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Abstract
Graph stream is used to express complex and highly dynamic relationships between enti-
ties, such as friendships in social networks. The storage and mining on graph stream are the 
main research areas of big data research. Triangle listing/counting is an important topic in 
graph mining research. The triangle, as the simplest circle and clique structure, has many 
applications in many real-world scenarios. A large amount of related work also exists on 
the study of triangles on graph streams. However, the existing research has focused on tri-
angle counting on static graphs or graph streams, and there is a lack of research target-
ing heavy weight triangle listing. This paper formally defines the triangle weight on graph 
stream. Based on this definition, this paper presents an approximation algorithm for the 
top-k heavy weight triangle listing problem on graph stream, and proposes various opti-
mized data structures DolhaT, Filtered DolhaT and Double Filtered DolhaT (DFD) to solve 
this problem. Experiments on real graph stream datasets demonstrate the effectiveness of 
the proposed optimized structures for the heavy weight triangle listing problem on graph 
stream.

Keywords Graph stream · Heavy Triangles · Top-k triangle listing

1 Introduction

Due to faster data transmission speeds brought by improved network hardware technol-
ogy and the expansion of data size brought by the proliferation of network users, massive 
amounts of communications data are generated every day in today’s Internet. A large ISP 
may process one billion network communication packets per router per hour [1]; the social 
network company Twitter handles the login and usage information of 100 million users per 
day [2]; and on a worldwide scale, all users send and receive 200 billion emails per day 
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[3]. In order to process and study this dynamic relational information that changes at high 
speed, it is necessary to model this information and design more efficient algorithms and 
data structures. Therefore data stream research, especially the study of data structures over 
data streams, is an important area of big data research.

Traditional data streams are modeled as a series of data item inputs that are independent 
of each other. A large amount of literature research has focused on the design of data struc-
tures over data streams. For example, Bloom Filter (BF) [4] is designed to check whether 
items appear in the data stream; Count-min Sketch (CM) [5] stores the frequency of data 
stream items; Spacesaving (SS) [6] and Filtered Spacesaving (FSS) [7] algorithms list the 
items with heavy weight in the data stream.

To deal with the data stream which involves networks, the connective relationships 
among the items must be considered. Graph Stream is a special kind of data stream that 
differs from the traditional definition of a data stream. In graph stream, the streaming items 
are not independent of each other but carry connection information. A graph stream is an 
unbounded sequence of continuous and time-evolving edges. On graph stream, a series of 
graph topology queries, such as reachability queries, subgraph matching queries and trian-
gle counting, can be performed to mine the relationship information between entities. For 
example, in network communication data, each IP is considered as a node and the com-
munication between two IPs is considered as an edge. The graph formed by the commu-
nication information between IPs can be used to detect the presence of network attacks by 
performing graph queries such as edge weights query and node degrees query [8, 9]. In 
social networks, each user is considered as a node and the friendships between users and 
the information interactions between users are considered as edges [10]. By mining infor-
mation from the social network, it is possible to provide friend recommendation or content 
recommendation functions. In financial information, each account is considered as a node, 
and a transaction between two accounts is considered as an edge. If a certain online fraud is 
transformed into a specific graph topology [11], a graph topology query can be performed 
on the graph [12, 13] to quickly locate suspicious accounts and transfers.

Triangles, as an important structure on graphs, have a lot of applications in scenarios 
such as community discovery in social networks [14], topic discovery [15] and anomaly 
detection in web traffic networks [16]. Triangle Listing [17] and Triangle Counting are the 
very important research directions in graph algorithm research. In the field of graph stream, 
the main research focuses on triangle counting on graph streams [18–28]. Most triangle 
counting studies sample the graph stream edges and use the number of triangles produced 
in the sample edge set to estimate the total number of triangles in the graph stream. Tri-
angle counting only answers how many triangles are present in the graph stream, but can-
not enumerate information about these triangles. If the use case requires enumerating spe-
cific information about these triangles, this class of systems cannot provide a valid answer. 
Since graph streams tend to be large in size and dynamically updated at high speed, it is not 
realistic to enumerate all the triangles appearing in the graph stream. Therefore, in practi-
cal use cases, it is not necessary to enumerate all the triangles in the graph stream, but only 
enumerate those that meet specific conditions, such as the Heavy-Weight Triangle. Con-
sider the use cases:

Use case 1: Network traffic data stream. Network traffic data stream is a typical graph 
stream data. Each IP address represents a node, one communication between two IPs is 
represented as an edge, and the size of the communication packet is represented as the 
weight of the edge. The structure of the graph and the weights of the edges change rapidly 
as packets are sent and received. The existing algorithm of heavy hitters for data stream 
[6, 7, 29, 30] can quickly detect suspicious communications in the graph stream and thus 
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discover possible network attacks. However, many network attacks are characterized by 
patterned graph structure [31, 32], such as Information Exfiltration Attack and Distributed 
Denial of Service (DDoS). Traditional data stream algorithms can only enumerate heavy 
edges, i.e., suspicious communication patterns between two IPs, and cannot find more 
complex structural patterns. In contrast, listing the triangles of all three heavy weight edges 
in the data stream can find suspicious communication among three IPs and discover more 
suspicious structural patterns.

Use case 2: Social network data. In a social network graph, a user is considered as a 
node, the friend or interaction relationship between two users is considered as an edge, and 
the previous trust level and the number of interactions between two users can be considered 
as the weights of the edges. Fast community discovery in social networks is an important 
graph computing task, and many classical triangle-based community discovery algorithms 
exist, such as K-core [33] etc. Triangle counting on graph streams only enables to quickly 
discover the number of triangles in the graph stream for subsequent community discovery 
algorithms. If we can quickly enumerate the triangular structures (Triangular Vertex Con-
nectivity) with the most active interactions in a dynamically changing social network graph 
[17], we can be guided to find the most active groups in the social network.

Motivated by above use cases, this paper proposes the definition of triangle weights in 
graph stream and proposes the problem of the top-k heavy triangle listing on graph stream. 
Since the graph stream in real world has the characteristics of large scale and very fast 
update, saving all the edges on the graph stream and performing triangle enumeration to 
get the accurate information of top-k heavy triangles is high in time and space complexity. 
Therefore, this paper proposes the approximation algorithm for top-k heavy triangle listing 
on graph stream: only a small set of heavy edges in graph stream is saved as the candidate 
edge set, and triangle enumeration is performed in the candidate edge set. This approxima-
tion algorithm can be used without storing all edges of the graph stream, and only uses a 
small time and space complexity to perform the top-k heavy triangle listing.

For the approximation algorithm of top-k heavy triangle listing on graph stream, we 
propose data structures: DolhaT and Filtered DolhaT. DolhaT and Filtered DolhaT com-
bine the Dolha data structure [34] with the SpaceSaving (SS) [6] and Filtered SpaceSaving 
(FSS) [7] algorithms to efficiently enumerate the top-k heavy triangles on the graph stream. 
Based on Filtered DolhaT, we propose another optimized data structure, Double Filtered 
DolhaT (DFD), which uses the lite estimator as a double filter to reduce the error of Fil-
tered DolhaT and improve the accuracy of the data structure without increasing the time 
and space complexity. We have demonstrated the superiority of the DFD data structure 
through extensive experiments.

2  Related work

There are two areas involved into the top-k heavy triangles listing:

2.1  Top‑k heavy hitters algorithms in data streams

There exists a series of heavy hitters algorithms in the study of data streams. Given a data 
stream S, in order to reduce the space complexity of the algorithm, the top-k heavy hit-
ters algorithms usually save only the top-m heavy hitters ( k < m < |S| ). For each arriving 
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item in S, an estimator is used to estimate the previously carried weight by this item in the 
stream.

The SpaceSaving (SS) [6] algorithm is an approximation algorithm for finding the top-k 
heavy item in the data stream. SS maintains a heap m(|m| > k) to store the item IDs and 
corresponding weights of the heavy items in the data stream, and a global estimator e to 
estimate the weight. Given a new data stream item i, if i ∈ m , SS increases the correspond-
ing weight wi ; if i ∉ m and m is not full, then i is stored with the weight of i. If i ∉ m and m 
is full, SS assigns wi ← e + wi . Then SS removes the item j with smallest non-zero weight 
from m and sets estimator e = wi.

The SS algorithm can consistently return the top-k heavy hitters in the data stream at a 
very small space and time cost. However, the SS algorithm uses a single global estimator, 
which can lead to high errors. Therefore Filtered SpaceSaving (FSS) [7] algorithm was 
invented to improve the accuracy of SS algorithm. Unlike SS which uses a single global 
estimator, FSS builds a hash filter table H where each cell in the table is a local estimator. 
When an item i on the data stream arrives, FSS first uses a hash function to map i to the 
x of H, and then uses the local estimator ex here to estimate the weight. FSS can achieve 
higher accuracy with the same memory usage as SS.

Although a large amount of heavy hitters algorithms exist, these efforts are mainly used 
to detect items that occur at high frequencies in the data stream. As in work such as Wav-
ingsketch [35] and PISketch [36], each occurrence of the streaming item is considered to 
carry the same weight 1. Each time an item in the data stream arrives, it is added to heavy 
hitter set with a certain probability. Higher frequency elements have a higher probability 
of being recorded in heavy hitter set. In graph stream model, steaming edges usually carry 
different weights. The algorithms that target the discovery of high-frequency elements are 
not applicable to the graph stream model. Some work focuses on the discovery of heavy 
hitters in sliding windows [37, 38], We do not consider the sliding window model in this 
paper. Therefore, we use the SS and FSS algorithms to construct the data structures pro-
posed in this paper.

2.2  Triangle counting algorithms in graph streams

Triangles, as an important structure on graphs, have many applications in scenarios such 
as community in social networks [14], topic [15] and anomaly detection in web traffic net-
works [16]. Thus a large amount of work exists on graph stream for the triangle count-
ing problem. However, the time complexity of triangle counting on graphs is O(|E|1.5) 
[39], and triangle counting algorithms on static graphs [40] are often unable to meet the 
need for high-speed updates of graph streams. Therefore triangle counting algorithms on 
graph streams usually use sampling, where a certain number of edges are extracted from 
the graph stream and added to the candidate set. The number of triangles generated in the 
candidate set and the probability analysis of sampling are used to estimate the number of 
triangles that appear in the graph stream. Different works use different sampling methods 
and probability calculations: MASCOT [18] uses independent sampling with a fixed prob-
ability to sample the edges on the graph stream; TRIEST [12]and WRS [19] use Reservoir 
Sampling [20] and Random Pairing [21] to sample edges; PartitionCT [22] and subsequent 
works [23, 24] use Priority Sampling combined with Streaming Hyperloglog algorithm 
[25] to solve the Duplicated Edge problem; the study by Pavan A et al. [26] used sampling 
based on neighbor information; Jha M et al.’s study [27] used bilateral sampling; Ahmed N 
K et al.’s study [28] proposed a general sampling approach based on graph stream.
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These triangle algorithms can only return an approximation of the number of tri-
angles that appear in the graph stream and cannot enumerate the specific construction 
information of these triangles for further study.

3  Problem definition

Since the direction of the edges is usually not considered in the study of triangles, this 
paper uses the undirected graph stream model, defined as follows.

Definition 1 (Graph Stream) A graph Stream G  is an undirected graph formed by a con-
tinuous and time-evolving sequence of edges {�1, �2, ...�x} . Each edge �i has node ID u, 
node ID v and weight wi , denoted as �i(uv,wi) , i = 1, ..., x.

Definition 2 (Edge Weight) An edge uv may appear in G  multiple times with differ-
ent positive weights at different time. Each occurrence of uv is denoted as �j(uv,wj) , 
j = 1, .., n . The edge weight of uv in graph stream G  is the weight sum of all occurrences in 
G  , denoted as

In previous work on triangle counting [41–47], there are different ways of defining 
the weights of triangles. In some graph model research works [43, 46] that only have 
node weights and do not consider edge weights, the weight of a triangle is equal to the 
sum of the weights of the three nodes that make up the triangle. In some graph model 
research works [44, 46] that consider only edge weights, the weight of the triangle is 
equal to the sum of the weights of the three edges that make up the triangle. In graph 
stream models, we usually only consider the edge weight. Therefore, we first consider 
five definitions of triangle weights that are defined by the weights of the three edges. 
Given a graph stream (Figures 1 and 2), the top-3 heavy triangles in different definitions 
are shown as follows: 

1. Product of the three edge weights: Δv2v4v5
,Δv1v4v5

,Δv4v5v8
.

2. Sum of the three edge weights: Δv2v4v5
,Δv1v4v5

,Δv4v5v8
.

3. Average of the three edge weights: Δv2v4v5
,Δv1v4v5

,Δv4v5v8
.

4. Maximum of the three edge weights: Δv2v4v5
,Δv4v5v8

,Δv1v4v5
.

5. Minimum of the three edge weights: Δv5v6v7
,Δv3v5v6

,Δv2v4v5
.

W(uv) =
∑

wj.

Figure 1  Graph stream G
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There is a problem in the definitions 1-4: Super Weight Edge. If one of the edges in 
graph stream has a very heavy weight, all triangles composed of this edge are completely 
dominated by this super weight edge. When we try to list the top-k heavy triangles, all the 
heavy triangles listed may be dominated by this Super Weight Edge, resulting in the failure 
to discover other triangular structures that need attention. Super Weight Edges may appear 
in realistic datasets. Figure 3 shows the distribution of the edge weights in the Enron email 
dynamic dataset [48]. The weights of the edges conform to a power-law distribution, where 
the weight of the edge with the highest weight reaches 212 , while the weight of the third 
ranked edge is only 210 , and the weight of the tenth ranked high-weighted edge decreases 
to 29 . If the 1-4 definitions are used, the top-k heavy triangles is dominated by the edge 
with the highest weight.

According to the 5th definition of triangle weights, the list of the top-3 heavy triangles 
in Figure 2 are Δv5v6v7

,Δv3v5v6
,Δv2v4v5

 . Under this definition, the weight of the triangle is 

Figure 2  Graph stream topology

Figure 3  The edge weights distribution of enron email dynamic dataset



World Wide Web 

1 3

determined by the edge with the lowest weight, so that the query result will not be domi-
nated by several super edges. This definition is also more in line with realistic use cases. 
For network traffic data, if each edge of the triangle relationship has a high weight, it is 
more likely that there is a suspicious pattern. For social network data, when the relation-
ship weights among all three users are very high, it is more likely that the three users exist 
in a highly active community. In a real-world scenario we need to mine triangle relation-
ships with high weights on all three edges, rather than mining triangles formed by only one 
very high weighted edge.

In this paper, we denote the triangle weight as the minimum weight of the three edges. 
The formal definition is shown as follows:

Definition 3 (Triangle Weight) Given a set of three nodes (u, v, w), if the edges uv , vw and 
wu have positive edge weights, the triangle Δuvw exists in G  . The triangle weight of Δuvw is 
the minimum weight of the three edges, denote as:

4  Approximation algorithm for top‑k heavy triangles listing

Graph streams are often large in size and the time and space complexity of saving the full 
information for exact query is often high. Therefore, in previous algorithms for triangle 
counting on graph streams, the sampling of edges was used to save only a small portion of 
the edges in the stream, and the approximate number of triangles in the stream was derived 
by the probability of the distribution of the sampled edges in the stream. Although these 
algorithms only provide the approximate number of triangles in the graph stream, they can-
not provide specific information about these triangles. However, these algorithms provide 
an idea: calculate the distribution of all triangles in the graph stream by a small number of 
triangles formed by a small set of candidate edges. This paper inherits this idea.

Lemma 1 Given the edge set D which stores top-m heavy edges of graph stream G  and the 
triangle set T which stores the triangles formed by D. Using the triangle minimum weight 
edge to define the weight of triangles, the top-k ( k ≤ |T| ) heavy triangles of G  must exist in 
T.

Proof The weight of any edge � not in D is less than the weight of any edge in D. Since the 
weights of all the triangles formed by � are less the weight of � , the weights of all the trian-
gles formed by � are less than the weight of any triangle in T. Therefore, the top-|T| heavy 
triangles are all in T. If ( k ≤ |T| ), the top-k heavy triangles of G  must exist in T.

  ◻

Based on Lemma 1, we propose an algorithm to enumerate the top-k heavy triangles in 
the graph stream: filter the heavy edges of graph stream into the candidate set D and only 
enumerate the triangles formed by the edges in D. Since we do not need to enumerate the 
triangles on the whole graph stream, this algorithm can greatly reduce the space and time 
complexity of top-k heavy triangle listing. However, the exact extraction of the heavy edges 
in the graph stream requires saving all the edges in the stream and sorting them accord-
ing to their weights. The space and time complexity of storing and sorting all the edges 

W(Δuvw) = Min(W(uv),W(vw),W(wu))
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of graph stream extremely high, so we can use the heavy hitter approximation algorithms 
in the data stream, such as the SS and FSS algorithms, to save the approximate set of can-
didate edges, which cannot obtain exact results but can greatly reduce the space and time 
complexity of the algorithm.

In this algorithm, the capacity m of the heavy edge candidate set D determines the speed 
of the algorithm operation and the memory space required. If m is chosen to be small, 
it will cause the problem of not being able to return top-k heavy triangles, in addition to 
reducing the accuracy of the system. Since the top-k heavy triangles are formed by the 
edges in D, if the edges in D cannot form k or more than k triangles, the top-k heavy tri-
angles cannot be returned. Although we can dynamically scale the size of m during the 
processing of the graph stream, it often requires additional computational cost when scal-
ing. Therefore, the predicted size of m based on the predicted graph stream information can 
avoid the cost of dynamic expansion. For this problem, the following analysis is given in 
this section.

Lemma 2 Given the edge set D with maximum capacity m, the edge number |E| of graph 
stream G  and the triangle number |Δ| of graph stream G  , when |D| = m ≥ 3

√
k

|Δ| × |E| , the 
expectation number of triangles in T is more than or equal to k.

Proof The probability of triangles appearing in the graph stream G  , i.e., the probability 
that three randomly selected edges can form a triangle, is �Δ�

⎛⎜⎜⎝
�E�
3

⎞⎟⎟⎠

 . Assuming that the trian-

gles are equally distributed in the graph stream G and the candidate set D, if k triangles are 

expected, k

|Δ| ×
( |E|

3

)
 edge combinations are needed, i.e.,

This equation can be derived to |D| ≤ 3

√
k

|Δ| × |E| . Therefore, when |D| = m ≥ 3

√
k

|Δ| × |E| , 
the expectation number of triangles in T is more than or equal to k.

Due to the nature of graph stream, it is impossible to know exactly the size |Δ| in the 
graph stream. But most graph data such as social network and communication network 
graphs have a large number of triangles and k is often small. In most of cases, k ≪ |Δ| , 
i.e., 3

√
k

|Δ| ≪ 1 . According to the experiment datasets in this paper, when k = 30 , the maxi-

mum value of 3

√
k

|Δ|  is about 1

100
 and the minimum value is about 1

1000
 . O(|D|) is usually 

about 2 to 3 orders of magnitude smaller than O(|E|).

5  DolhaT and filtered DolhaT structure

5.1  DolhaT structure

In order to enumerate the top-k heavy triangles on graph stream, we propose the data struc-
ture called DolhaT. DolhaT combines the SpaceSaving (SS) algorithm commonly used on 
data stream with the Dolha graph stream data structure [34]. DolhaT uses the SS algorithm 

( |D|
3

)
=

k

|Δ| ×
( |E|

3

)
.
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to filter out the high-weighted edges and stores the high-weighted edges in the set of candi-
date edges, and run the triangle enumeration algorithm on these candidate edges. DolhaT 
uses the combination of orthogonal list and hash table to store the candidate edges that 
each node and edge can be located in O(1) time complexity and the neighbors of each 
node can be enumerated in O(d) time complexity (d is the average degree of the candidate 
set). DolhaT also supports update replacement of candidate high-weight edges by a single 
linked table to sort the set of candidate edges by their weights. The data structure of Dol-
haT is defined as follows and Table 1 shows the notations of DolhaT.

• Optimized Dolha structure for the high-weight edges, denote as D with maximum 
capacity m. D has following structures:

– Node hash tables and edge hash tables for recording the indexes of nodes and edges.
– Node and edge tables for recording the information of nodes and edges.

• In the node table, each cell stores the node ID v and the start point of v’s neigh-
bor list.

• In the edge table, each cell stores the node indexes of the edge uv , the edge 
weigt, the pointers of the neighbor list and the pointer of the weight list.

• The edge �min with minimum weight in D. The weight of �min is W(�min).
• Array for the heavy triangles, denote as T. T is sorted by the triangle weight.
• The triangle Δmin with minimum weight in T. The weight of Δmin is W(Δmin).

For example, Tables 2-6 show DolhaT data structure of Figure 1 at t10 . The node hash 
table (Table  2) and the edge hash table (Table  4) record the edge/node table indexes of 
candidate edges and associated nodes. Through the hash table, the given point or edge can 

Table 1  Notations of DolhaT Notation Description

G Graph stream
v Node
�(uv) Edge between node u and v
W �(�) Weight of streaming edge �
D Candidate set of heavy edges on G
m Maximum capacity of D
W(�) Weight of edge � stored in D
�min Edge with smallest weight in D
T Top-k heavy triangle set on G
Δuvw Triangle formed by uv , vw and uw
W(Δuvw) Weight of triangle Δuvw

Δmin Triangle with smallest weight in T

Table 2  Node hash table of 
DolhaT at t

10

Hash Index 0 1 2 3 4 5 6 7
Node Table Pointer 4 1 3 5 6 7 0 2
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be located in O(1) time complexity. For example, the node v1 is mapped to the cell 6 of the 
node hash table by the hash function H(∗) . In the cell 6 of the node hash table, the node 
table pointer of v1 is stored as 0. the edge v1v4 is mapped to the cell 7 of the edge hash table 
by the hash function H(∗) . In the cell 7 of the edge hash table, the edge table pointer of 
v1v4 is stored as 0.

In the node table (Table 3), each cell stores the node ID and the pointer of the node adja-
cency neighbor list in the edge table. For example, the cell 0 of node table stores the node 
ID v1 and the pointer of the adjacency neighbor list, which points to cell 0 in the edge table.

The edge table (Table 5) stores the indexes of the two nodes of the edge, the weight of 
the edge, the pointer to the weight sorted linked list, and the pointers of the two adjacency 
neighbor lists where this edge is located. By traversing the weight-ordered linked list from 
�min , all the edges in D are sorted by the weight. By traversing the adjacency neighbor list, 
the neighbors of each node can be enumerated.

For example, the cell 0 of the edge table stores the information of edge v1v4 : the two 
node indexes 0 ( v1 ) and 1 ( v4 ), the edge weight 7, the next edge pointer of the weight-
ordered linked list stored as 8 and the two sets of pointers (Adjacency List L and Adja-
cency List R) for the two adjacency neighbor lists. The edge v1v4 is located on the adja-
cency neighbor lists of v1 (Adjacency List L) and v4 (Adjacency List R). In Adjacency List 
L of cell 0, the pointers to the previous and next edges on the adjacency list of v1 are stored 
as / and 3. In Adjacency List R of cell 0, the pointers to the previous and next edges on the 
adjacency list of v4 are stored as / and 1. By using Adjacency List L, the related edges of v1 
can be enumerated: v1v4 , v1v5 . By using Adjacency List R, the neighbors of v4 can be enu-
merated: v1v4 , v2v4 , v4v7 , v4v5 and v4v8.

The triangle table stores the top-k triangles on the graph stream. For example, Table 6 
stores the top-3 heavy triangles Δv1v4v5

,Δv2v4v5
 and Δv4v5v7

 at t10 and the triangles are sorted 
by their weights.

Table 3  Node Table of DolhaT 
at t

10

Node Table Index 0 1 2 3 4 5 6 7
Node ID v

1
v
4

v
2

v
5

v
6

v
7

v
8

v
3

Adjacency List Pointer 0 0 1 2 2 5 7 8

Table 4  Edge hash table of 
DolhaT at t

10

Hash Index 0 1 2 3 4 5 6 7 8 9
Edge Table Pointer 2 6 5 8 4 8 1 0 3 5

Table 5  Edge Table of DolhaT at t
10

v
1
v
4

v
2
v
4

v
5
v
6

v
1
v
5

v
5
v
7

v
4
v
7

v
4
v
5

v
4
v
8

v
3
v
6

v
2
v
5

Edge Index 0 1 2 3 4 5  6 7 8 9
Node Index 0 1 1 2 3 4 0 3 3 5 1 5 1 3 1 6 4 7 2 3
Edge Weight 7 6 20 6 3 5 300 4 20 4
Weight-Ordered List 8 0 6 1 9 3 / 5 2 7
Adjacency List L / 3 0 5 / 3 0 / 3 6 1 6 5 7 6 / 2 / 1 /
Adjacency List R / 1 / 9 / 8 2 4 / 5 4 / 4 9 / / / / 6 /
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For each new incoming edge �(uv) with weight W �

(�) , if � ∈ D and has weight W(�) , 
the weight of � is set as W(�) = W(�) +W

�

(�) ; if � ∉ D and |D| < m , DolhaT adds the 
new edge � into D and the weight is set as W(�) = W

�

(�) ; if � ∉ D and |D| = m , DolhaT 
removes the edge �min and adds the new edge � into D. Applying the similar algorithm as 
SS, DolhaT use the minimum weight W(�min) in D as the estimator to estimate the weight 
of incoming new edge � and set the weight as W(�) = W

�

(�) +W(�min) . Then DolhaT 
resets the minimum weight edge �min.

Then DolhaT enumerates the triangles brought by the new incoming edge � . If 
W(𝜎) < (Δmin) , the update is finished. If W(�) ≥ W(Δmin) , DolhaT checks the adjacency 
neighbor list of v. For each neighbor w of v, if W(vw) ≥ W(Δmin) , DolhaT checks if there is 
an edge vw . If the edge vw exists and has W(vw) ≥ W(Δmin) , DolhaT adds the triangle Δuvw 
into T. If |T| ≤ m , the update is finished; if |T| > m , DolhaT removes the minimum weight 
triangle in T until |T| = m , then the update is finished. Then DolhaT resets the minimum 
weight triangle Δmin.

Table 7 and 8 show the DolhaT at t11 . There are 10 candidate edges are stored in the D 
and the top-3 heavy triangles are stored in the T. At t11 , the new edge v3v5 arrives. Since 
|T| = m and v3v5 is not in D, DolhaT uses the minimum weight as the estimator to estimate 
the weight of v3v5 as 18 and replaces the minimum weight edge v5v7 with v3v5 . Then we 
add the new triangle Δv3v5v6

 into T and remove the minimum weight triangle Δv4v5v7
.

Algorithm 1 shows the pseudocode of DolhaT. By using hash table, the time com-
plexity to check if the incoming edge � exists in D (line 3) is O(1). If edge � exists, 
DolhaT updates the weight record of � (line 4) and updates the associated triangles in T 
(line 5-6). The time complexity is O(|T|) . If � does not exist, DolhaT checks if |D| = m 
(line 8). If |D| = m , use the estimator to estimate the weight of � and remove the mini-
mum weight edge �min (line 9-11). Then DolhaT adds � into D and enumerates triangles 

Table 6  Top-3 Triangles Table of 
DolhaT at t

10
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4
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Δv
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4
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Δv
4
v
5
v
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Node Pointer 0 1 3 1 2 3 1 3 5
Triangle Weight 6 4 3

Table 7  Edge Table of DolhaT at t
11
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v
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v
4
v
8

v
3
v
6

v
2
v
5

Edge Index 0 1 2 3 4 5 6 7 8 9
Node Index 0 1 1 2 3 4 0 3 3 7 1 5 1 3 1 6 4 7 2 3
Edge Weight 7 6 20 6 18 5 300 4 20 4
Weight-Ordered List 4 0 6 1 8 3 / 5 2 7
Adjacency List L / 3 0 5 / 3 0 / 3 6 1 6 5 7 6 / 2 / 1 /
Adjacency List R / 1 / 9 / 8 2 4 / 8 4 / 4 9 / / / / 6 /

Table 8  Top-3 Triangles Table of 
DolhaT at t

10
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4
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5

Node Index 3 4 7 0 1 3 1 2 3
Triangle Weight 18 6 4
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associated with � (line 12). In this step, the time complexity is O(|D|) . Then DolhaT 
sorted the heavy triangle array and removes the minumum weight triangle until |T| = k . 
In this step, the time complexity is O(|T| × log |T|) . If k is small and |T| ≪ |D| , the time 
complexity of DolhaT update is O(|D|) . Otherwise, the time complexity of DolhaT 
update is O(|T| × log |T|).

5.2  Filtered DolhaT structure

Filtered Spacesaving (FSS) uses a hash table approach to optimize the Spacesaving (SS) 
algorithm. SS algorithm uses the minimum weight in the array as the global estimator 
and the estimation method causes a large bias that affects the accuracy of the final result. 
FSS algorithm, on the other hand, uses a hash table to store a series of local estimators. 
The local estimators spread the values of the estimators in a more accurate way and thus 
improve the accuracy. This optimization strategy can also be used in DolhaT by replacing 
the edge hash table with a hash filter table to the candidate edges set D. Therefore, in this 
paper, we propose an optimized data structure Filtered DolhaT by adding the following 
structure. Table 9 shows the added notations of Filtered DolhaT.

Algorithm 1   DolhaT edge update.
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• A hash filter table denoted as H. The cell i of H has a local estimator ei , a bit flag fi and 
a local counter ci

– The local estimator ei stores the weight of the edges mapped to i.
– The bit flag fi shows if any edge mapped to i is stored in D.
– If fi = 0 , the local counter ci stores the number of the edges mapped to i. If two 

edges have the same estimated weight, the edge with smaller local counter is con-
sidered to be the heavier edge.

– If fi = 1 , the local counter ci is transformed into the edge table pointer and point to 
the edge stored in D.

Tables 10 to 12 show the structure of Filtered DolhaT at t13 . Filtered DolhaT has the 
similar structure of D except the edge hash table. To reduce redundancy, we do not describe 
the specific structure of D and use the schematic tables for the examples. In Table 10, the 
flag f0 = 1 which means that c0 is the pointer to the edge table cell 0. The flag f3 = 0 which 
means that c3 is the local counter of the edges mapped to 3.

For each new incoming edge �(uv) with weight W �

(�) , if � ∈ D and has weight W(�) , 
the weight of � is set as W(�) = W(�) +W

�

(�) ; if � ∉ D and |D| < m , Filtered DolhaT 
adds the new edge � into D and the weight is set as W(�) = W

�

(�) ; if � ∉ D and |D| = m , 
Filtered DolhaT maps edge �min into the cell x of H and sets W(�) = ex +W

�

(�) . Then 
Filtered DolhaT compares W(�) with W(�min) . If W(𝜎) < W(𝜎min) or W(�) = W(�min) and 
cx ≥ cmin , Filtered DolhaT sets ex = W(�min) and cx = cx + 1 . Otherwise, Filtered DolhaT 
inserts � into D and removes �min from D. Then Filtered DolhaT maps �min to y of H and set 
ey = ey +W(�min) and cy = cy + 1 . If W(�) is inserted into D, Filter DolhaT enumerates the 
triangles associated with W(�) and updates T in the same way as DolhaT.

Filtered DolhaT not only increases the accuracy of the results, but also reduces the com-
putational cost of each edge update. In DolhaT, since there is only one estimator, unless 
the newly inserted edge has been recorded, each update triggers an edge insertion and the 
enumeration of triangles. In contrast, in the update process of Filtered DolhaT, only when a 

Table 9  Notations of filtered DolhaT

Notation Description

H Hash filter table
H(∗) Hash function to map the streaming edge into H
ei Local estimator for the edge mapped into the cell i of H
fi Bit flag to show if any edge mapped to i is stored in D
ci Counter to store the number of the edges mapped into the cell i of H

Table 10  Hash filter table of filtered DolhaT at t
13

H(�) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
e 0 0 0 7 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0
f 1 0 1 0 0 1 1 0 1 0 1 0 0 1 0 1 0 1 0 1
c 8 0 4 2 0 1 3 0 7 0 5 0 1 9 0 0 0 2 0 6
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new heavy edge appears, the edge needs to be inserted into the candidate set and the trian-
gle enumeration is performed Table 11.

We use the same example of Figure  1. Given a hash function H(∗),we have the fol-
lowing mappings: 3 ← H(v5v7) , 3 ← H(v4v8) , 12 ← H(v2v5) , 2 ← H(v3v5) , 8 ← H(v6v9) , 
13 ← H(v5v9) . Since Filtered DolhaT uses the local estimators not the globel estimator, at 
t11 , the local estimator of v3v5 is 0, the v3v5 has the accurate weight 15 in Filtered DolhaT 
and replaces edge v5v7 . Then the new edges v6v9 and v5v9 also have the accurate weights 
stored by using the local estimators.

Algorithm  2 shows the processing of edge updates by Filtered DolhaT. Compared to 
DolhaT, Filtered DolhaT adds the process of filtering the edge weights by the local estima-
tor (lines 3, 15 and 16). The time complexity of this operation is O(1). Unlike DolhaT, Fil-
tered DolhaT does not need to perform edge insertion and triangle enumeration every time. 
Triangle enumeration is only required when the edge passes the filter with a greater weight 
than the minimum edge weight in D. In other cases, it is not necessary to run the Triangle-
Find function, and only the operation of time complexity O(1) Therefore, in practice, the 
average complexity of Filtered DolhaT is lower than DolhaT.

6  Double filterd DolhaT structure

In Section 4, we analyze O(|D|) is usually 2-3 orders of magnitude smaller than O(|E|) . But 
for Filtered DolhaT, there is an additional space overhead of hash filtering table. If there is 
a need to maintain the similar memory footprint as DolhaT, keeping the space complex-
ity to O(|D|) , we can not guarantee |H| ≥ |E| to achieve a one-to-one hash mapping for 
the streaming edges. A large number of hash collisions can occur if |H| < |E| . Each local 
estimator may be the sum of weights of multiple edges, this can affect the accuracy of the 
structure. For this reason, we hope that we can further reduce the errors caused by such 
hash collisions and thus improve the accuracy.

According to the analysis in Section 3, the degrees of edges in realistic graph stream 
have a power-law distribution, and the maximum and minimum weights of edges can differ 
by multiple orders of magnitude. If different sizes of memory space are used to record dif-
ferent sizes of edge weights, the collision error can be further reduced and the accuracy rate 
can be improved within the limited memory space. Therefore, this paper proposes a new 
structure, Double Filtered DolhaT (DFD), to optimize the Filtered DolhaT structure. Dou-
ble Filtered DolhaT, which is based on the Filtered DolhaT structure, changes the counter 
ci to a lite estimator array bi . Each lite estimator array bi is divided into |b| lite estimators 

Table 11  Edge table of filtered 
DolhaT at t
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Table 12  Top-3 heavy triangles 
of filtered DolhaT at t
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Weight 16 15 6
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and the size of each lite estimator is 32∕|b| bits (we consider the size of each counter is 32 
bits). The maximum value of the lite estimator is denoted as B and the lite estimator array 
bi has the same memory cost as the counter ci . Table 13 shows the added notations of DFD.

After each edge in the graph stream is mapped to a location x of the hash estimator table 
H , it is also mapped to a location bpx of the lite estimator array bx by another hash function. 
When the edge � in the graph stream is mapped to bpx and bpx < B , DFD uses the bpx as the 

Algorithm 2   Filtered DolhaT edge update.
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estimator to estimate the weight of � . The |H| size filter table is divided into |H × b| size 
and the hash collisions are reduced significantly. When bpx reaches the maximum value, 
the overflow will be recorded in the estimator ex which will eventually be the sum of the 
overflow of all the lite estimators of bx (when the first overflow occurs, it is the maximum 
value of the overflow of all the lite estimators of bx . But if the overflow continues to occur, 
estimator ex eventually will be the sum of the overflow of all the lite estimators). By using 
the lite estimator array, the smaller edge weights are stored in the lite estimators and less 
affected by hash collisions. For the heavies edges, the estimated weights are only affected 
by the overflow fraction of the lite estimators.

For each new incoming edge �(uv) with weight W �

(�) , if � ∈ D and has weight W(�) , 
the weight of � is set as W(�) = W(�) +W

�

(�) ; if � ∉ D and |D| < m , DFD adds the new 
edge � into D and the weight is set as W(�) = W

�

(�) ; if � ∉ D and |D| = m , DFD uses H(∗) 
to map � to x of filter table H and uses h(∗) to map � to the lite estimator bpx of the lite esti-
mator array bx.

If bpx < B , bpx is the estimator for � , DFD sets W(�) = b
p
x +W

�

(�) . If W(𝜎) < W(𝜎min) , 
then DFD compares W(�) and B. If W(�) ≤ B , DFD sets bpx = W(�) . If W(𝜎) > B , DFD 
sets ex = MAX(ex,W(�) − B) and bpx = B . If W(�) ≥ W(�min) , DFD inserts � into D and 
removes �min from D.

If bpx = B , ex is the estimator for � , DFD sets W(�) = ex +W
�

(�) . If W(𝜎) < W(𝜎min) , 
DFD sets ex = W(�min) . If W(�) ≥ W(�min) , DFD inserts � into D and removes �min from D.

By using the lite estimator array bx , the filter space is |b| times larger than |H| for the 
edges with smaller weight than B. In Filtered DohaT, the average expectation value of the 
estimator ex of H is |E||H| ×Wavg ( Wavg is the average edge weight of G  ). In DFD, the the aver-
age expectation value of the estimator is |E|

|H×b| ×Wavg if the bpx does not reach the maximum 
value B. When the bpx reaches B, the average expectation value of the estimator is 
|E|
|H| ×Wavg − |b − 1| × B . In DFD, the lite estimator guarantees that the estimated weight of 
the streaming edge W(�)DFD is less than or equal to the estimated weight in Filtered Dol-
haT W(�)FD and larger than or equal to the real weight W(�)R , i.e. 
W(�)R ≤ W(�)DFD ≤ W(�)FD . Algorithm 3 shows the pseudocode of DFD.

We use the same example of Figure  1. Given a hash function H(∗),we have the fol-
lowing mappings: 12 ← H(v5v8) , 12 ← H(v8v9) . Given another hash function h(∗),we have 
the following mappings: 0 ← H(v5v8) , 3 ← H(v8v9) , 1 ← H(v2v5) . In this example, we set 
B = 2 and |b| = 4.

When edge v2v5 is added into the hash filter table H at t11 , v2v5 is mapped to 12 by hash 
function H(v2v5) and 1 by hash function h(v2v5) . DFD locates the lite estimator b1

12
 and 

add the weight 4 to the lite estimator b1
12

 . Since the lite estimator b1
12

 reaches B, DFD sets 
b1
12

= 2 and add the overflow to the estimator e12 = 2.

Table 13  Notations of DFD

Notation Description

bx Lite estimator array for the edges mapped into the cell x of H
h(∗) Hash function to map the streaming edge into bx
b
p
x Lite estimator for the edge mapped into the cell p of bx

|b| Size of the lite estimator array
B Maximum value of the lite estimator
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At t14 , v5v8 is mapped to 12 by hash function H(v5v8) and 0 by hash function h(v5v8) . The 
lite estimator b0

12
= 0 which means v5v8 is a new edge of graph stream. DFD dose not need 

Algorithm 3   DFD edge update.
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use the estimator to estimate the previously carried weights by v5v8 . The weight of v5v8 is 
set to 7. In Filtered DolhaT, The weight of v5v8 is set to 12, since v5v8 and v2v5 have a hash 
collision.

At t15 , v8v9 is mapped to 12 by hash function H(v8v9) and 3 by hash function h(v8v9) . The 
lite estimator b3

12
= 0 which means v5v8 is a new edge of graph stream. The weight of v5v8 

is set to 3 which is smaller the minimal weight in D. DFD adds the weight to b3
12

 and sets 
b3
12

= 2 . Then DFD processes the overflow and set e12 = MAX(2, 1) = 2 . In Filtered DolhaT, 
The weight of v8v9 is set to 7, since v8v9 and v2v5 have a hash collision. Edge v8v9 is incor-
rectly added to D, producing the wrong candidate edge.

At t16 , edge v2v5 arrives again. DFD uses the estimator e12 = 2 and the lite estimator 
b1
12

= 2 to estimate the estimate the previously carried weights by v2v5 . The correct weight 19 
is updated into D. Table 14 show the cell 12 in edge hash table H of DFD at t16.

By decomposing the counters in Filtered DolhaT into a table of smaller size estimators 
to store multiple lite estimators, the errors due to hash collisions can be reduced. With the 
guarantee of false positive error (the estimator must be larger than or equal to the true value), 
the DFD structure ensures that the estimate of all edge weights is less than or equal to the esti-
mate of Filtered DolhaT. DFD improves the accuracy of the data structure without adding new 
space and time costs, achieving performance optimization of Filtered DolhaT.

7  Experimental evaluation

7.1  Experimental setup

Datasets In this paper, we use 5 real world datasets obtained from [49] in experiments. 
The datasets statistics are given in Table 15.

Environment All experiments are performed on a server with dual 8-core CPUs (Intel 
Xeon CPU E5-2640 v3 @ 2.60GHz) and 128 GB DRAM memory, running CentOS. All 
the data structures are implemented in C++.

7.2  Methodology

Since the weights on the real dynamic graph datasets used are all 1, the total weight of an edge 
is determined by the frequency of occurrence. To better test the performance of these data 
structures, the experiments assign a random number from 1 to 5 to each edge in the dataset as 
the weight of this edge. Edges that occur more frequently are also given higher total weights. 
This weight assignment method does not change the distribution of edge weights and also pro-
vides an experimental data environment with different size edge weights.

Table 14  Cell 12 in Edge Hash 
Table H of DFD at t16

H(�) 12
Estimator e

12
2

Lite Estimator Array b
12

0 2 0 2
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We conducted comparison experiments among DFD, DolhaT and Filtered DolhaT. The 
compared experiments include edge throughput, memory usage, precision rate(PR) and 
average relative error (ARE). The real top-k triangles set of graph stream is � with weights 
W(�1),W(�2)...W(�k) ; the estimated top-k triangles set of graph stream is � with weights 
�1), �2)...�k) . PR is �∩�

k
 and ARE is 1

k
×
∑k

i=1

Ŵ(�i)−W(�i)

W(�i)
 ( ̂W(�i) is the estimated weight of �i ). 

We also use the exact structure Dolha as a benchmark to compare with DFD. Four different 
sets of parameter settings in Table 16 are used for the experiments. Using these parameter 
settings, experiments were conducted on the four data structures DolhaT, Filtered DolhaT, 
DFD and Dolha on the five data sets in Table 15, and then the average edge throughput, 
memory usage, precision rate(PR) and average relative error (ARE) of the five data sets 
were taken for comparison.

7.3  Experiments on different DFD perimeters

Section 6 discusses the composition and update operations of the DFD data structure.The 
DFD forms a second layer filter by dividing the counters in the hash filter table into arrays 
of lite estimators. Since the average expectation of each lite estimator in b is |E|

|H×b| ×Wavg 
and b size is fixed at 32 bits, the maximum value of each lite estimator is B = 2

32

|b| . For dif-
ferent size settings of b, there is a different impact on ARE. Since the bits of b is fixed, if |b| 
is larger, the maximum value B is smaller which causes more overflow. if |b| is smaller, the 
maximum value B is larger but it causes more hash collisions and raises the average expec-
tation of errors. Therefore, |b| needs to be set according to the average edge weights. When 
B is in the same order of magnitude as the average weight of edges, the best accurate results 
can be obtained.

Figure 4 shows ARE of different |b| setting. The average weights of edges in the experi-
mental datasets are 50-100 and the fixed bits of b is 32. If we set |b| = 2 , B = 216 which 

Table 15  Datesets

Dataset |V| |E| |T| |T|max |T|avg
FLICKR-GROWTH [49] 2M 33.1M 6B 7M 3K
EPINIONS-USER-RATINGS [50, 51] 756K 14M 44M 2M 58
YOUTUBE-GROWTH [52] 3.2M 12.2M 64.7M 596.6K 20
CIT-HEPPH [34] 23K 3M 934M 5M 41K
ENRON-EMAIL-DYNAMIC [48] 87K 1M 822M 30M 9K

Table 16  Trial parameters Trial 1 Trial 2 Trial 3 Trial 4

Top-k 30 30 30 30
DolhaT m 1

40
× |E| 1

20
× |E| 1

10
× |E| 1

5
× |E|

Filtered DolhaT |H| 1

32
× |E| 1

16
× |E| 1

8
× |E| 1

4
× |E|

Filtered DolhaT m 1

80
× |E| 1

40
× |E| 1

20
× |E| 1

10
× |E|

DFD |H| 1

32
× |E| 1

16
× |E| 1

8
× |E| 1

4
× |E|

DFD m 1

80
× |E| 1

40
× |E| 1

20
× |E| 1

10
× |E|
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far exceeds the average weight and greatly increases the hash collisions. If we set |b| = 16 , 
B = 22 which is far less than the average weight, and cannot accurately record the weight 
values in the lite estimators. when we set |b| = 8 , the maximum value of each lite estimator 
is B = 24 , which is less different from the average weight. The experiments also demon-
strate that ARE is smallest when |b| = 8 . Therefore, we used |b| = 8 as the default experi-
mental parameter in all subsequent comparison experiments.

7.4  Experiments on different structures

In the experiments, we use four different experimental parameter settings to compare the 
performance of the four data structures in terms of edge throughput, memory usage, preci-
sion rate(PR) and average relative error (ARE). Figure 5 shows the number of edges that 
the four data structures can process per second. Figure 6 shows the memory usage of the 
four data structures. The experiment sets the memory usage of Dolha, the exact data struc-
ture, to 100% as a benchmark to compare the memory usage efficiency of the other three 
data structures. Figure 7 shows the PR of the top-k heavy triangle enumeration, and Fig-
ure 8 shows ARE of the heavy triangle weights.

DFD versus DolhaT In the four experimental parameter settings, we set the memory foot-
print of each group of DFD and DolhaT to be the same. In the case of the same memory 
footprint, DFD has a 2× speedup relative to DolhaT, which is due to the fact that DFD 
has only half size |D| compared to DolhaT, and thus has a lower time complexity. As the 
memory footprint increases, the throughput of DolhaT drops extremely fast (as shown in 
Figure 5). This is due to the fact that DolhaT uses a global estimator, which causes edge 
replacement in D and the triangle enumeration for each incoming edge. This significantly 
increases the update time complexity of each edge.

For DFD and Filtered DolhaT, only the heavy edges that pass the hash filter check are 
added to D and a triangle enumeration is performed. The most of edges are smaller than 
the edge weights in D and do not require a triangle enumeration. This filtering of the can-
didate edges significantly improves the update performance. Due to the use of filters and 
local estimators, DFD is much better than DolhaT data structure in terms of PR and ARE 
(as shown in Figures 7 and 8).

Figure 4  ARE of different |b|
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DFD versus filtered DolhaT In the four experimental parameter settings, we set the mem-
ory allocation for each set of DFD and Filtered DolhaT to be exactly the same, and both 
data structures have the same size filter |H| and candidate set |D| . In terms of throughput, 
both data structures are essentially the same, which is due to the fact that the update time 
of both data structures with exactly the same time complexity. However, PR (Figure 7) and 

Figure 5  Throughput of different structures

Figure 6  Memory usage of different structures

Figure 7  PR of different structures
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ARE (Figure 8) performance of DFD outperform Filtered DolhaT. This is due to the size 
limitation of H that leads to a large number of hash collisions. for Filtered DolhaT, an 
average of 4 to 32 collisions occur for each local estimator with different parameter set-
tings, and the edge weights of these collisions are accumulated as error values in the local 
estimator. The edge weights of these collisions are accumulated as error values in the local 
estimator. In contrast, DFD uses the lite estimators to reduce the error values generated by 
collisions, which improves the accuracy.

DFD versus Dolha In the four experimental parameter settings, DFD occupies 1/40, 1/20, 
1/10 and 1/5 of Dolha’s memory and stores 1/80, 1/40, 1/20 and 1/10 of Dolha’s edges. 
Compared to Dolha, DFD greatly reduces the memory usage overhead. Moreover, since 
DFD keeps fewer edges in D, DFD processes edges more efficiently, reaching a 2 − 3× 
speedup. In the experiments, DFD achieves more than 90% PR with ARE of no more than 
1,which means the estimated weights are no more than 2 times the true weights. The exper-
iments show that DFD achieves high accuracy with much lower time and space cost than 
Dolha for top-k triangle listing.

Experiment summary The experimental results show that ARE of DFD is related to the 
maximum value B of the lite estimator, which is consistent with our theoretical analysis. 
When B is in the same order of magnitude as the average weight of edges, the best accurate 
results can be obtained. Since Filtered DolhaT and DFD use the local estimator based on 
hash tables, Filtered DolhaT and DFD possess better PR and ARE than DolhaT for the 
same memory usage. Since DFD uses a dual filtering structure of the local estimator and 
the lite estimator, DFD possesses higher accuracy and lower ARE than Filtered DolhaT. 
Compared to the exact structure Dolha, DFD uses smaller space and time cost and also 
obtains the satisfactory PR and ARE.

8  Conclusion

The triangle counting and enumeration problem is one of the fundamental problems in 
graph mining. As one of the simplest circle and clique structures, enumerating heavy trian-
gles in graph stream can play an important role in use cases such as Internet attack detec-
tion, community discovery and financial fraud detection. However, traditional research 

Figure 8  ARE of different structures
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on triangle computation on graph stream mainly focuses on triangle counting and lacks 
research on listing of heavy triangles.

In this paper, a definition of the weight of triangles is given and the rationality of this 
definition in practical applications is discussed. Based on this definition, this paper presents 
the problem of listing the top-k heavy triangles in graph stream. To solve this problem, 
DolhaT and Filtered DolhaT data structures are proposed in this paper by combining Dolha 
data structures and SpaceSaving (SS) or Filtered SpaceSaving (FSS) algorithm. These two 
data structures can efficiently discover the triangles with high weights in the graph flow 
data. In this paper, the time and space complexity of these two data structures are also 
analyzed. To further improve the accuracy of Filtered DolhaT, this paper proposes the data 
structure of DFD, which transforms the counters of Filtered DolhaT into the lite estimator 
array as an extra filter, and further reduces the error value of Filtered DolhaT and improves 
the accuracy through the double filtering method. Finally this paper verifies the superiority 
and effectiveness of the DFD data structure on five large-scale graph stream datasets.

In the future work we plan to further optimize the DFD data structure. On the one 
hand, the perimeter setting |b| of DFD relies on the predicted average edge weight of graph 
stream. With the involvement of graph stream, the average edge weight is changing. We 
plan to design a self-adaptive method for DFD that |b| is not fixed but automatically opti-
mized as graph stream changes. On the other hand, by combining with other work on graph 
stream, the DFD data structure can be applied to more complex graph stream models, such 
as graph stream with sliding windows.
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