two features into account: the
number of operations to perform until termination (i.e., the
asymptotic complexity), and the time it takes to perform each
operation (i.e., the constant factor).

Alg. 6 shows the cost model and decision procedure. The
estimated cost of each strategy is its estimated number of
basic operations multiplied by its estimated execution time
(normalized by the ratio λ, to be introduced in Sec. V-D4) for
each operation (Lines 1-2). The algorithm is invoked from Alg.
2 at the start of of each iteration (Alg. 2, Line 7). The constant
coefficient 2 in Line 1 is due to the bidirectionality of the
probability-guided search. kf and kr are set according to the
analysis in Sec. V-D3. If the estimated cost of BiBFS is lower
than that of the probability-guided search, Alg. 6 will return
true, causing the loop in Alg. 2 to terminate and leading to
BiBFS.

Algorithm 6: Cost-Based Strategy Selection
Output: Whether to switch from probability-guided search

to BiBFS
1 costPush ←

λ[2(1
αϵpre

− 1
αϵcur

) +
(

nf

kf
+ nr

kr

)
(1
αϵpre

− 1
αϵinit

)]

2 costBiBFS ←
(|V ′

f |+m′
f − intEdgesf) + (|V ′

r |+m′
r − intEdgesr)

3 if costPush > costBiBFS then
4 return true

5 else
6 return false

3) The number of operations: We estimate the number of
operations required by the two strategies as follows.

1) Continuing the probability-guided search. We first estimate
the number of operations if we continue the probability-guided
search.
Lemma 1. Given a threshold ϵ and a teleportation constant
α, Alg. 3 conducts O(1

αϵ) basic operations until termination
using forward push, and conducts O(

davg

αϵ) basic operations
until termination using backward push, where davg = m/n is
the average degree.2

We can infer the number of basic operations of the
probability-guided search between two contraction invocations
from Lem. 1. The total number of basic operations before the
next contraction is O(1

αϵpre
) (O(

davg

αϵpre
) if we use backward

push; similar in the following), and O(1
αϵcur

) operations
have already been performed. Therefore, the number of basic
operations up to the next contraction is O(1

αϵpre
− 1

αϵcur
).

In addition, the cost of continuing the search on the reduced

2The proof is similar to those in [6] and [50]. We omit the details due to
limited space.

graph resulting from contraction should also be taken into
account. The number of basic operations between two adjacent
contractions is always O(1

αϵpre
− 1

αϵinit
) since ϵ is restored to

the initial value after contraction.
What remains to be estimated is how many times con-

traction will be performed in total, denoted as N . Let nf

and nr be the number of the remaining vertices; kf and
kr be the estimated number of vertices visited between two
invocations of contraction in the forward and reverse search,
respectively. The number of contractions can thus be estimated
by N =

nf

kf
+ nr

kr
. During the probability-guided search, nf

and nr can be obtained by subtracting the number of explored
vertices from n. kf and kr, however, cannot be known exactly
in advance. We can estimate them based on graph structure
characteristics. For example, we can obtain upper and lower
bounds on kf and kr by assuming that the graph is scale-
free3 and thus has a power-law PPR distribution [52]. Without
loss of generality, we only discuss how to estimate kf in the
following.

Upper bound. When PPR satisfies the power-law distribution,
the j-th largest PPR can be expressed as follows:

pprs(uj) = c · j−β (1)

where c is the power-law coefficient, and β is the exponent
that falls in the interval (0, 1). According to Line 7 in Alg.
1, all kf visited vertices have a residue that is at least
(1 − α)ϵpre at some point. Since an α portion of a vertex’s
residue is accumulated into its reserve when it pushes the
residue to its neighbors, the reserves of the visited vertices
are at least α(1 − α)ϵpre. As push-based algorithms always
underestimate PPR, the PPR of all visited vertices is also at
least α(1−α)ϵpre, including the vertex with the smallest PPR
among them, whose PPR is at most the kf -th largest. (Though
we no longer maintain the reserve, this relation still holds.)
Hence we have an upper bound on kf :

c · (kf)−β ≥ α(1− α)ϵpre ⇒ kf ≤
(

c

α(1− α)ϵpre

) 1
β

(2)

Lower bound. On the other hand, considering backward push,
a lower bound on kf is also obtainable. Backward push
guarantees that the reserve of each vertex v satisfies the
following property before contraction:

pprs(v)− π◦
s (v) ≤ ϵpre (3)

Therefore, all vertices with zero reserve have a PPR smaller
than or equal to ϵpre, so the kf vertices with PPR larger than
ϵpre are exactly those with non-zero reserve, composing a
subset of the kf visited vertices. Suppose k′f is the number of
vertices with PPR larger than ϵpre, we have kf ≥ k′f .

We also have the following property for the vertex with the
(k′f +1)-th largest PPR , which leads to a lower bound on kf :

3Scale-free graphs are prevalent in the real world. Many highly dynamic
graphs, such as social networks and web graphs, are scale-free [51].

c · (k′f + 1)−β ≤ ϵpre ⇒ kf ≥ k′f ≥ (
c

ϵpre
)

1
β − 1 (4)

The upper and lower bounds above contain the constants c
and β. β directly derives from the graph structure. Since PPR
is a probability distribution, we have

∑nf

j=1 c ·j−β = 1 ⇒ c =

1/(
∑nf

j=1 j
−β).

The number of contractions N can thus be estimated by
substituting kf and kr by any value between their upper
and lower bounds. The closer the chosen value is to the
upper bound, the more the cost model favors continuing the
probability-guided search, and vice versa. We approximate kf
and kr by their upper bounds in the experiments (Sec. VI).

Remark. Though the above analysis assumes that the graph
is scale-free initially and after each contraction, it is also
extendable to more generalized assumptions, such as power-
law-bounded degree distributions [53].

2) Switching to BiBFS. The number of operations in BiBFS
is analyzed as follows.
Lemma 2. Given a directed graph G = (V,E), Alg. 5 con-
ducts O(|V ′|+ |E′|) basic operations until termination, where
V ′ is the set of the vertices that are unvisited or on the input
frontier, and E′ = {⟨vi, vj⟩|vi ∈ V ′, vj ∈ V ′, ⟨vi, vj⟩ ∈ E}.

The proof is omitted due to its plainness. |V ′| is equal to n
minus the number of explored vertices, which can be precisely
collated. |E′| is difficult to collate precisely since scanning
all edges in each iteration is too expensive. Fortunately, we
have maintained an estimate of the number of internal edges
intEdges, which is approximated by the sum of the out-
degrees (in-degrees for the reverse direction) of the vertices
that are visited but not on the frontier. We can thus maintain a
counter initialized as m, and subtract intEdges from it each
time contraction is performed; we denote this counter’s value
as m′. At decision time, we further subtract m′ by the current
intEdges to estimate |E′|.

4) Execution time of the basic operations.: We observe
from the pseudocode of Algorithms 3 and 5 that a basic opera-
tion of probability-guided search needs more computation than
BiBFS (i.e., updating residue and maintaining intEdges and
extEdges). How this impacts their execution costs is difficult
to model theoretically. Instead, we perform each type of basic
operation under the same setting for the same number of times
respectively, calculate their average running time, and divide
the average running time of the probability-guided search by
that of BiBFS to obtain the ratio λ.

E. Correctness and Complexity

Theorem 1 (Correctness). Alg. 2 returns true if and only if
u → v.

Proof. (⇒) If Alg. 2 returns true during probability-guided
search (Alg. 3, Line 10), the currently probed vertex has been
visited from both directions. Since community contraction
only contracts the visited vertices and retains all their neigh-
bors as the super-vertex’s neighbors, it preserves reachability,

and thus u → v. If Alg. 2 returns true during traversal (Alg.
5, Lines 9 and 19), some vertex on the reverse frontier is
reachable from the forward frontier, so u → v.
(⇐) Prove by contraction. If u → v but Alg. 2 returns

false, then either one of the two super-vertices has zero out-
or in-degree (Alg. 2, Lines 16-17), or BiBFS fails to find a path
(Alg. 5, Line 23). Therefore, there must be a path from u to v
without any frontier vertex, meaning that an explored vertex
has an edge to an unvisited vertex, which is impossible.

Theorem 2. On graphs that are scale-free initially and after
each contraction, Alg. 2 (IFCA) answers a positive query in
time SubLinear(n+m) if ϵpre < c.

Proof. According to the analysis in Sec. V-D3, the number of
visited vertices between two contraction invocations is kf ≥
(c/ϵpre)

1/β−1 ≈ (c/ϵpre)
1/β , so without switching to BiBFS,

the probability-guided search with community contraction runs
in time O(n/kf · davg/ϵpre) = O(m · (c/ϵpre)1−1/β).4 When
ϵpre < c, we have O(m · (c/ϵpre)1−1/β) = SubLinear(m).
According to Lem. 2, BiBFS on the reduced graph runs in time
O(|V ′|+ |E′|), where |V ′| < n and |E′| < m. Therefore, the
overall time complexity is SubLinear(n+m).

Thm. 2 only applies to positive queries, since Eq. (1)
assumes the PPR values with respect to the source are non-
zero for each vertex. Note that it is impossible for any online
algorithm to answer a negative query in sublinear time in the
worst case, since it is unsafe to terminate with a negative
answer without visiting all the reachable vertices and edges.

VI. EXPERIMENTAL EVALUATION

Environment. All of our experiments are conducted on a
machine with an Intel Xeon 2.1GHz CPU and 128GB RAM,
running CentOS Linux 7. Our algorithms are implemented
in C++5, and we adopt the C++ implementations of all the
competitors kindly provided by their authors.

Datasets. We select ten real graphs for our experiments, the
statistics of which are listed in Tab. II. EN and WT are
communication networks with edges representing emails and
messages. EP, DF, FL, LJ and FR are social networks. WG,
WD, WF, ZS and DL are web graphs where edges represent
hyperlinks between web pages. Among them, EN, EP, and FL
are datasets used in recent work [2]. WT is obtained from
SNAP [54], while the rest are obtained from KONECT [47].

Since IFCA aims to speed up reachability by leveraging
community structures, we categorize these real graphs into
those with discernible communities and those without by their
clustering coefficients c, displayed in the upper and lower
halves of Tab. II, respectively; graphs with c ≥ 0.01 are viewed
as having discernible communities.

All of the real graphs are temporal, i.e., each edge has
a timestamp, except LJ, FR, ZS and DL, which are large
static graphs for complementing the relatively small sizes

4Since kf ≤ n, ϵpre cannot be arbitrarily small.
5Our implementation is available at https://github.com/SoftlySpoken/IFCA.

https://github.com/SoftlySpoken/IFCA

TABLE II: Real Datasets.

Category Name Dataset n = |V | m = |E|
(Initial)

Edge
insertions

Edge
deletions

Negative
queries (%)

Clustering
coefficient

Graphs with
discernible
communities

EN Enron 87,273 16,095 1,453,087 295,027 58.37 0.071648
EP Epinions 131,828 42,068 799,304 824,962 56.78 0.065679
DF Digg friends 279,630 86,582 3,375,054 1,548,274 67.99 0.061426
FL Flickr 2,302,925 1,657,000 47,588,228 31,953,578 28.71 0.107648
LJ LiveJournal 4,847,571 68,993,773 65,051,622 61,627,852 36.53 0.117916
FR Friendster 68,349,466 129,307,393 245,684,047 232,753,308 59.73 0.017372

Graphs without
discernible
communities

WT wiki-talk-temporal 1,140,149 165,479 10,977,252 2,975,489 47.87 0.002204
WG Wikipedia growth (en) 1,870,709 1,997,657 37,955,488 27,235,531 14.06 0.003089
WD Wikipedia dynamic (de) 2,162,457 3,441,403 55,029,876 27,364,893 8.61 0.007344
WF Wikipedia dynamic (fr) 2,162,618 2,348,976 39,331,205 17,239,188 12.77 0.004945
ZS Zhishi 7,827,192 3,242,098 61,599,875 58,357,776 55.14 0.002079
DL DBpedia Links 18,268,992 6,826,878 129,710,688 122,883,810 18.36 0.001691

of publicly available temporal graphs. We randomly assign
unique timestamps to the edges in LJ, FR, ZS and DL. The
edges with the minimum timestamp appear in the initial state,
and all the rest are edge inserts. WD and WF have explicit
edge deletions. For all the others, we suppose that each edge
expires T

10 after its insertion, where T is the span between
the minimum and maximum timestamps. We believe such a
workload based on real temporal graphs is closer to actual
application scenarios than randomly generated edge insertions
and deletions on static graphs adopted by all previous works
on dynamic graphs except [2].

We generate synthetic graphs using stochastic block models
(SBMs) [55] since they model community structures. We use
two-block SBMs, modeling graphs with two communities. The
two blocks (i.e., communities) are of the same size varying
from 105 to 107. We also vary the average vertex degree from
2.5 to 10 by adjusting the edge probabilities; the probability of
an edge between vertices in the same community is configured
to be ten times that of edges between different communities.
Since synthetic graphs are for studying the scalability of our
query algorithm, we view them as snapshots of dynamic
graphs without generating edge insertions or deletions.

Queries. On real graphs, we split the span between the
minimum and maximum timestamps evenly into intervals, cor-
responding to batches of updates. After each batch of updates,
a batch of queries is generated by choosing the source and
destination vertices independently and uniformly at random
from all the vertices with at least one out-edge and all those
with at least one in-edge in the current snapshot, respectively,
and discarding queries whose source and destination vertices
are identical. The total number of queries on each dataset is
106, and the number of intervals is 20, resulting in 50,000
queries per batch. We generate a batch of 50,000 queries in
the same way for each synthetic graph.

Goals. We conduct experiments to validate that IFCA meets
our expectations in the following aspects:

• The influence of the parameters (ϵpre, ϵinit, α, and step)
on IFCA’s efficiency should be minor, meaning that they
can be chosen heuristically (Sec. VI-A);

• The optimizations we propose, namely community contrac-
tion and cost-based strategy selection, should improve the

efficiency of our approach (Sec. VI-B);
• IFCA, as an index-free community-aware algorithm,

should significantly outperform state-of-the-art algorithms
on graphs with discernible communities and perform at
least comparably with them on graphs without discernible
communities (Sec. VI-C).

A. Parameter Study

There are four parameters in our main algorithm (Alg.
2): the termination residue threshold, ϵpre; the initial residue
threshold, ϵinit; the teleportation constant, α; and the residue
threshold decreasing step, step. We investigate the effect of
these parameters on IFCA’s performance in the following.

1) The termination residue threshold ϵpre: The average
query time with varying ϵpre is shown in Fig. 2. α, ϵinit and
step are fixed as the default in Sec. VI-A4. We only show the
results on FL and WL due to limited space; the trends on other
real graphs are similar. The time complexity of our algorithm
(Thm. 2) seems to suggest that ϵpre should be as small as
possible to achieve the least query time, but Fig. 2 shows that
the average query time first decreases and then increases as
ϵpre grows. Such a trend shows that Thm. 2 does not give a
tight upper bound since O(1/ϵpre) is not a tight upper bound
on the time complexity of forward push (as is O(davg/ϵpre)
for backward push), especially with a larger ϵpre. To validate
this claim, we sample 1,000 vertices from each real graph,
conduct forward push from them varying 1/ϵpre, and record
the average push time. We show the results in Fig. 3, where
there is an observable turning point (marked with a vertical
dashed line) on each graph, after which the average push
time grows linearly with 1/ϵpre (i.e., O(1/ϵpre) is tight), but
before which it grows sub-linearly (i.e., O(1/ϵpre) is not tight).
Intuitively, the turning point marks that the community frontier
is exactly discovered. Therefore, choosing an ϵpre close to that
at the turning point may lead to our algorithm running faster.

2) The teleportation constant α: Intuitively, α determines
how likely the random walks underlying PPR will halt than
proceed, thus a large α is disadvantageous for reachability. To
study α’s effect on IFCA’s efficiency, we fix ϵpre as the best
found in Sec. VI-A1, and ϵinit and step as the default in
Sec. VI-A4. We find that when α > 0.5, the average query
time grows sharply with α on all graphs except WT, where

10−210−410−6

εpre

0.0

0.5

1.0

1.5

2.0
A

ve
ra

ge
q
u

er
y

ti
m

e
(m

s)
×10−1 FL

10−210−410−6

εpre

0.00

0.25

0.50

0.75

1.00

WF

Fig. 2: Average query time varying ϵpre.

10000 20000 30000

1/εpre

0

2

4

A
ve

ra
ge

p
u

sh
ti

m
e

(m
s)

×10−1

FL

10000 20000 30000

1/εpre

0.0

0.5

1.0

WF

Fig. 3: Average push time varying 1/ϵpre
(explaining Fig. 2).

EN EP DF FL LJ FR WT WG WD WF ZS DL

10−2

10−1

100

101

102

A
ve

ra
ge

qu
er

y
tim

e
(m

s)

Base@90% Base@100% Contract IFCA

Fig. 4: Effectiveness of optimizations.

the fluctuation in query time caused by α is negligible. The
figure is given in our full version6 due to limited space.

3) The initial residue threshold ϵinit and the residue thresh-
old decreasing step step: ϵinit and step do not impact the
time complexity of IFCA (Thm. 2). Intuitively, with ϵpre fixed,
ϵinit and step jointly determine the granularity of the search,
i.e., how much the frontiers advance in each iteration. With
ϵpre and α fixed as the best found in Sections VI-A1 and
VI-A2, we vary ϵinit from ϵpre to 103ϵpre and step from 10
to 103, and find that their impact on the average query time
is insignificant. The figure is given in our full version due to
limited space.

4) Default parameters: To prove that IFCA’s advantage
over existing approaches is not reliant on the best parameters,
we select IFCA’s parameters heuristically in the subsequent
experiments as follows: ϵpre = 100/m, where m is the number
of edges on the current snapshot, following the intuition that
ϵpre should be smaller on larger and denser graphs; α = 0.1
following recent work in local community detection [56];
ϵinit = 100ϵpre; and step = 10.

B. Effectiveness of Optimizations

In this subsection, we empirically verify the effectiveness
of our optimizations, community contraction and cost-based
strategy selection. We compare the performance of the baseline
(Base), the baseline with contraction (Contract), and the
full method (IFCA). Fig. 4 shows the average query time of
these approaches on all the real datasets. Since the baseline
is an approximate algorithm, we iteratively lower ϵ until the
precision is at least 90% and equal to 100%, denoted as
Base@90% and Base@100%, respectively. The following
conclusions can be drawn from Fig. 4:

• Base is a competitive approximate algorithm, which per-
forms comparably with IFCA at 90% accuracy. However,
it is unsuitable for accurate querying, being orders of
magnitude slower than IFCA at 100% accuracy.

6https://github.com/SoftlySpoken/IFCA/blob/main/IFCA_full_version.pdf.

• Contract guarantees 100% accuracy and is consistently
faster than Base@100% except on DL, verifying the effec-
tiveness of community contraction.

• IFCA is consistently faster than Contract, verifying the
effectiveness of cost-based strategy selection.

Cost Model’s effectiveness. To verify our cost model’s ability
in choosing a near-optimal switching point, we suppose there
exists an oracle that always selects the switching point that
leads to the shortest processing time for each query, imple-
mented by trying every possible switching point of each query
and averaging the shortest query time. We test how close the
performance of IFCA is to the oracle and show the results
in Tab. IV. IFCA employs the cost-based strategy selection
scheme, while Contract and BiBFS represent two extremes:
never switching to BiBFS, and switching at the beginning.
IFCA’s average query time is closest to the oracle on all

the datasets. Note that the average query time of Contract
is generally closer to the oracle on the graphs with discernible
communities than those without, while the opposite is true for
BiBFS, which shows the applicability of community contrac-
tion to graphs with discernible communities.

C. Comparison With State of the Art

In this subsection, we compare the performance of IFCA
on reachability queries on real dynamic graphs with state-of-
the-art approaches, including TOL [34], IP [7] and DAGGER
[35], the state-of-the-art index-based reachability frameworks
on dynamic graphs; ARROW [2], the state-of-the-art index-
free framework; and BiBFS. Since TOL and IP are designed
for directed acyclic graphs (DAGs), we enable them to work
on general directed graphs by maintaining a reachability-
preserving DAG with the method proposed in DAGGER [35].
DBL is excluded from our comparison because it cannot handle
edge deletions. We set k = 2, h = 2 and µ = 100 for IP as
advised in [7], since all the snapshots of the real graphs are
sparse (davg < 2). We set cwalkLength = 1 as advised in [2]
and gradually enlarge cnumWalks with the initial value and
step as 0.01 until the accuracy exceeds 95%.

https://github.com/SoftlySpoken/IFCA/blob/main/IFCA_full_version.pdf

EN EP DF FL LJ FR

10−2

100

102

104
A

ve
ra

ge
Ti

m
e

(m
s)

TOL IP DAGGER BiBFS ARROW IFCA

(a) Graphs with discernible communities, positive queries.

WT WG WD WF ZS DL

10−2

100

102

104

A
ve

ra
ge

Ti
m

e
(m

s)

(b) Graphs without discernible communities, positive queries.

EN EP DF FL LJ FR

10−2

100

102

104

A
ve

ra
ge

Ti
m

e
(m

s)

TOL IP DAGGER BiBFS ARROW IFCA

(c) Graphs with discernible communities, negative queries.

WT WG WD WF ZS DL

10−2

100

102

104

A
ve

ra
ge

Ti
m

e
(m

s)

(d) Graphs without discernible communities, negative queries.

Fig. 5: Average query and update time on real graphs. (Update time shown in grey)

TABLE III: Average query time (ms) of IFCA and BiBFS.

EN EP DF FL LJ FR WT WG WD WF ZS DL

Positive
queries

BiBFS 0.00634 0.00793 0.0116 0.157 0.209 0.408 0.0162 0.373 0.433 0.742 0.302 0.344
IFCA 0.00562 0.00661 0.00721 0.0424 0.0881 0.275 0.0141 0.105 0.238 0.182 0.0728 0.0424

Speedup 1.13 1.20 1.61 3.72 2.38 1.48 1.15 3.54 1.82 4.08 4.16 8.10

Negative
queries

BiBFS 0.00432 0.00222 0.00623 0.0144 0.0582 0.116 0.00706 0.689 0.326 0.51 0.0979 0.124
IFCA 0.00503 0.0017 0.00257 0.00916 0.00724 0.0195 0.00785 0.0776 0.103 0.126 0.0819 0.0193

Speedup 0.858 1.31 2.43 1.57 8.03 5.92 0.899 8.89 3.18 4.05 1.20 6.41
Overall Speedup 1.04 1.27 1.98 3.71 2.40 1.57 1.07 4.02 1.91 4.08 3.02 8.04

TABLE IV: Performance of the cost model. (Time in ms)

Oracle IFCA Contract BiBFS
EN 0.00265 0.00541 0.0947 0.0056
EP 0.00152 0.00227 0.0865 0.00288
DF 0.00249 0.00396 0.359 0.00785
FL 0.0223 0.0418 0.0431 0.155
LJ 0.0458 0.0846 12.1 0.203
FR 0.098 0.219 1.97 0.343
WT 0.00689 0.0111 5.33 0.0118
WG 0.0698 0.102 12.6 0.411
WD 0.124 0.217 3.37 0.416
WF 0.0792 0.168 3.42 0.685
ZS 0.0391 0.0760 0.506 0.23
DL 0.0286 0.0404 2.28 0.325

We plot each method’s average query and update time on
each real graph in two stacked bar charts (Fig. 5), representing
graphs with and without discernible communities, respectively,
where the average update time is stacked upon the average
query time and shown in grey. The corresponding bar is
omitted if a method runs out of memory.

1) Update time: TOL has the longest average update time,
closely followed by IP, except on FL where IP is slightly
slower than TOL. TOL runs out of memory during index update
on the largest datasets, FR and DL. IP generally handles
updates faster than TOL because it needs to update a smaller
number of labels, consistent with the trend and analysis in
[7]. DAGGER has much shorter average update time than TOL
and IP because it can update its index incrementally when
SCCs split or merge, while TOL and IP can only reconstruct

at least part of their indexes. The update time of TOL and IP
dominates their query time on all the datasets by up to five
orders of magnitude. IFCA, BiBFS and ARROW have similar
average update time, which is at least an order of magnitude
shorter than DAGGER’s. The update time of IFCA, BiBFS and
ARROW is dominated by their query time by at least an order
of magnitude.

2) Query time: TOL and IP perform comparably and have
the shortest query time on all the datasets, except when TOL
runs out of memory during index maintenance on the largest
datasets, FR and DL. They handle queries significantly faster
than IFCA, which is expected because IFCA does not build
any index to prune its search. IFCA is consistently faster
than BiBFS. We give the average query time of IFCA and
BiBFS in Tab. III for direct comparison. The overall speedup
of IFCA over BiBFS exceeds 2x on half of the datasets. IFCA
is faster than BiBFS on positive queries on all the datasets,
showing the effectiveness of its optimization strategies. IFCA
is also faster than BiBFS on negative queries on nearly all the
datasets, because the probability-guided search can cover the
entire neighborhood of the source or destination vertex and
conclude that the pair is unreachable in fewer iterations than
BiBFS and reduce the search cost of the other direction if
the neighborhood does not contain cycles and vertices with
very large out- or in-degrees. However, if the neighborhoods
of the source and destination vertices in a negative query do
not have such properties, IFCA will incur some overhead

0.0

0.5

1.0

T
o
ta

l
ti

m
e

(m
s)

×102

626

EN

0

2

4

×101

EP

0

1

2

3
×102

DF

0.0

0.5

1.0
×103

FL

0.0

0.5

1.0
×103

FR

0 500 1000

QpU

0

2

4

T
o
ta

l
ti

m
e

(m
s)

×102

WT

0 500 1000

QpU

0.0

0.5

1.0
×103

WG

0 500 1000

QpU

0.0

0.5

1.0
×103

794

WD

0 500 1000

QpU

0.0

0.5

1.0
×103

WF

0 500 1000

QpU

0.0

0.5

1.0

×102

264

DL

TOL IP DAGGER IFCA

Fig. 6: Total time varying QpU on real graphs.

2.5 5.0 7.5 10.0
davg

0.0

0.5

1.0

1.5

A
ve

ra
ge

q
u

er
y

ti
m

e
(m

s)

n = 105 n = 106 n = 107

Fig. 7: Scalability on synthetic graphs.

during the probability-guided search. DAGGER has longer
average query time than BiBFS on most datasets because it
conducts pruned unidirectional DFS, and the disadvantage of
unidirectional search and depth-first strategy outweighs the
advantage of pruning by interval labels and traversing the DAG
instead of the original graph on these datasets. ARROW has the
longest average query time on most datasets because it is an
approximate method based on random walks and many random
walks are needed for it to answer a query accurately.

Overall, considering both update and query time, index-free
approaches are advantageous compared to their index-based
counterparts. IFCA performs the best, while BiBFS is the
second-best.

3) Varying QpU: The more queries there are compared
with updates, the more efficient index-based methods will
become. To see when the advantage is reversed between IFCA
and the index-based methods (TOL, IP and DAGGER), we
plot their total time of performing an update and a certain
number of queries varying the query-per-update ratio (QpU)
in Fig. 6. A line’s starting point on the y-axis is the method’s
average update time, and the line’s growth rate indicates the
method’s average query time. TOL’s line starts at the highest
points on all the datasets, followed by IP’s, DAGGER’s and
IFCA’s. TOL and IP’s lines are almost flat due to their short
average query time, while DAGGER and IFCA’s grow visibly.
However, the lines of TOL, IP and IFCA do not intersect
with QpU below 1000 on all the datasets except EN and WD,
since the update time of TOL and IP dominates IFCA’s query
time. The lines of DAGGER and IFCA do not intersect with
QpU below 1000 on all the datasets except DL, on which
DAGGER handles queries faster than IFCA. Therefore, IFCA
is still widely applicable to query-heavy scenarios. Note that
on highly dynamic graphs, such as the Alibaba e-commerce
graph [3] which has up to 20,000 updates per second, and WF
which has up to 9,180 updates per second, it is unlikely for
QpU to be very large.

D. Scalability Study

To evaluate the scalability of IFCA, we generate synthetic
graphs with SBM, varying the number of vertices and the
average degree. Note that the setting complements those in
Sections VI-B and VI-C since the synthetic graphs are denser
than the real graphs. The average query time of IFCA on

synthetic graphs is shown in Fig. 77. IFCA can answer
reachability queries within two microseconds on dense graphs
with up to a billion edges. Interestingly, IFCA runs slower on
synthetic graphs with a larger number of vertices, but slightly
faster on synthetic graphs with the same number of vertices
but a larger average degree. The latter phenomenon can be
attributed to the following factors:
• The ratio of negative queries, which is lower on denser

graphs (around 5% when davg = 2.5, but 0% when
davg > 2.5). IFCA runs slower on negative queries than
positive queries since it cannot terminate early with a
positive result. Answering negative queries on dense graphs
can be particularly slow, since all the reachable vertices from
the source and destination need to be visited.

• The average distance between positive query vertex pairs,
which is significantly longer on sparser graphs (e.g., 14.2
with davg = 5 and 6.3 with davg = 20 when n = 106).

VII. CONCLUSIONS

In this work, we propose IFCA, an index-free approach for
reachability processing that adapts to large-scale real dynamic
graphs. We adopt a bidirectional probability-guided graph
search scheme inspired by Personalized PageRank approxima-
tion techniques, and devise a community contraction technique
to leverage community structures prevalent in real graphs
for accelerating query processing. Furthermore, to handle the
reduced graph resulting from community contraction more
efficiently, we design a cost-based strategy selection proce-
dure that estimates the cost of continuing the guided search
and switching to BiBFS and chooses the cheaper strategy
accordingly. Experimental studies show that our approach is
significantly more efficient than both the index-based and
index-free state-of-the-art methods on large-scale real dynamic
graphs. In the future, we plan to explore adapting our approach
for various forms of constrained reachability queries.

ACKNOWLEDGMENT

This work was supported by NSFC under grant 61932001
and U20A20174. Lei Zou is the corresponding author of this
paper.

7To expose the effect of the synthetic graphs’ scale on IFCA ’s efficiency,
we fix ϵpre = 0.0001. Other parameters follow the setting in Sec. VI-A4.

REFERENCES

[1] S. Sahu, A. Mhedhbi, S. Salihoglu, J. Lin, and M. T.
Özsu, “The ubiquity of large graphs and surprising
challenges of graph processing,” Proc. VLDB Endow.,
vol. 11, no. 4, p. 420–431, dec 2017. [Online]. Available:
https://doi.org/10.1145/3186728.3164139

[2] N. Sengupta, A. Bagchi, M. Ramanath, and S. Bedathur,
“ARROW: Approximating Reachability Using Random
Walks Over Web-Scale Graphs,” in 2019 IEEE 35th
International Conference on Data Engineering (ICDE).
Macao, Macao: IEEE, Apr. 2019, pp. 470–481.

[3] X. Qiu, W. Cen, Z. Qian, Y. Peng, Y. Zhang, X. Lin, and
J. Zhou, “Real-time constrained cycle detection in large
dynamic graphs,” Proceedings of the VLDB Endowment,
vol. 11, no. 12, pp. 1876–1888, 2018.

[4] I. B. Dhia, “Access control in social networks: a
reachability-based approach,” in Proceedings of the 2012
Joint EDBT/ICDT Workshops, 2012, pp. 227–232.

[5] X. Huang, L. V. Lakshmanan, and J. Xu, “Community
search over big graphs: Models, algorithms, and opportu-
nities,” in 2017 IEEE 33rd International Conference on
Data Engineering (ICDE), 2017, pp. 1451–1454.

[6] R. Andersen, F. Chung, and K. Lang, “Local Graph Par-
titioning using PageRank Vectors,” in 2006 47th Annual
IEEE Symposium on Foundations of Computer Science
(FOCS’06). Berkeley, CA, USA: IEEE, 2006, pp. 475–
486.

[7] H. Wei, J. X. Yu, C. Lu, and R. Jin, “Reachability query-
ing: An independent permutation labeling approach,” The
VLDB Journal, vol. 27, no. 1, pp. 1–26, Feb. 2018.

[8] R. Agrawal, A. Borgida, and H. V. Jagadish, “Efficient
management of transitive relationships in large data and
knowledge bases,” in Proceedings of the 1989 ACM
SIGMOD International Conference on Management of
Data - SIGMOD ’89. Portland, Oregon, United States:
ACM Press, 1989, pp. 253–262.

[9] E. Cohen, E. Halperin, H. Kaplan, and U. Zwick, “Reach-
ability and Distance Queries via 2-Hop Labels,” SIAM
Journal on Computing, 2003.

[10] H. He, H. Wang, J. Yang, and P. S. Yu, “Compact
reachability labeling for graph-structured data,” in Pro-
ceedings of the 14th ACM International Conference on
Information and Knowledge Management - CIKM ’05.
Bremen, Germany: ACM Press, 2005, p. 594.

[11] Haixun Wang, Hao He, Jun Yang, P. Yu, and J. Yu,
“Dual Labeling: Answering Graph Reachability Queries
in Constant Time,” in 22nd International Conference on
Data Engineering (ICDE’06). Atlanta, GA, USA: IEEE,
2006, pp. 75–75.

[12] Y. Chen and Y. Chen, “An Efficient Algorithm for An-
swering Graph Reachability Queries,” in 2008 IEEE 24th
International Conference on Data Engineering. Cancun,
Mexico: IEEE, Apr. 2008, pp. 893–902.

[13] J. Cheng, J. X. Yu, X. Lin, H. Wang, and P. S. Yu, “Fast
computing reachability labelings for large graphs with

high compression rate,” in Proceedings of the 11th Inter-
national Conference on Extending Database Technology
Advances in Database Technology - EDBT ’08, 2008.

[14] R. Jin, Y. Xiang, N. Ruan, and H. Wang, “Efficiently
answering reachability queries on very large directed
graphs,” in Proceedings of the 2008 ACM SIGMOD Inter-
national Conference on Management of Data - SIGMOD
’08. Vancouver, Canada: ACM Press, 2008, p. 595.

[15] R. Jin, Y. Xiang, N. Ruan, and D. Fuhry, “3-HOP:
A high-compression indexing scheme for reachability
query,” in Proceedings of the 35th SIGMOD Interna-
tional Conference on Management of Data - SIGMOD
’09. Providence, Rhode Island, USA: ACM Press, 2009,
p. 813.

[16] J. Cai and C. K. Poon, “Path-hop: Efficiently indexing
large graphs for reachability queries,” in Proceedings of
the 19th ACM International Conference on Information
and Knowledge Management - CIKM ’10. Toronto, ON,
Canada: ACM Press, 2010, p. 119.

[17] S. J. van Schaik and O. de Moor, “A memory efficient
reachability data structure through bit vector compres-
sion,” in Proceedings of the 2011 International Confer-
ence on Management of Data - SIGMOD ’11. Athens,
Greece: ACM Press, 2011, p. 913.

[18] J. Cheng, S. Huang, H. Wu, and A. W.-C. Fu, “TF-Label:
A topological-folding labeling scheme for reachability
querying in a large graph,” in Proceedings of the 2013
International Conference on Management of Data - SIG-
MOD ’13. New York, New York, USA: ACM Press,
2013, p. 193.

[19] R. Jin and G. Wang, “Simple, fast, and scalable reachabil-
ity oracle,” Proceedings of the VLDB Endowment, vol. 6,
no. 14, pp. 1978–1989, Sep. 2013.

[20] Y. Yano, T. Akiba, Y. Iwata, and Y. Yoshida, “Fast
and scalable reachability queries on graphs by pruned
labeling with landmarks and paths,” in Proceedings of
the 22nd ACM International Conference on Conference
on Information & Knowledge Management - CIKM ’13.
San Francisco, California, USA: ACM Press, 2013, pp.
1601–1606.

[21] L. Chen, A. Gupta, and M. E. Kurul, “Stack-based
Algorithms for Pattern Matching on DAGs,” p. 12, 2005.

[22] S. Trißl and U. Leser, “Fast and practical indexing
and querying of very large graphs,” in Proceedings of
the 2007 ACM SIGMOD International Conference on
Management of Data - SIGMOD ’07. Beijing, China:
ACM Press, 2007, p. 845.

[23] L. Zhu, B. Choi, B. He, J. X. Yu, and W. K. Ng,
“A Uniform Framework for Ad-Hoc Indexes to Answer
Reachability Queries on Large Graphs,” in Database
Systems for Advanced Applications, X. Zhou, H. Yokota,
K. Deng, and Q. Liu, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2009, vol. 5463, pp. 138–152.

[24] R. Jin, N. Ruan, S. Dey, and J. Y. Xu, “SCARAB:
Scaling reachability computation on large graphs,” in
Proceedings of the 2012 International Conference on

https://doi.org/10.1145/3186728.3164139

Management of Data - SIGMOD ’12. Scottsdale,
Arizona, USA: ACM Press, 2012, p. 169.

[25] H. Yıldırım, V. Chaoji, and M. J. Zaki, “GRAIL: A
scalable index for reachability queries in very large
graphs,” The VLDB Journal, vol. 21, no. 4, pp. 509–534,
Aug. 2012.

[26] S. Seufert, A. Anand, S. Bedathur, and G. Weikum,
“FERRARI: Flexible and efficient reachability range
assignment for graph indexing,” in 2013 IEEE 29th
International Conference on Data Engineering (ICDE).
Brisbane, QLD: IEEE, Apr. 2013, pp. 1009–1020.

[27] R. R. Veloso, L. Cerf, W. M. Junior, and M. J. Zaki,
“Reachability Queries in Very Large Graphs: A Fast
Refined Online Search Approach,” 2014.

[28] L. Li, W. Hua, and X. Zhou, “HD-GDD: High dimen-
sional graph dominance drawing approach for reachabil-
ity query,” World Wide Web, vol. 20, no. 4, pp. 677–696,
Jul. 2017.

[29] J. Su, Q. Zhu, H. Wei, and J. X. Yu, “Reachability
Querying: Can It Be Even Faster?” IEEE Transactions
on Knowledge and Data Engineering, vol. 29, no. 3, pp.
683–697, Mar. 2017.

[30] S. Zhou, P. Yuan, L. Liu, and H. Jin, “MGTag: A Multi-
Dimensional Graph Labeling Scheme for Fast Reachabil-
ity Queries,” in 2018 IEEE 34th International Conference
on Data Engineering (ICDE). Paris: IEEE, Apr. 2018,
pp. 1372–1375.

[31] H. V. Jagadish, “A compression technique to material-
ize transitive closure,” ACM Transactions on Database
Systems, vol. 15, no. 4, pp. 558–598, Dec. 1990.

[32] R. Schenkel, A. Theobald, and G. Weikum, “Efficient
Creation and Incremental Maintenance of the HOPI
Index for Complex XML Document Collections,” in
21st International Conference on Data Engineering
(ICDE’05). Tokyo, Japan: IEEE, 2005, pp. 360–371.

[33] R. Jin, N. Ruan, Y. Xiang, and H. Wang, “Path-tree:
An efficient reachability indexing scheme for large di-
rected graphs,” ACM Transactions on Database Systems,
vol. 36, no. 1, pp. 1–44, Mar. 2011.

[34] A. D. Zhu, W. Lin, S. Wang, and X. Xiao, “Reachability
queries on large dynamic graphs: A total order approach,”
in Proceedings of the 2014 ACM SIGMOD International
Conference on Management of Data. Snowbird Utah
USA: ACM, Jun. 2014, pp. 1323–1334.

[35] H. Yildirim, V. Chaoji, and M. J. Zaki, “DAGGER:
A Scalable Index for Reachability Queries in Large
Dynamic Graphs,” arXiv:1301.0977 [cs], Jan. 2013.

[36] Q. Lyu, Y. Li, B. He, and B. Gong, “DBL: Efficient
Reachability Queries on Dynamic Graphs (Complete
Version),” arXiv:2101.09441 [cs], Jan. 2021.

[37] U. Feige, “A fast randomized logspace algorithm for
graph connectivity,” Theoretical Computer Science, vol.
169, no. 2, pp. 147–160, 1996.

[38] I. Gorodezky and I. Pak, “Generalized loop-erased ran-
dom walks and approximate reachability,” Random Struc-
tures & Algorithms, vol. 44, no. 2, pp. 201–223, 2014.

[39] M. Starnini, A. Baronchelli, A. Barrat, and R. Pastor-
Satorras, “Random walks on temporal networks,” Phys-
ical Review E, vol. 85, no. 5, p. 056115, 2012.

[40] A. Anagnostopoulos, R. Kumar, M. Mahdian, E. Upfal,
and F. Vandin, “Algorithms on evolving graphs,” in Pro-
ceedings of the 3rd Innovations in Theoretical Computer
Science Conference, 2012, pp. 149–160.

[41] L. Page, S. Brin, R. Motwani, and T. Winograd, “The
pagerank citation ranking: Bringing order to the web.”
Tech. Rep., 1999.

[42] D. F. Gleich, “Pagerank beyond the web,” SIAM Review,
2015.

[43] D. Fogaras, B. Rácz, K. Csalogány, and T. Sarlós, “To-
wards scaling fully personalized pagerank: Algorithms,
lower bounds, and experiments,” Internet Mathematics,
vol. 2, no. 3, pp. 333–358, 2005.

[44] R. Andersen, C. Borgs, J. Chayes, J. Hopcraft, V. S. Mir-
rokni, and S.-H. Teng, “Local computation of pagerank
contributions,” in International Workshop on Algorithms
and Models for the Web-Graph. Springer, 2007, pp.
150–165.

[45] H. Wu, J. Gan, Z. Wei, and R. Zhang, “Unifying the
global and local approaches: an efficient power iteration
with forward push,” in Proceedings of the 2021 Inter-
national Conference on Management of Data, 2021, pp.
1996–2008.

[46] S. Wang, R. Yang, X. Xiao, Z. Wei, and Y. Yang, “FORA:
Simple and Effective Approximate Single-Source Per-
sonalized PageRank,” in Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Dis-
covery and Data Mining. Halifax NS Canada: ACM,
Aug. 2017, pp. 505–514.

[47] J. Kunegis, “Konect: the koblenz network collection,”
in Proceedings of the 22nd international conference on
world wide web, 2013, pp. 1343–1350.

[48] S. Beamer, K. Asanovic, and D. Patterson, “Direction-
optimizing breadth-first search,” in SC’12: Proceedings
of the International Conference on High Performance
Computing, Networking, Storage and Analysis. IEEE,
2012, pp. 1–10.

[49] M. Mihail, “Conductance and convergence of markov
chains-a combinatorial treatment of expanders,” in 30th
Annual Symposium on Foundations of Computer Science,
1989, pp. 526–531.

[50] P. Lofgren, S. Banerjee, and A. Goel, “Personalized
pagerank estimation and search: A bidirectional ap-
proach,” in Proceedings of the Ninth ACM International
Conference on Web Search and Data Mining, 2016, pp.
163–172.

[51] M. Jiang, A. W.-C. Fu, R. C.-W. Wong, and Y. Xu,
“Hop doubling label indexing for point-to-point distance
querying on scale-free networks,” Proceedings of the
VLDB Endowment, vol. 7, no. 12, 2014.

[52] B. Bahmani, A. Chowdhury, and A. Goel, “Fast In-
cremental and Personalized PageRank,” arXiv:1006.2880
[cs], Aug. 2010.

[53] P. Brach, M. Cygan, J. Łącki, and P. Sankowski, “Algo-
rithmic complexity of power law networks,” in Proceed-
ings of the Twenty-Seventh Annual ACM-SIAM Sympo-
sium on Discrete Algorithms. SIAM, 2016, pp. 1306–
1325.

[54] J. Leskovec and A. Krevl, “Snap datasets: Stanford large
network dataset collection,” 2014.

[55] P. W. Holland, K. B. Laskey, and S. Leinhardt, “Stochas-
tic blockmodels: First steps,” Social networks, vol. 5,
no. 2, pp. 109–137, 1983.

[56] N. Yudong, Y. Li, and J. Fan, “Local Clustering over
Labeled Graphs: An Index-Free Approach [Technical
Report],” p. 16, 2022.

	Introduction
	Related Work
	Preliminary
	Personalized PageRank and Baseline

	Analysis of Baseline: Strengths, Weaknesses & Opportunities
	Our solution: IFCADetailed Algorithms
	Algorithm Overview
	Bidirectional Probability-Guided Search
	Community Contraction
	Cost-Based Strategy Selection
	BiBFS
	The full cost model
	The number of operations
	Execution time of the basic operations.

	Correctness and Complexity

	Experimental Evaluation
	Parameter Study
	The termination residue threshold pre
	The teleportation constant
	The initial residue threshold init and the residue threshold decreasing step step
	Default parameters

	Effectiveness of Optimizations
	Comparison With State of the Art
	Update time
	Query time
	Varying QpU

	Scalability Studyon Synthetic Graphs

	Conclusions

