
gCBO: A Cost-based Optimizer for Graph Databases
Linglin Yang

Peking University
Beijing, China

linglinyang@stu.pku.edu.cn

Lei Yang
Peking University
Beijing, China

yang_lei@pku.edu.cn

Yue Pang
Peking University
Beijing, China

michelle.py@pku.edu.cn

Lei Zou
Peking University
Beijing, China

zoulei@pku.edu.cn

ABSTRACT
Query optimization is an especially challenging problem in graph
databases due to its wide plan space and the difficulty in gathering
statistics. In this demonstration, we propose a new cost-based query
optimizer called gCBO for graph databases and implement it in a
specific graph database (i.e., gStore). To tackle the aforementioned
challenges, gCBO employs a hybrid plan enumerator based on dy-
namic programming, cost models that capture the characteristics of
different types of joins, and a sampling-based cardinality estimation
strategy that gathers the necessary statistics on-the-fly. What is
more, to absorb the experience of users, we build an interactive
component for gCBO, which allows users to receive the optimized
execution plans with detailed information and generate their own
plans for execution.

CCS CONCEPTS
• Information systems→ Query optimization; Database man-
agement system engines; Database query processing.

KEYWORDS
Graph database; query optimization; SPARQL query
ACM Reference Format:
Linglin Yang, Lei Yang, Yue Pang, and Lei Zou. 2022. gCBO: A Cost-based
Optimizer for Graph Databases. In Proceedings of the 31st ACM International
Conference on Information and Knowledge Management (CIKM ’22), October
17–21, 2022, Atlanta, GA, USA. ACM, New York, NY, USA, 5 pages. https:
//doi.org/10.1145/3511808.3557197

1 INTRODUCTION
Query optimization is one of the most challenging problems in
database systems. A good optimizer can speed up the execution
time by up to orders of magnitude through various optimization
techniques [4]. Query optimization in the recently popular graph
databases is even more crucial, for graph queries often involve a
large number of joins and thus require more sophisticated optimiza-
tion techniques to achieve high performance on execution. There
are three major difficulties in the query optimization for graph
databases:

(1) Wide Plan Space. Queries on graphs are usually compli-
cated with many joins, so the space of query plans is wide when

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CIKM ’22, October 17–21, 2022, Atlanta, GA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9236-5/22/10. . . $15.00
https://doi.org/10.1145/3511808.3557197

considering the join orders. This makes greedy strategies for join
order selection employed in graph databases (e.g., gStore [8]) es-
pecially vulnerable to getting stuck in local optima. Moreover, this
problem is exacerbated when considering storage implementations
(e.g., index selection) and query types (e.g., limit-k queries).

(2)Difficulty in gathering statistics.Many relational databases
rely on some forms of statistics (e.g., histograms) for query opti-
mization. However, these techniques often fail in graph databases
for two reasons. First, such statistics are not well-defined on graphs
as on relational tables. Second, such statistics are expensive to
maintain due to the large time and space overhead. For example,
Graphflow’s query optimizer [5] is effective on graphs with few la-
bels based on its statistics called catalogue. However, for real-world
graphs with only dozens of labels, it can easily take more than one
day to build such a catalogue [3].

(3) Lack of user interaction. Sometimes, the experience of
users can help generate better execution plans or correct obvious
mistakes of the database optimizer. However, existing graph data-
base systems hardly provide such interactive interfaces for users to
utilize their feedback during query execution.

Our Methods and Contributions. To overcome these difficul-
ties, we absorb experience from relational database query optimiza-
tion to design a Cost-Based Optimizer for graph database systems
named gCBO, and implement it in gStore1. Specifically:
• We design a plan enumerator based on dynamic program-
ming, which effectively enumerates query plans combining
worst-case-optimal (WCO) joins and binary joins, and pro-
pose distinct cost models for queries with or without LIMIT
clauses. The combination of our plan enumerator and cost
model enables our optimizer to find a near-optimal plan in a
relatively short time.
• We propose a sampling-based cardinality estimation strategy,
which obtains the necessary statistics on-the-fly with low
overhead. Our method ensures that we predict the cardinal-
ity efficiently without computing or storing any redundant
statistics.
• We build an interactive component for visualizing query
optimization2, which displays the tree structure of the opti-
mized query plan, the execution time of each operation, the
real cardinalities and our estimated ones. Moreover, after in-
vestigating the query plan generated by the optimizer, users
can revise or rewrite the query plans for execution via the
interactive interface.

2 DEFINITION AND NOTATIONS
In this work, we focus on graph database query optimization. Our
method is based on RDF data graphs and SPARQL queries. However,
1https://github.com/pkumod/gStore.
2https://github.com/pkumod/gStore_plan_presentation.

https://doi.org/10.1145/3511808.3557197
https://doi.org/10.1145/3511808.3557197
https://doi.org/10.1145/3511808.3557197
https://github.com/pkumod/gStore
https://github.com/pkumod/gStore_plan_presentation

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Linglin Yang, Lei Yang, Yue Pang, & Lei Zou

Figure 1: Architecture of gCBO

our optimizer fits other graph data models such as property graphs
as well.

An RDF data graph consists of a set of triples ⟨𝑠 𝑝 𝑜⟩ representing
relations between entities or attributes of certain entities, where 𝑠 ,
𝑝 and 𝑜 are called the subject, predicate and object, respectively.

SPARQL [2] is the standard query language for RDF data graphs.
A simple SPARQL query consists of a header (i.e., the SELECT clause,
which specifies the projection variables in the final results) and
a body (i.e., the WHERE clause, which specifies the graph patterns
to be matched). In this demonstration, we only consider SELECT
queries with a connected basic graph pattern. A basic graph pat-
tern comprises triple patterns in the form of ⟨𝑠 𝑝 𝑜⟩, where the
subject, predicate and object may either be a constant (e.g., ⟨𝑝⟩) or
a variable (e.g., ?𝑥). It is connected when the triple patterns form a
connected graph. For convenience, we only introduce our methods
on queries with constant predicates. However, our optimizer can
handle predicate variables as well. At the end of a query, users can
constrain the number of results by an upper bound using a LIMIT
clause. In this demonstration, we call queries with and without
LIMIT clauses limit-k queries and normal queries, respectively.

An example query is shown below. We can classify the triple
patterns into two types: one is called constant constraints, which
describe the attributes of variables on the subject or object position
(like ⟨?𝑥 ⟨𝑝1⟩ ⟨𝑜⟩⟩, only one variable in each triple); the other
is called variable joins, which link two variables by a constant
predicate (like ⟨?𝑥 ⟨𝑝2⟩ ?𝑦⟩). Our goal is to generate near-optimal
execution plans for such queries.

SELECT ?𝑥 ?𝑦 · · ·WHERE{
?𝑥 ⟨𝑝1⟩ ⟨𝑜⟩. # constant constraint
· · · · · ·
?𝑥 ⟨𝑝2⟩ ?𝑦. # variable join

} (LIMIT 𝑘) # LIMIT clause (optional)

3 COST-BASED OPTIMIZER
3.1 System Overview
Figure 1 shows the architecture of gCBO. It consists of three main
components: (1) plan enumerator, (2) cost estimator and (3) cardinal-
ity estimator. The plan enumerator enumerates possible execution
plans. Then the cost estimator invokes the cardinality estimator to
estimate the execution cost of the current plan. Finally, the opti-
mizer selects the plan with the least cost to execute.

A

C

D

B

A

C

B

C

D

B

A

C

B

A

B

B

C

CB

D

(a) Hybrid query plan

WJ

A B

C

WJ

BJ

WJ

B C

D

WJ

(b) Binary tree representa-
tion

Figure 2: An example of a hybrid query plan and its corre-
sponding binary tree representation.

3.2 Plan Tree Representation
Before introducing how plans are enumerated, we first specify the
plan space that we consider. Our execution plan may comprise the
following two types of joins:
• Binary join, which joins two bags of subquery results to
get the results of a larger set of query variables, similar to
natural join in RDBMS. Binary joins can be implemented by
well-studied methods, such as hash-join or merge-join.
• WCO join [6, 7], which extends a vertex and processes all
edges that link the new vertex and the previous subquery
graph at a time.

Either of these two join methods could be more efficient than
the other in different scenarios. For example, recent studies have
empirically shown that WCO joins perform better on highly cyclic
queries, while binary joins are more efficient on cycle-free queries.
[1, 6]. We therefore consider hybrid plans that combine these two
join methods. Figure 2(a) shows an example of such a hybrid plan.

gCBO uses a binary tree structure to represent the query plan.
For instance, the execution plan of Figure 2(a) is shown as a tree in
Figure 2(b). Each leaf node of the binary tree is one-to-one mapped
to a query variable which represents a variable scan operation. For
example, for the triple pattern ⟨?𝑥 ⟨𝑝⟩ ⟨𝑜⟩⟩, there exists a leaf node
?𝑥 which scans the database and sets those subjects linked with
the predicate ⟨𝑝⟩ and object ⟨𝑜⟩ as the candidates of the variable
?𝑥 . Moreover, if the variable occurs in multiple triple patterns with
constants, these candidate lists are intersected to produce the final
candidates of that variable in one scan operation.

Internal nodes of the plan tree represent joins between the results
of the two subtrees rooted at the join node. For WCO join nodes,
we place the extended variable as the right child. For binary join
nodes, we require that their two child subtrees have at least one
common leaf node.

3.3 Dynamic Programming Plan Enumerator
To handle the exponential plan space, we designed a dynamic pro-
gramming plan enumerator. The pseudocode of our enumerator is
shown in Algorithm 1.

The enumerator receives a query𝑄 whose variable set is denoted
as 𝑉𝑄 and outputs an execution plan denoted by 𝑇𝑄 expressed in
the binary tree form. After performing variable scans on all the
query nodes (Line 1), the enumerator expands the subquery step

gCBO: A Cost-based Optimizer for Graph Databases CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

Algorithm 1: Dynamic Programming Plan Enumerator
Input: SPARQL query𝑄 (𝑉𝑄)
Output: Query plan𝑇 (𝑄) of the input query𝑄

1 Perform variable scans on all query nodes ;
2 for 𝑘 from 2 to |𝑉𝑄 | do
3 foreach𝑉𝑘−1 ⊆ 𝑉𝑄 , s.t. |𝑉𝑘−1 | = 𝑘 − 1 do
4 bestPlan← BestPlan(𝑉𝑘−1) ;
5 foreach 𝑣 in Neighbor(𝑉𝑘−1) do
6 P←WCOJoin(bestPlan, 𝑣) ;
7 insert P to PlanCache ;
8 if 𝑘 ≥ 5 and Type(𝑄) = NormalQuery then
9 foreach𝑉𝑘 ⊆ 𝑉𝑄 , s.t. |𝑉𝑘 | = 𝑘 do
10 for𝑉𝑘1 ,𝑉𝑘2 ⊆ 𝑉𝑘 , s.t.𝑉 = 𝑉𝑘1 ∪𝑉𝑘2 do
11 P← BinaryJoin(BestPlan(𝑉𝑘1), BestPlan(𝑉𝑘2)) ;
12 if cost(P) < BestPlan(𝑉𝑘) then
13 insert P to PlanCache ;
14 return BestPlan(𝑉𝑄)

by step by expanding the set of query nodes. There are two modes
of extension corresponding to the two types of joins: WCO join,
which adds a neighbor of any node currently in the set to the sub-
query (Lines 3-7); and binary join (Lines 8-13). Notice that we only
consider binary join when the set of query nodes is large enough
(i.e., when |𝑉𝑄 | ⩾ 5) since binary joins are equivalent to WCO joins
if |𝑉𝑄 | < 5.

3.4 Cost Estimator
In order to compare the quality of different query plans and select
a near-optimal plan for the executor, we need to estimate their
execution costs (Lines 6 and 11 of Algorithm 1), including the com-
putation cost and data transfer latency, and choose the plan with
the lowest cost (the invocations of BestPlan in Algorithm 1).

As mentioned in Section 3.2, an execution plan 𝑇 is composed
of join operations and variable scans. Because variable scans are
completed at the plan enumeration stage (Line 1 in Algorithm 1),
the cost of the plan 𝑇 (𝑄) can be expressed as the sum of the costs
of its join operations:

𝑐𝑜𝑠𝑡 (𝑇 (𝑄)) =
∑︁

𝐽 ∈𝑇 (𝑄)
𝑐𝑜𝑠𝑡 (𝐽) (1)

(1) Cost of WCO joins. For WCO join operation, our executor
checks each of the edges adjacent to the newly added node in the
query graph for each result from the last step. For each edge, ac-
cording to the subject-predicate pair (or the object-predicate pair,
depending on the edge direction), the executor retrieves the corre-
sponding set of objects (or subjects) from the database. Finally, these
retrieved sets and the candidate set of the newly added query node
are intersected to get the result set of the current step. Therefore,
we can estimate the cost of WCO join with the following formula:

𝑐𝑜𝑠𝑡 (WCOJoin({𝑣1 · · · , 𝑣𝑘−1}, 𝑣𝑘)) =
𝑐𝑎𝑟𝑑 ({𝑣1, · · · , 𝑣𝑘−1}) × min

⟨𝑣𝑖 𝑝 𝑣𝑘 ⟩𝑖𝑛 𝑄

𝑜𝑟 ⟨𝑣𝑘 𝑝 𝑣𝑖 ⟩𝑖𝑛 𝑄

𝑎𝑣𝑒𝑟𝑎𝑔𝑒_𝑠𝑖𝑧𝑒 (𝑣𝑖 , 𝑝) (2)

This formula emulates the cost of checking the aforementioned
edges regarding the newly added vertex 𝑣𝑘 . For each edge, according
to the procedure, we need to scan the set of matching objects (or

subjects, depending on the edge direction) whose estimated size
is captured by 𝑎𝑣𝑒𝑟𝑎𝑔𝑒_𝑠𝑖𝑧𝑒 (𝑣𝑖 , 𝑝). This estimation can be done by
averaging over samples during cardinality estimation when 𝑘 = 2.
Multiplying the minimum value of these estimates by the previous
cardinality estimate 𝑐𝑎𝑟𝑑 ({𝑣1, · · · , 𝑣𝑘−1}), we get an upper bound
on the join results, which is then used to approximate the cost of
the WCO join.

(2) Cost of binary joins. The binary join is implemented as
hash join in gStore, which first builds a hash index on the common
query variables of the smaller result set, then probes it by each
result in the larger set. We can thus estimate the cost of a binary
join as follows:

𝑐𝑜𝑠𝑡 (BinaryJoin(𝑉1,𝑉2)) =
2 ×min(𝑐𝑎𝑟𝑑 (𝑉1), 𝑐𝑎𝑟𝑑 (𝑉2)) +max(𝑐𝑎𝑟𝑑 (𝑉1), 𝑐𝑎𝑟𝑑 (𝑉2))

(3)

where the first operand estimates the cost of building the hash
index, and the second estimates the cost of probing it.

3.5 Sampling-based Cardinality Estimator
A key ingredient in our cost model is the estimated size of interme-
diate results, i.e., cardinality, of a subquery. Given a subquery𝑄 (𝑉)
with query vertex set 𝑉 , we denote its cardinality by 𝑐𝑎𝑟𝑑 (𝑉). We
aim for the estimate to be as accurate and stable as possible.

Our cardinality estimator mainly uses sampling methods, which
are quite stable and usually more accurate than statistics methods
like histograms [3]. Concretely, it consists of the following two
steps:

(1) Sampling One Variable. For every query vertex in the query
𝑄 (𝑉), we draw a certain number of samples from the candidate
result list (the size of which is denoted as cand_size) after con-
stant filters. The number of samples must be carefully chosen: too
many samples incur a high overhead, while too few samples cannot
guarantee accuracy. So we choose the number of samples |𝑆 | by the
formula below:

|𝑆 | =

cand_size cand_size < 50
50 50 ≤ cand_size < 100
11 × ⌊ln(cand_size)⌋ cand_size ≥ 100

(4)

This gives a continuous function, which preserves the stability and
smoothness of sampling when the candidate result size varies.

(2) Extending on Samples. We can estimate the cardinality
𝑐𝑎𝑟𝑑 (𝑉𝑘) of subquery 𝑄 (𝑉𝑘) by extending on samples of subquery
𝑄 (𝑉𝑘−1)’s result. Algorithm 2 describes such a procedure. Because
of the bottom-up structure of dynamic programming, at the time of
estimating 𝑐𝑎𝑟𝑑 (𝑉𝑘), 𝑐𝑎𝑟𝑑 (𝑉𝑘−1) and its samples 𝑆 (𝑉𝑘−1) have al-
ready been obtained. Therefore, we can directly extend the sampled
results by checking whether there is a 𝑣𝑘 meeting the connection
conditions of the query and count the sample result size as 𝑐𝑜𝑢𝑛𝑡 .
Then we can calculate 𝑐𝑎𝑟𝑑 (𝑉𝑘) by the equation in Line 7 of Algo-
rithm 2.

To speed up the estimation, we also use the sampling technique
(Line 6). However, different from handling a single variable, here
we have to perform stream sampling, i.e., we do not yet know the
size of the expanded result set during the sampling process. We use
a method combining reservoir sampling and probabilistic sampling
to reduce fluctuation. Note that although multiple plans may be
enumerated for a 𝑉𝑘 in Algorithm 1, we only need to estimate its

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Linglin Yang, Lei Yang, Yue Pang, & Lei Zou

Algorithm 2: Sampling-Based Cardinality Estimation
Input: Query𝑄 (𝑉𝑄) , estimated cardinality 𝑐𝑎𝑟𝑑 (𝑉𝑘−1) of𝑉𝑘−1,

sampled result 𝑆 (𝑉𝑘−1) of𝑉𝑘−1, next joined variable 𝑣𝑘
Output: Estimated cardinality 𝑐𝑎𝑟𝑑 (𝑉𝑘) , where𝑉𝑘 = 𝑉𝑘−1 ∪ {𝑣𝑘 }

1 count← 0 ;
2 foreach sampled result 𝑡𝑘−1 of 𝑆 (𝑉𝑘−1) do
3 if 𝑡𝑘−1 can join node 𝑣𝑘 according to query𝑄 (𝑉𝑄) then
4 foreach result 𝑡𝑘 of 𝑒𝑥𝑡𝑒𝑛𝑑 (𝑡𝑘−1, 𝑣𝑘) do
5 count← count + 1;
6 choose whether to save 𝑡𝑘 to the samples of𝑉𝑘 ;
7 𝑐𝑎𝑟𝑑 (𝑉𝑘) ← max(count × 𝑐𝑎𝑟𝑑 (𝑉𝑘−1)/|𝑆 (𝑉𝑘−1) |, 1) ;
8 return 𝑐𝑎𝑟𝑑 (𝑉𝑘)

cardinality once we generate a plan for it, eliminating redundant
computation.

3.6 DFS Execution for Limit-k Queries
The above descriptions are for normal query optimization. However,
for limit-k queries, the size of demanded results (the LIMIT value)
is usually much smaller than that of the full results. So we need to
adjust our optimization strategies for limit-k queries.

Executionmode. The executor adopts the BFS mode for normal
queries, starting with the full candidate list and traversing the
plan tree in a breadth-first fashion. When handling limit-k queries,
however, it switches to the DFS mode, which has the following
characteristics suitable for limit-k:
• Fine granularity. Instead of starting with the full interme-
diate result set, DFS traverses the plan tree once with each
candidate to save much computation to get the desired 𝑘

results.
• Depth-first order. Depth-first traversals of the plan tree re-
turn valid results each time the root node is hit, rather than
only at termination in BFS.

Plan enumerator. In our plan enumerator, we turn off the
binary join optimization for DFS execution (Line 8 in Algorithm
1) because binary join needs its two children’s full results as input
which are unavailable in DFS.

Cost model. The last adjustment is our cost model. Since our
target is to obtain 𝑘 results, if a path in the plan tree cannot generate
any results, we wish to discover this mismatch as early as possible.
Also, the more outputs upper joins produce, the better. So we model
the cost of a DFS plan with the formula below:

𝑐𝑜𝑠𝑡𝐷𝐹𝑆 (𝑇 (𝑄)) =
∑︁

𝑂∈𝑇 (𝑄)
𝑑𝑒𝑝𝑡ℎ(𝑂) × 𝑐𝑜𝑠𝑡𝐷𝐹𝑆 (𝑂) (5)

where the 𝑐𝑜𝑠𝑡𝐷𝐹𝑆 (𝑂) = 𝑐𝑎𝑟𝑑 (𝑉𝑘)/𝑐𝑎𝑟𝑑 (𝑉𝑘−1) for a WCO join
from 𝑉𝑘−1 to 𝑉𝑘 .

4 DEMONSTRATION
In this section, we demonstrate the functions of our optimizer. The
first is plan tree visualization, and the second is interactive query
plan generation and execution.

(1) Plan Tree Visualization. Users can input the query through
the interface and click the “Query” button to see the query results,
with the execution plan tree in the form mentioned in section

(a) Snapshot of interface (b) Plan detail presentation

Figure 3: Plan tree visualization
3.2. Figure 3(a) shows a snapshot of our interface. We represent
variables,WCO joins and binary joins as orange circles, blue squares
with “WCO” labels and green squares with “BJ” labels, respectively.
Furthermore, for normal queries, we can click “Show Plan Detail”
to see the optimization information such as execution time, the
estimated cardinality and true cardinality of each join operation,
shown in Figure 3(b).

(2) Interactive query plan generation and execution. Users
can generate any execution plans based on the operations we pro-
vide. The validity of the plan is checked by our system. If valid,
our system will materialize and execute it. For example, Figure 4
shows a query plan provided by our optimizer on the left and an
alternative pure-WCO join plan generated by a user on the right.

Figure 4: Execution by user-generated plan

5 CONCLUSION
In this demonstration, we propose a new cost-based optimizer called
gCBO for graph databases, which adopts a dynamic programming-
based plan enumerator and a sampling-based cardinality estimation
strategy to tackle the challenges in query optimization. We also
demonstrate an interactive component for gCBO that enables users
to investigate and participate in the query execution process. We
have implemented gCBO in the open-source graph database gStore.

ACKNOWLEDGMENTS
This work was supported by NSFC under grant 61932001 and
U20A20174. The corresponding author of this paper is Lei Zou
(zoulei@pku.edu.cn).

gCBO: A Cost-based Optimizer for Graph Databases CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

REFERENCES
[1] Albert Atserias, Martin Grohe, and Dániel Marx. 2013. Size bounds and query

plans for relational joins. SIAM J. Comput. 42, 4 (2013), 1737–1767.
[2] Steve Harris, Andy Seaborne, and Eric Prud’hommeaux. 2013. SPARQL 1.1 query

language. W3C recommendation 21, 10 (2013), 778.
[3] Kyoungmin Kim, Hyeonji Kim, George Fletcher, and Wook-Shin Han. 2021. Com-

bining Sampling and Synopses with Worst-Case Optimal Runtime and Quality
Guarantees for Graph Pattern Cardinality Estimation. In Proceedings of the 2021
International Conference on Management of Data. 964–976.

[4] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and
Thomas Neumann. 2015. How good are query optimizers, really? Proceedings of

the VLDB Endowment 9, 3 (2015), 204–215.
[5] Amine Mhedhbi and Semih Salihoglu. 2019. Optimizing subgraph queries by com-

bining binary and worst-case optimal joins. Proceedings of the VLDB Endowment
12, 11 (2019), 1692–1704.

[6] Hung Q Ngo, Ely Porat, Christopher Ré, and Atri Rudra. 2012. Worst-case optimal
join algorithms. In Proceedings of the 31st ACM SIGMOD-SIGACT-SIGAI symposium
on Principles of Database Systems. 37–48.

[7] Hung Q Ngo, Christopher Ré, and Atri Rudra. 2014. Skew strikes back: New
developments in the theory of join algorithms. ACM SIGMOD Record 42, 4, 5–16.

[8] Li Zeng and Lei Zou. 2018. Redesign of the gStore system. Frontiers of Computer
science 12, 4 (2018), 623–641.

	Abstract
	1 Introduction
	2 Definition and Notations
	3 Cost-Based Optimizer
	3.1 System Overview
	3.2 Plan Tree Representation
	3.3 Dynamic Programming Plan Enumerator
	3.4 Cost Estimator
	3.5 Sampling-based Cardinality Estimator
	3.6 DFS Execution for Limit-k Queries

	4 Demonstration
	5 Conclusion
	Acknowledgments
	References

