
1

An Efficient Data Structure for Dynamic Graph
on GPUs

Lei Zou, Fan Zhang, Yinnian Lin, Yanpeng Yu

Abstract—There is a growing interest to offload dynamic graph computation to GPU and resort to its high parallel processing ability
and larger memory bandwidths compared with CPUs. The existing GPU graph systems usually use compressed sparse row (CSR) as
the de-facto structure. However, CSR has a critical weakness for dynamic change due to the large overhead of re-balance process
after update. GPMA+ is a state-of-art dynamic PMA-based structure that uses PMA structure and segment-oriented parallel update
procedure to address the dynamic weakness of CSR, but it still has a bottleneck on the array expansion. In this paper, we propose an
leveled structure (called LPMA) instead of continue array to retain low time complexity and high parallel update and lift the expansion
bottleneck of GPMA+. More specifically, we propose a series of optimization techniques, including bottom-up update, top-down update
and on-demand hybrid update strategies as well as consistence-guaranteed parallel processing for update-query mixed workloads. We
theoretically analyze the benefits of LPMA compared in terms of re-balance cost during updates. Extensive experiments on four large
real-life graphs prove the superiority of LPMA compared with the-state-of-arts.

Index Terms—Dynamic Graph, GPU, Graph Data Structure.

F

1 INTRODUCTION

In the era of big data, graph is used to model complex relations
between entities. Massive graph processing has emerged as the de-
facto standard in many relation-oriented big data analysis, such as
network traffic connection, social network and communication log
analysis. Different from static graph processing, high-throughput
dynamic graphs propose more challenges. For example, dynamic
graphs model continuously-updated connections between different
entities rather than isolated items in traditional data streams
[1]. The dynamic connectivity through network packets between
different sites is vital for network analysis. More dynamic graph
examples include social networks and real-time communication
log analysis for troubleshooting in data centers.

One of major challenges in dealing with dynamic graph pro-
cessing is the high dynamicity. For example, Alibaba e-commerce
activity graph is being updated 20,000 edges per second at the
peak and Twitter has about 100 million users login daily, with
around 500 million tweets per day. Network traffic data averages
to about 109 packets per hour per router in large data centers [1],
[2], [3].

To address great challenges due to high dynamicity and com-
plexity of graph algorithms, one way is to employ hardware assist.
There is a growing interest to offload dynamic graph computation
to GPU and resort to its high parallel processing ability and larger
memory bandwidths compared with CPUs. Thus, in this paper,
we propose an efficient GPU-oriented dynamic graph system.
Updates and queries are received and buffered by the CPU part,
which sends the batches of updates and queries to the GPU part
periodically. The GPU part maintains a continuously updating
graph and queries are conducted over the dynamic graphs in GPU.

Although GPU-based graph processing systems have been
studied extensively [4], [5], [6], [7], most of existing work focus on

• All authors are from Peking University in China;
E-mail: {zoulei,zhangfanau,linyinnian,yuyanpeng}@pku.edu.cn;

• Lei Zou is the corresponding author of this work.

static graphs except for some recent work [8], [9], [10], [11]. An
efficient GPU-oriented dynamic graph data structure is a technical
challenging issue. Due to the unpredictable node degree distribu-
tion of dynamic graphs, we cannot reserve a continuous space for
the neighbor list of each node. On the other hand, graph algorithms
usually require an ordered edge array for better performance. For
example, to check edge existence, we can avoid scanning the
whole neighbor list in an ordered edge array. Furthermore, the
ordered neighbor lists benefit the list intersection in many graph
algorithms, such as triangle counting [12] and subgraph matching
[13]. Therefore, a desirable data structure should trade off the
update efficiency and graph edge ordering.

Generally speaking, there are four categories in designing
GPU-based dynamic graph data structures to address the chal-
lenges: neighbor list based, hash based, compressed sparse row
(CSR) based and packed memory array (PMA) based.

• The CSR based. The CSR based structures [14] maintain a
variable and ordered edge array to store dynamic graphs.
The benefit of CSR based structures is the generality
of supporting off-the-shelf GPU graph libraries (such as
Gunrock[4]) and algorithms [12], [13], since most of
them rely on CSR format and the ordered edge array
facilitates converting a snapshot of dynamic graphs into
CSR representation.

• The neighbor list based. The neighbor list based structures
[9], [11] maintain a nodes array and a neighbor list for
each node. To handle the dynamic updates, this kind of
approaches is to design a variable array or list to store the
dynamic neighbor lists. The neighbor list could be ordered
or unordered.

• The hash based. The hash based structure [10] uses
GPU based hash slabs to store the neighbor list for each
node. Due to the hash table implantation, the hash based
structure could achieve O(1) time complexity for update.
However, hash-based data structure cannot guarantee edge

2

orderness in the neighbor list. Furthermore, [10] requires
presetting each node’s neighbor list length to reserve the
hash table size, which is obviously impractical in many
dynamic graphs.

• The PMA-based. The packed-memory array (PMA)[15],
[16] is a dynamic data structure for a sorted array, which
can be used to store sorted edges. Different from the tradi-
tional sorted edge array in CSR, PMA allows gaps among
the elements so that only a small number of elements need
to be shifted around on an insert or delete. GPMA+ [8]
proposes a parallel dynamic PMA maintenance (insertion
and deletion) algorithm on GPU to store dynamic graphs.

Our proposed dynamic graph data structure, called LPMA,
belongs to the PMA-based category. Although CSR is the de-
facto graph representation in many GPU graph systems, such
as Gunrock[4] and Medusa[7], the dynamic maintenance is the
bottleneck of CSR on dynamic graph applications. The main idea
of GPMA+ is to maintain sorted edges in a contiguous fashion by
reserving spaces to accommodate updates with a constant bounded
gap ratio and propose a parallel dynamic maintenance (insertion
and deletion) algorithm on GPU. Edge insertions are merged and
re-distributed into the eligible segment range in a balanced fashion
(called re-balance). GPMA+ has two bottlenecks related to the re-
balance: unnecessary re-balance during the expansion re-balancing
and redundant re-balance during the non-expansion re-balancing.

With the increasing of edge insertions, GPMA+ [8] will
expand and re-allocate a double-size continuous memory space
and re-balance the whole edge array. The massive unnecessary re-
balances are carried out during the expansion. In order to address
the unnecessary re-balance bottleneck, we propose a novel leveled
data structure to maintain the sorted edge array in this paper, called
leveled packed memory array (LPMA). Instead of storing all edges
in a continuous space in GPMA+, LPMA partitions the whole
sorted edge array into different physical levels and stores them in
a perfect binary tree1. Different from GPMA+, LPMA maintains
the edge ordering according to in-order traversal over the binary
tree and does not requires a physically continuous memory space
to accommodate all edges. The leveled structures in LPMA have
three benefits.

• First, during expansion, we only need to allocate a new
level and append it to the current LPMA tree rather than
re-allocating a double-size continuous space in GPMA+.
It alleviates memory allocation cost and memory fragmen-
tation issue in GPMA+.

• Second, after expansion, LPMA employs a localized re-
balance strategy that reduces the unnecessary re-balances
significantly. GPMA+ always performs global re-balance,
collecting all edges and re-distributing them in the
whole expanded space, but LPMA re-balances edges be-
tween some local consecutive edge segments. Obviously,
our method can reduce the data movement during re-
balancing. Theoretical analysis that our method can save
more than 90% unnecessary re-balancing cost (Section
3.3) and experiment results also confirm that.

• Last but not least, LPMA is a GPU-friendly data structure.
For example, the leveled structure fits the memory hierar-
chy of GPU and we can use shared memory to cache top
levels to improve performance.

1. A perfect binary tree is a binary tree in which all interior nodes have two
children and all leaves have the same depth or same level.

Both GPMA+ and LPMA adopt the bottom-up re-balancing
strategy, which leads to lots of redundancies in the high level
re-balancing and cause the latency spikes in the non-expansion re-
balancing. To alleviate that, we propose a top-down re-balancing
method that guarantees redundancy-free in LPMA. To differenti-
ate, the original LPMA with the bottom-up re-balancing strategy
is called LPMA-B and the top-down one is named as LPMA-
T. Although LPMA-T avoids redundancies in the non-expansion
re-balancing, it bring more extra probing costs. Therefore, we
propose a hybrid strategy (called LPMA-H) that balances the
redundant re-balances of the bottom-up strategy and the extra cost
of the top-down strategy at the same time.

Figure 1 compares the latency of insertion batches in GPMA+
and LPMA-H. First, our LPMA-H’s average latency is faster
than GPMA by one order of magnitude. Second, although both
GPMA+ and LPMA-H have latency spikes, the frequency of
performance churn of LPMA-H is less than GPMA+ and the
maximum amplitude of LPMA-H is also smaller (up to 20× in
GPMA+, but only 15× in LPMA). The reason is that LPMA-H
alleviates the re-balance cost during expansion (the analysis in
Section 3.3) and avoid high-level redundant re-balancing (the top-
down strategy in Section 4). Deletions are the dual operation of
insertions and have similar performance periodic jitter issue. We
omit the discussion about deletion to reduce the repetition.

70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160

104

105

106

Insertion Batch 68 to 160 of Pokec (105 Edges per Batch)

L
a
te
n
cy

(µ
s)

GPMA+ Insertion Latency (Each Batch) GPMA+ Insertion Latency (Average)

GPMA+ Expansion Latency GPMA+ High Level Re-balance Latency

LPMA-H Insertion Latency (Each Batch) LPMA-H Insertion Latency (Average)

Fig. 1: Insertion Performance Churn Caused By High Level Re-
balance and Expansion Process of GPMA+ and Insertion Perfor-
mance Churn Flatted By LPMA-H

Besides the optimization for update-only workloads, we also
propose a con-concurrent strategy (called Opera) for mixed up-
dates and queries batch processing on GPU. We define the stream-
ing consistence (Definition 7) for mixed workloads and propose
the consistence-guaranteed con-concurrent processing to maxi-
mize the parallel power of GPU and accelerate the dynamic graph
analysis. To summarize, we made the following contributions.

• We propose a novel leveled data structure LPMA in the
context of dynamic graphs. LPMA addresses two perfor-
mance problems in existing PMA-based GPU dynamic
graph data structure:

– The hierarchy organization and localized re-balance
in LPMA alleviate unnecessary re-balancing cost
significantly. We theoretically analyze the benefit of
our approach in terms of data movement saved by
LPMA. We also study some GPU-friendly designs
for LPMA.

– We propose three different re-balancing strategies
in LPMA, i.e., the bottom-up, the top-down and

3

TABLE 1: Notations

Notation Description
vn Node
σn Operation received at tn
qn Query received at tn
sn Leaf layer segment n
Bn Batch number n
level Physical structure of the segments in LPMA.

leveln contains 2n−1 leaf segments
layer Logical binary tree of the segments. layern

contains 2n leaf segments
leaf layer the bottom layer of the logical binary tree of

the segments
root layer the root layer of the logical binary tree of the

segments
[s0, s3] GPMA+ layer2 segment that contains leaf

layer segments: {s0, s1, s2, s3}
{s0, s4, s2, s5} LPMA layer2 segment that contains leaf layer

segments: {s0, s4, s2, s5}

the hybrid. The hybrid one not only reduces redun-
dant re-balances in the bottom-up strategy but also
alleviate the extra cost of the top-down approach.

• We propose a con-concurrent strategy Opera for the mixed
updates and queries batch to maximize the parallel power
of GPU.

• Extensive experiments on large dynamic graphs confirm
that LPMA outperforms state-of-the-art methods signifi-
cantly and the con-concurrent framework accelerates the
dynamic graph analysis.

2 PRELIMINARY

In this section, we first formally define dynamic graph model
and our problem; and then introduce GPMA+ [8], a dynamic PMA
based data structure on GPU. Our proposed data structure LPMA
also belongs to CSR-based methods and optimizes the most costly
expansion and re-balance operation in GPMA+. The details of
LPMA are given in Section 3. More related work discussions are
given in Section 8.

2.1 Problem Definition
To define the dynamic graph model, we define the following

operation stream. Table 1 lists all notations that are used through-
out the paper.

Definition 1 (Operation Stream). An operation stream is a time-
evolving sequence of operations {σ1, σ2, ...σx}, where each σi
specifies an edge insertion or deletion or a query primitive
(defined in Definition 4) at time ti.

In this paper, we adopt the edge append model to define an
edge insertion and deletion uniformly.

Definition 2 (Edge Update). An operation σi is denoted as
σi(
−→uv,wi, ti), i.e., appending edge −→uv with edge weight wi at

time ti. Specifically,

• if edge −→uv does not exist before and weight wi > 0, σi is
an edge insertion;

• If edge −→uv exists before, the edge weight wi will be
accumulated to the existing one.

– If the accumulated edge weight is less than 0, σi is
an edge deletion;

– otherwise, the corresponding edge weight is up-
dated.

For the simplicity of presentation, edge insertion, deletion and
weight update are all entitled as edge update in this paper.

Actually, the edge append model can also handle vertex
insertion and deletion. To insert an isolated vertex v, we can insert
a specific edge insertion (

−−−−→
v,+∞). Also, to delete a vertex v, we

can delete all edges adjacent to vertex v. For simplicity, we only
discuss edge insertion and deletion in the following discussion.

Given an original graph G with 10 edges in Figure 2a, after a
sequence of updates {σ1, σ2, ...} (Figure 2c), we can obtain the
updated graph in Figure 2b.

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

𝑣7

𝑣8

1

2 2

1

1 2

1

3

1

1

(a) Original Graph G

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

𝑣7

𝑣8

2 3

1

1 2

1

3

1

12

2

1

1

1
3

2

1

1

(b) Updated Graph Gt10

𝑣4

𝑣5

1

𝑣7

𝑣8

1

𝑣2

𝑣4

1

𝑣4

𝑣7

1

𝑣7

𝑣5

2

𝑣1

𝑣4

1

𝑣6

𝑣2

3

𝑣2

𝑣5

2

𝑣3

𝑣2

1

𝑣1

𝑣2

1

𝜎7 𝜎8 𝜎9 𝜎10𝜎6𝜎5𝜎4𝜎3𝜎2𝜎1

+ + + +++++++

(c) Operation Stream 1

𝑣3

𝑣5

1

𝑣4

𝑣8

?

𝑣4

𝑣1

1

𝑣4

𝑣7

?

𝑣3

𝑣4

1

𝑣1

?

2-hop

𝑣1

𝑣6

1

𝑣1

?

1-hop

𝑣1

𝑣5

1

𝑣1

𝑣3

1

𝜎17 𝑞18 𝜎19 𝑞20𝜎16𝑞15𝜎14𝑞13𝜎12𝜎11

+ Q + Q+Q+Q++

(d) Operation Stream 2 (Mixed Batch)

Fig. 2: Dynamic Graph with Operation Stream

Definition 3 (A Snapshot of a Dynamic Graph). Given a dynamic
graph G and a time point ti, the snapshot of G at ti is a graph
Gti , which is the updated graph after performing all edge updates
before time ti in the operation stream.

Besides edge updates, an operation stream can also include
some query operations. We consider the following query primi-
tives (Definition 4). A more complex query task is often decom-
posed into a series of query primitives.

Definition 4 (Query Primitives). Each query primitive is denoted
as q(C, ti), where C is a query condition and ti defines the issue
timestamp of query q. We define the following query primitives
over graph snapshot Gti :

1) Edge Query: If C = (u, v) where u and v are the node
IDs, return {(−→uv, t, w)|(−→uv, t, w) ∈ Gti}; If the edge
doesn’t exist, return φ.

2) 1-hop Successor Query: If C = (u,→) where u is
a node ID, return {(−→uv, t, w)|(−→uv, t, w) ∈ Gti}. If the
edge doesn’t exist, return φ.

4

3) 1-hop Predecessor Query: If C = (v,←) where v is
a node ID, return {(−→uv, t, w)|(−→uv, t, w) ∈ Gti}. If the
edge doesn’t exist, return φ.

Due to great parallel processing ability of GPU, in this paper,
we aim to design an efficient GPU-oriented data structure to
support high throughput updates and queries over the underlying
graph. Different from CPU-oriented solutions, the dynamic graph
on GPUs usually adopt the batch-based model [8]. The system
buffer module batches edge updates on CPU side and periodically
sends the updating batches to update module in GPU side. The
update module process all edge updates (in one batch) simultane-
ously. Actually, we also package issued queries with edge updates
that are received in a period of time in one batch. In Section 6,
we will study how to process operation primitive (including both
updates and query primitives) oriented parallel strategy. Formally,
a batch of operations is defined as follows.

Definition 5 (Operation Batch). A batch Bt = {σi}, where σi
specifies an edge update or a query primitive (defined in Defi-
nition 4) at time ti. All operations are sorted according to their
associated timestamps. Furthermore, the batch size |Bt| ≤ θ,
where θ is a tuning parameter.

Generally, there are two reasons of adopting batch based model
in GPU-oriented dynamic graph processing.

• First, due to high parallel capability of GPU, the batch
model enables GPU to process multiple updates and
queries at the same time. Obviously, one operation-at-a-
time (sequential model) limits parallel computing of GPU.

• Second, we need to minimize the cost of PCIe transferring
on designing GPU-oriented systems. The one operation-
at-a-time transferring model cannot reach the full capacity
of PCIe bandwidth. For example, the 16-lane PCIe could
reach 64GBs per second [17]. Thus, the batch model can
minimize the average transferring latency. Furthermore,
the batch model allows overlapping data transfer with
computing tasks in GPU side in a pipeline fashion, which
further hides the PCIe communication cost.

2.2 GPMA+: Existing PMA-based Dynamic Graph Data
Structure on GPU

Generally, existing dynamic graph structures on GPUs could
be divided into four categories: CSR (compressed sparse row)
based, neighbor list based, hash-based and PMA based. Since our
proposed data structure (LPMA) belongs to PMA based structure,
to better understand the benefit of our method, we introduce
GPMA+ [8], a state-of-the-art dynamic PMA based data structure.
We will review other dynamic graph structures on GPU in the
related work section (Section 8).

The compressed sparse row (CSR) [14] is the de-facto graph
representation in existing GPU graph systems and applications
(e.g., Gunrock[4] and Medusa[7]) due to compact representation,
good memory locality and friendly supporting massive-parallel
processing. CSR compresses an adjacent matrix (of a sparse graph)
into three arrays: row offset array (corresponding to vertices),
column array (corresponding to edges) and values array (corre-
sponding to edge weights). In CSR, entry i and i + 1 in the row
offsets array will store the starting and ending offsets for row
i of the matrix, which correspond to the neighbors of the i-th
vertex in graph (i.e., Nvi). Figure 3 illustrates an example of CSR
corresponding to the original graph G in Figure 2a.

Row Offsets 0 1 4 5 7 8 9

Column Indices 4 1 3 6 6 2 5 6 8 7

(Destination Nodes)

(Weights)

Values 1 2 1 3 1 1 2 2 1 1

Fig. 3: Compressed Sparse Row (CSR) of G

However, CSR is costly for dynamic updates to graphs, since
all vertex’s adjacent edges are stored consecutively in a sorted
column array. Any edge insertion or deletion will lead to O(|E|)
data movements in the sorted array. GPMA+ [8] adopts Packed
Memory Array (PMA) [15], [16] to maintain sorted arrays in
CSR for dynamic graphs. PMA maintains a sorted array, but it
leaves gaps to accommodate fast updates with a bounded gap ratio.
GPMA+ extends PMA to GPU platform and use it to store sorted
arrays in CSR. They propose a segment-oriented operations to
parallelize edge insertions/deletions in a lock-free model. How-
ever, the expansion and re-balancing cost is still expensive when
facing high throughput updates in dynamic graphs. Note that our
proposed LPMA (leveled Packed Memory Array) is an optimized
data structure compared with GPMA+. To better understand the
benefit of our method, we briefly introduce GPMA+ by an exam-
ple.

Figure 4 shows an example of GPMA+ and segment-oriented
update. GPMA+ divides the edge array into fixed size chunks
known as segments. For simplicity, we assume that the lower
and upper bound density threshold in each segment is [0, 100%].
Given a batch of edge insertions, GPMA+ sorts these edges by
source and destination node IDs. Then for each edge insertion,
GPMA+ assigns one thread to perform the binary search to locate
the associated segments. Given ten edges to be inserted in Figure
4, we first locate four associated leaf layer segments s0, s1, s2
and s3.

GPMA+ adopts a bottom-up update strategy to perform up-
dates and the first round is conducted over leaf layer segments. A
thread or a warp (depends on the size of the segment) is called
to handle one segment update. After the first round, segment s1
is updated successfully and updates on segments s0, s2 and s3
fail due to the lack of space. For example, there are four edge
insertions {σ1, σ5, σ9, σ3} that are located at segment s0, but
there are only one empty position in s0. σ5 = −−→v1v4 updates the
weight of the original edge −−−→v1, v4 in segment s0, but the other
three operations are new edge insertions. Therefore, GPMA+ rolls
the updates up to the above level (i.e., layer1 [s0, s1]), including
segments s0 to s1 in the second round to probe empty space.
Unfortunately, the second round also fails. Note that layer1,
layer2 and layer3 are index ranges that includes consecutive
segments, which are not physical storage levels. Only the leaf layer
is a physical sorted array. In this example, even GPMA+ reaches
the original root layer (layer2) [s0, s3] (including all segments in
the ordinal array), there are no enough space to accommodate all
insert edges.

Thus, GPMA+ triggers the expansion that doubles the original
sorted array. Finally, GPMA+ merges all edges in the original
array and inserted edges; also re-balances these edges into eight
segments in the expanded array (see Figure 4). Since the re-
balance involves all segments, we call it global re-balancing.

5

Leaf Layer 0 1

Layer1

Layer2 (Original Root Layer)

2 3 4 5 6 7

[0, 1] [2, 3] [4, 5] [6, 7]

[0, 3] [4, 7]

[0, 7]Layer3 (Root Layer After Expansion)

1
st

 to 3
rd

Round

Expansion

&

4
th
 Round

Original

Source Node

Destination Node

Weight 1 1 1 2 1 1 1 3 2 1

Operation + + + + + + + + + +

Segment Index

Source Node

Destination Node

Weight 2 2 1 3 1 1 1 2 2 1 1

Segment Index

Source Node

Destination Node

Weight 1 2 1 3 1 1 2 2 1 1

Segment Index

Source Node

Destination Node

Weight 1 2 2 1 1 2 3 1 1 1 3 1 2 3 1 2 1 1

4

5

1

7

8

1

2

4

1

4

7

1

7

5

2

1

4

1

6

2

3

2

5

2

3

2

1

1

2

1

σ 7 σ 8 σ 9 σ 10σ 6σ 5σ 4σ 3σ 2σ 1

+ + + +++++++

Buffer and Sort

Expansion Segment

Successfully Inserted Segment

Unsuccessfully Inserted Segment

Weight Updated Edge

Inserted Edge

Rebalanced Edge

1st Round

Segment Index

Successful Flag N Y N N

Insertion

3rd Round

]

N

2nd Round

]]

N N

Expansion & 4th Round

]

Y

Fig. 4: GPMA+ Update and Expansion

Analogously, GPMA+ handle the deletion as a dual process of
insertion.

3 LEVELED PACKED MEMORY ARRAY

3.1 Expansion in GPMA+ and Unnecessary Re-balance

GPMA+ aims to maintain a continuous sorted array with
public reserve space for future insertions. After re-balancing,
new edges could be inserted into the reserve space. During the
re-balancing, edges are sorted by nodes IDs. However, if new
insert edges overflow the original array, GPMA+ will trigger the
expansion. Let us recall Figure 4. After the third round insertion,
each segment reaches the density threshold. GPMA+ doubles the
sorted array from four leaf layer segments to eight leaf layer
segments, and then inserts and re-balances edges to complete this
update.

The expansion operation in GPMA+ is costly in two ways.
Firstly, the whole array resize and re-balance requires massive
memory access and reallocation. Since GPMA+ is stored in a
continuous memory space, the system needs to allocate a double
size memory space, re-balance the whole array, write into the
new space and release the original one. The reallocation process
could be costly when the edges number grows large. Furthermore,
since GPMA+ always allocates new continuous memory space
to hold all edges and release the original continuous memory
space, this kind of allocation leads to a lot of potential memory
fragmentation. Secondly, unnecessary data movements are carried
out during the re-balance. In each expansion & re-balance phase,
GPMA+ collects all edges in the original array and merges them
with insert edges. We call it global re-balancing. Finally, these
edges are distributed to the whole new double-size array to balance
the fragment density. Obviously, this is a global operation with
O(|E|) complexity and many unnecessary segments also need
to participate. The re-balancing operation in the unnecessary
segments is defined as the Unnecessary Re-balance.

3.2 LPMA Structure and Update

In order to reduce the unnecessary re-balances and the expan-
sion overhead in GPMA+, we propose a leveled structure LPMA

to organize edge segments. Different from GPMA+, LPMA par-
titions edge segments into different levels. Except for the head
level level0, each x-th leveli (x = 1, ...n) contains 2x−1 leaf
layer segments, where segments in the same level are stored
in a continuous memory space, but we do not store all levels
consecutively. Logically, segments in each level except for level0
(in LPMA) form a perfect binary tree. The dash lines in Figure
5 show the tree’s structure. Since LPMA is a perfect binary tree,
we do not store the dash line (parent-child relation) physically in
LPMA. The in-order traversal of the binary tree (LPMA) forms a
sorted edge array, which corresponds to GPMA+. Note that head
level level0 has a single segment that precedes all other segments.
In a word, segments in LPMA form a sorted edge array through
the in-order traversal, but it has different physical storage scheme
from GPMA+.

Since LPMA is a perfect binary tree, it is easy to map the y-th
segment in the x-th level (i.e., levelx) to the i-th segment in the
sorted array and vice versa. We also call i as the sequential index
of the segment. The following equations illustrates the process
(m is the greatest level number of LPMA and d is the greatest
common divisor of i and 2m):

i =

{
0 x = 0

(2y + 1)× 2m−x+1 m ≥ x ≥ 1
(1)

(x, y) =

(0, 0) i = 0

(m− log d,
i/d− 1

2
) i > 0

(2)

Note that LPMA adopts the similar segment-oriented bottom-
up update procedure as GPMA+. Specifically, when the update
batch arrives, LPMA first conducts binary search to locate the as-
sociated leaf layer segments for insert edges. The system performs
the segment oriented parallel insertion on the logical sorted array
that is same with GPMA+. If the corresponding segment cannot
accommodate insert edges, we will roll up the insertions. Figure
5 shows an update example of LPMA. Initially, LPMA has four
leaf layer segments. When edge insertion batch comes, the system
sorts edges according to edge endpoint IDs and conducts binary

6

search over LPMA to identify the associated leaf layer segments.
In the first round, new edges σ5 and σ7 updates corresponding
original edges −−→v1v4 and −−→v4v5, respectively. Edge σ2 = −−→v3v2
is successfully inserted into leaf layer segment s2. Other edge
insertions fail due to insufficient space in the associated segments.
All the updates and insertions are executed parallel. Then, we
probe larger segment ranges (21 and 22 segments) in the second
and third round. Finally, there are still seven edges that cannot
be inserted into the whole sorted array (LPMA) and they trigger
expansion in LPMA.

LPMA is designed to address the expansion performance issue
in GPMA+, thus, it has different expansion process. At expansion,
LPMA only needs to allocate a new level and append it to the
current tree. Figure 5 illustrates an expansion example, i.e., ap-
pending new level3. After expansion, LPMA performs localized
re-balance that does not always involve all segments. Since LPMA
is a perfect binary tree, appending one new level, each segment
(in the original LPMA tree) has an empty successor segment
(shown in purple colour in Figure 5) in the in-order traversal.
Logically, after expansion, we append one empty segment after
each original segment to obtain an extended LPMA. Figure 5
visualizes the sorted segments in the expanded LPMA. However,
GPMA+ appends all new empty segments to the original sorted
array (see Figure 4).

In Figure 5, there is one new empty segment s4 between s0
and s2. Before expansion, seven edges still fail to be inserted.
Edges σ1,σ9 and σ3 should be inserted into segment s0, but, there
are insufficient spaces to hold three edges in segment s0. After
expansion, s0 has a new empty successor segment s4. Therefore,
we can re-balance six edges between s0 and s4, including three
edges in the original s0 and three insert edges. The re-balancing
only happens between two consecutive segments, thus, we call
it localized re-balance. The same happens over segment pairs
{s1, s6} and {s3, s7} to handle edge insertions. In this example,
segments s2 or s5 does not participate in re-balancing, which is
different from global re-balance in GPMA+. Of course, if two
consecutive segments cannot accommodate insert edges, we also
need to roll up the insertion and check four consecutive segments.
Although in the worst case all segments of LPMA participate in
the re-balance process, which degrades to global re-balance in
GPMA+, we theoretically prove that the worst case rarely happens
and our method (LPMA) reduces the expected number of re-
balancing segments significantly (see Lemma 1 in Section 3.3).
Experiment results also confirm our analysis (see Section 7.1).

Algorithm 1 (in Appendix A 2) shows the bottom-up re-
balance of LPMA. LPMA first sorts the update batch and runs the
binary search to locate the leaf layer segments S for the updates
(Lines 1-3 in Algorithm 1). Then LPMA filters out duplicated
segments in S to get S∗ (Line 6). For each segment in S∗, LPMA
calculates the densities and checks if the segment has enough room
(Lines 7-11). If the segment has enough room for the updates,
LPMA merges the updates with the items in the segment and re-
dispatch the merged items into the segment evenly (Line 11-14).
We remove all successfully inserted edges from U (Line 13) and
the corresponding inserted segment s from S∗ (Line 14). Note that
a thread or a warp (depends on the size of the segment) is called to
handle one segment update and all segment updates are processed
in parallel (Lines 7-14). After the first round, if |U | = φ (no insert

2. Due to space limit, we provide all pseudo codes in Appendix of the
supplementary materials.

edges left), we finish the whole process. Otherwise, we continue
the next round. If the current layer is the root, it means that the
current LPMA cannot accommodate edge insertions in U . So, we
expand the current LPMA by appending one new layer (Line 19)
and re-locate the leaf layer segments S (in the augmented LPMA)
for the remaining inserted edges (Line 20). Otherwise, we can roll
up the updates to one upper layer (Lines 23-25).
Query Processing. Since LPMA maintains a sorted edge array,
it is easy to answer query primitives (edge query and 1-hop
successor/predecessor queries in Definition 4) using the binary
search. Other graph queries can be decomposed into a series of
query primitives over LPMA. Furthermore, to employ existing
graph analysis library, we can also convert the sorted edge array in
LPMA (corresponds to a graph snapshot) into CSR representation,
since most GPU graph libraries are based on CSR.

3.3 Analysis
In this subsection, we analyze the memory efficiency and

expansion & re-balancing cost in LPMA.

3.3.1 Memory Efficiency
Leveled memory allocation in LPMA does not affect memory

access. Since GPU has smaller cache and supports parallel mem-
ory access, we can assign different warps to access different levels
of LPMA in parallel. The non-continuous memory allocation
is not the bottleneck as long as each segment has 128-byte
continuous space for one warp access. That is different from CPU
architecture due to larger cache size and serial memory access.
Furthermore, as discussed before, LPMA alleviates memory allo-
cation cost and memory fragmentation issue. Last but not least,
the leveled structure enables shared memory to cache top levels to
accelerate memory access.

3.3.2 Localized VS. Global re-balancing
Both LPMA and GPMA+ employ the same update strategy

on the sorted edge arrays, although LPMA maintains a sorted
array using a perfect binary tree while GPMA+ stores a sorted
array physically. They have the exactly same condition to trigger
expansion. The only difference lies in the re-balancing process.
To quantify the cost of data movement during re-balancing, we
introduce the following the definition.

Definition 6 (Re-balancing Size). Re-balancing size is the number
of segments involved in the re-balancing process after expansion.

Let us recall the running example in Figure 4 and 5. Given the
same insertions, after expansion, all eight fragments participate in
re-balancing in GPMA+. However, in LPMA, segment s2 or s5 is
not involved in re-balancing. Actually, according to localized and
global re-balancing strategies in LPMA and GPMA+, it is easy to
conclude the following claim.

Claim 1. Given the same edge insertion batch, the re-balancing
size in LPMA is always smaller than that in GPMA+.

To better quantify the benefit of LPMA, we will make the
following analysis. Let s be the number of segments in the original
array (before expansion). x is the number of insert edges in a
batch and n is the maximum number of edges in each segment.
According to LPMA insertion strategy, given an insert edge σ,
we first locate the associated segment in the original array. For
the simplicity of analysis, we assume that edges are randomly

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Peking University. Downloaded on May 09,2023 at 07:58:39 UTC from IEEE Xplore. Restrictions apply.

7

Segment Index

Source Node

Destination Node

Weight 1 2 2

(Head)

(Expansion)

1
st
 Round

4
th
 Round

Original

2
nd

 Round

3
rd

 Round

Expansion

Segment Index

Source Node

Destination Node

Weight 1 3 1

Segment Index

Source Node

Destination Node

Weight 3 1 1 1 2

Ordered Edge Array View

(In-order Traversal)

Segment Index

N N

N

Ordered Edge Array View

(In-order Traversal)

Segment Index

Y Y Y

Segment Index

Source Node

Destination Node

Weight 1 1 2 2 3 1 1

Segment Index

Successful Flag N Y N N

Insertion

Expansion Segment

Successfully Inserted Segment

Unsuccessfully Inserted Segment

Weight Updated Edge

Inserted Edge

Rebalanced Edge

Fig. 5: LPMA Update and Expansion

inserted. We call all segments involved in the re-balancing process
as associated segments and others are called irrelevant segments.
The following lemma states the number of associated segment and
irrelevant segments.

Lemma 1. The expected numbers of irrelevant segments and
associated segments are s · (1 − 1

s)
x and s − s · (1 − 1

s)
x,

respectively. 3

According to LPMA expansion and re-balancing process, only
associated segments and their successor empty segments (in the
new expanded layer of LPMA) participate in the re-balancing pro-
cess. However, if an associated segment and its successor empty
segment cannot accommodate the corresponding edge insertions,
we may need to roll up the insertion and consider the consecutive
four segments. Fortunately, the rolling up rarely happens in prac-
tice. Considering typical parameters in our experiments, there are
x = 105 insert edges in a batch and s = 106 segments in the
original LPMA. Each fragment can accommodate at most n = 16
edges, which corresponds to 128-byte continuous space for one
warp access. Consider an associated segment a and its successor
empty segment a′. We need to trigger rolling up process only
when there are at least (n + 1) = 17 edges to be inserted into
a; otherwise, a and a′ can hold all insert edges. The number of
edges to be inserted into segment a (denoted as y) can be modeled
as a binomial distribution y ∼ B(x, 1s). According to typical
parameters in experiments, y ∼ B(105, 10−6). Thus, the proba-
bility of non-rolling up is calculated as a cumulative distribution
P (y ≤ 17) =

∑17
y=0 C

y
105(

1
106)

y(1 − 1
106)

105−y > 99%4. In
other words, the rolling up rarely happens and most re-balancing
is conducted between two consecutive segments (i.e., an associated
segment a and its successor empty segment a′).

Lemma 1 considers the edge insertion as a hashing process.
The x insertions are inserted into s segments and 2s − s · (1 −
1
s)

x segments are expected to be re-balanced with the insertions
in LPMA. According to the typical parameters in experiments
(s = 106 and x = 105), the proportion of irrelevant segments
is (1 − 1

s)
x ≈ e

x
s ≥ 90%. Since the rolling up rarely happens,

the expected re-balancing size in LPMA is 2s(1− ·(1− 1
s)

x) ≤
2s × 10%. Due to global re-balance in GPMA+, GPMA+’s re-

3. The proof based on probability analysis [18] is given in Appendix E.
4. For the ease of calculation, we can use a normal distribution to simulate

the binomial distribution calculation when x is large enough

balancing size is always 2s. Therefore, LPMA saves more than
90% cost.

4 REDUNDANCY-FREE RE-BALANCE

4.1 Motivation: Redundant Re-balance

The leveled structure of LPMA has addressed unnecessary re-
balance cost during the expansion process. However, given a batch
of inserted edges, some re-balances may be redundant during
the non-expansion re-balancing. Let us continue the example in
Figure 5. After expansion, LPMA has eight consecutive segments
[s0, s4, s2, s5, s1, s6, s3, s7]. This is called as the top layer range.
Given another batch of 6 new edge insertions (see Figure 2d),
in the first round, LPMA locates new edges {σ11, σ12, σ14} into
segment s0 and the insertion fails due to lack of room. The same
happen for {σ16, σ17} in segment s2. Only edge σ19 is inserted
into segment s5 successfully. In the first round, re-balance only
happens in each segment itself. We call this leaf layer. In the
second round, we consider 2 consecutive segments to re-balance,
i.e., LPMA will try segments [s0, s4] and [s2, s5], respectively.
New edges {σ16, σ17} are re-balanced into the segment [s2, s5]
successfully, but edges {σ11, σ12, σ14} fail again. Thus, LPMA
has to roll up the upper layer, i.e, considering size-4 segment
range [s0, s4, s2, s5] to re-balance. In this case, {σ11, σ12, σ14}
are re-balanced into the segment [s0, s4, s2, s5] successfully. In
this example, the edge insertion and re-balance in segment s5 are
redundant in the first and second rounds, since all edges need to
be re-balanced in segment range [s0, s4, s2, s5] as a whole in the
third round. Obviously, a more desirable strategy is to skip the first
two rounds and save more redundant re-balance costs.

4.2 Top-Down Re-balance Strategy

The above redundant re-balance problem lies in the bottom-up
probing strategy for edge insertion, while both GPMA and LPMA
adopt this kind of strategy. To address that in LPMA, we propose
a redundancy-free re-balance scheme, i.e., the top-down scheme
(called LPMA-T). To differentiate, the original LPMA with the
bottom-up re-balance strategy is named as LPMA-B. Assume that
LPMA has h levels excluding the head level l0. There are 2h+1

consecutive segments in total. We call this top layer range. A
three level LPMA example is given in Figure 5. Thus, the top layer
range has 8 consecutive segments. Given a batch of edge insertions
U , LPMA-T first initiates the process from the top layer, i.e., all

8

consecutive segments in LPMA. If we have no enough room to
accommodate all inserted edges in a batch, we need to trigger
an expansion process. Otherwise, we iterate the process on both
the left and the right half of the top layer, i.e., drilling down the
lower layer. Both the left and the right parts have 2h consecutive
segments, respectively. Specifically, the edge insertion batch U is
decomposed into two groups Ul and Ur that are located at the
left and right parts of the top layer. If neither of the left nor the
right part can accommodate edges in Ul or Ur , it means that we
have to re-balance all edges in the top layer and all re-balances
in the lower layer are redundant. If both the left and the right
ranges have enough room for inserted edges in both Ul and Ur ,
it means that it is unnecessary to re-balance at the top layer. We
can further iterate drilling down the probing process to the lowest
layer that can accommodate all edges. In this way, we can avoid
all redundant re-balances. Algorithm 2 shows the pseudo code of
the top-down strategy.

We use the same example in Figure 2d. When the system
receives the update batch, the system first runs the density check
and determines if the expansion is needed (Lines 3-4 in Algorithm
2). If the expansion is needed, we append one new layer to LPMA
(Line 6). Then, we perform the top-down re-balance from the root
by calling function TopDownRebalance recursively (Line 7-8).
Initially, the top-down strategy starts from the root layer and splits
the root layer into left part sl (sl : [s0, s4, s2, s5] in the example
in Figure 2d) and right part sr(sr : [s1, s6, s3, s7]) (Lines 14-
15). Then, the system decomposes the updates into the left part
Ul : {σ11, σ12, σ14, σ16, σ17, σ19} and right part Ur : {∅} and
count the number of items in both left and right parts (Lines 16-
19). We check if at least one of two parts fail to hold inserted
edges (Line 20). If so, we re-balance these inserted edges in this
layer (Line 21). If both parts can accommodate inserted edges, we
iterate the above process on these two parts (Lines 24-27) until
leaf segments (Lines 11-13).

In this layer, both parts have enough room. If |Ul| > 0
and sl is in the non-leaf layer, LPMA-T will iterate the above
process over sl using updates Ul (Lines 24-25). The same applies
for the right counterparts Ur and sr (Lines 26-27). In this
example, since Ul is not empty and sl is not leaf, the function
TopDownRebalance is called over Ul and sl into the next
round. The right part update is finished in this round since Ur

is empty. In the second round, we run the same procedure until
the available room check. This time the left part sl : [s0, s4] has
2 available cells but Ul : {σ11, σ12, σ14} has 3 insertions. The
function Rebalance is called in this round. The six insertions are
merged into [s0, s4, s2, s5] and the update is finished. Compare to
the bottom-up strategy, the re-balancing of each segment is only
carried out once and no redundant re-balance occurs.

5 HYBRID STRATEGY

The top-down strategy (LPMA-T) guarantees redundancy-free
re-balances during the update. However, if the density of structure
is low and most re-balances are proceeded on the lower layers, the
top-down strategy reduces few redundant re-balances but brings
extra cost. For example, if all the re-blances are carried out on the
leaf layer, there is no redundant re-balance to be saved. However,
the top-down strategy needs to probe all the layers. The overhead
of rolling down from root to leaf layer could be larger than the
redundant re-balances saved by the top-down strategy.

Apparently, if most re-balances are carried out on low layers,
the bottom-up strategy is more efficient; if most re-balances

happen on the high layers, the top-down strategy is more efficient.
As the density increases, the updates need to access high layers
to find enough room. Figure 6 shows the latency curves of the
bottom-up (LPMA-B) and top-down strategy (LPMA-T) on one
real life dataset (Pokec, more details are given in Section 7).
When the density reaches a certain point, the performance of
top-down strategy starts to surpass the bottom-up one. Therefore,
we introduce a density threshold π. When the new edges arrive,
LPMA-H (the hybrid strategy) first checks the density of the
structure. If the density is 1, it means that LPMA is full and needs
expansion. If the density is higher than π, it means that density
of LPMA is high and the top-down strategy is activated. If the
density is lower or equal to π, it means that density of LPMA is
low and the bottom to top re-balancing is activated.

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

104

105

Density of LPMA

L
a
te
n
cy

(µ
s)

Bottom-up Strategy Top-down Strategy

The point of π

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

104

105

Density of LPMA

L
a
te
n
cy

(µ
s)

Bottom-up Strategy Top-down Strategy

The point of π

Fig. 6: Latency Curves of Bottom-up Strategy and Top-down
Strategy

However, it is difficult to predict the value of π for dynamic
graphs. In practice, we propose a self-adaptive strategy to find
the desirable density threshold π. We define the time period
between the two expansions as one cycle. After the last expansion,
the density is low. The bottom-up strategy is more desirable.
Therefore, we set π be a small empiric value (=0.6) and start
to run the top-down strategy. When the density is larger than π,
we perform the top-down strategy and the bottom-up strategy in a
round-robin manner. When the system probes that the performance
of top-down strategy starts to surpass the bottom-up strategy, the
π is set to the current density of LPMA and the top-down strategy
is carried out until the end of this cycle. Algorithm 3 5 gives the
pseudo codes.

6 OPERATION PRIMITIVE ORIENTED PARALLEL
STRATEGY

In real world applications, the updates and queries are received
and packed in one batch on the CPU side and send to the GPU
side via PCIe. Figure 7 shows the mixed batch model adopted in
this paper. Two mixed batches of updates and queries are given in
Figure 2d. For example, Operation Stream 2 (Figure 2d) contains
6 edge updates and 4 queries. q13 is the 1-hop successor query of
v1; q15 is the 2-hop successor query of v1; q18 is the edge query
of −−→v4v8; q20 is the edge query of −−→v4v7.

All queries and updates in a batch are sorted by the correspond-
ing timestamps. Obviously, a naive solution is to perform these
queries and updates chronologically in a serial processing model;
but that cannot make fully use of the massively parallel processing
capability of GPU. However, the batch-oriented parallel process-
ing can enhance the parallel power, but it may cause the time

5. The pseudo codes are given in Appendix A.

9

inconsistency problem. For example, in Figure 2d, if we execute
Operation Stream 2 serially, the answer of q13 is {v2, v3, v4, v5}.
The edge σ14 is received after t13 and should not be included
in the result of q13. If we split Operation Stream 2 into the
update group (σ11, σ12, σ14, σ16, σ17, σ19) and the query group
(q13, q15, q18, q20), we could process the two groups parallel and
have better performance. However, if we run the update group
first, the answer of q13 is {v2, v3, v4, v5, v6}; if we run the query
group first, the answer of q13 is {v2, v4}. Both are incorrect.

In the context of streaming graphs, we propose the following
streaming consistence. Based on that, we propose our parallel
solution for batch-oriented parallel processing in Section 6.1.

Definition 7 (Streaming Consistence). Given a time-evolving
sequence of operations O = {σ1, σ2, ...σx}6 over streaming
graph G, the streaming consistency requires the results of parallel
processing of O are the same as the results formed by executing
updates and queries in the chronological order.

Batch B1

Buffer and Batch

Operation Stream

(Edge Updates/Queries) 𝑞13𝜎12𝜎11

𝜎14 𝜎16

𝜎17 𝜎19

Batch B2

CPU

Parallel Edges

Update

Opera

Parallel Queries

Execution

GPU

𝜎1 𝜎2

𝜎4

𝜎3

𝜎5 𝜎6

𝜎7 𝜎8 𝜎9

𝜎10

𝑞15

𝑞18

𝑞20

Fig. 7: Mixed Batch of the Updates and Queries

6.1 Operation Primitive Oriented Parallel Strategy
To have the better parallel performance and meet the streaming

consistence requirement, we propose the Operation Primitive
Oriented Parallel Strategy (abbreviated as Opera). Given a batch
of operations B, we decompose B into two groups:BU includes
all edge insertions/deletions and BQ consists all queries, and then
process BU followed by BQ.
Processing edge updates in BU . Although we propose a series
of parallel solutions to conduct all edge insertions/deletions in
Sections 3-Section 5, considering the streaming consistence in
mixed workloads, we propose the following modification. Let us
recall Figure 5 and all edges are sorted by the source and des-
tination nodes. Now, we introduce another timestamp dimension.
Assume that the earliest query timestamp in batch BQ is tmin.
Given an edge insertion/deletion σi in BU , if the timestamp of
σi (t(σi) < tmin), we have the same solution with Sections 3-
Section 5. Otherwise, if t(σi) > tmin and the inserted/deleted
edge has been in LPMA before, we do not merge the insert-
ed/deleted edges with the one already in LPMA and append it as a
new element to the old ones with identical source and destination
nodes. We will merge them after finishing the mixed batch.
Processing queries in BQ. For simplicity, we assume that all
queries in BQ are primitives, i.e., edge queries and 1-hop succes-
sor/predecessor queries. As we know, segments in LPMA form
a sorted edge array through the in-order traversal. Thus, we can
run binary search to locate the query results for edge query and
1-hop successor queries7 in parallel. However, some results may

6. The operations may include both edge insertion/deletions and query
primitives, see Definition 7

7. Predecessor query is the same operation as successor query on LPMA of
in-neighbors.

TABLE 2: Datesets

Dataset Nodes Edges Average Degree
Orkut 3, 072, 441 117, 185, 083 38.14

Graph500 1, 048, 576 125, 829, 120 120
LiveJournal 4, 847, 571 68, 993, 773 14.23

Pokec 1, 632, 803 30, 622, 564 18.75
cit-Patents 3, 774, 768 16, 518, 948 4.38

Road 1, 379, 917 1, 921, 660 1.39
Stack 2, 601, 977 36, 233, 450 13.93
Wiki 1, 140, 149 3, 309, 592 2.9

be invalid if considering streaming consistence. Thus, each query
qi will filter out unreasonable answers based on timestamps and
merge edges with the identical source and destination nodes.

If qi is not a query primitive (such as 2-hop query q15 in
Figure 2d), we need to decompose it into a series of query
primitives. For example, q15 could be decomposed into 2 rounds
of successor query. In the first round, q15 is a 1-hop successor
query, which can be combined with other query primitives for
parallel processing. The second round of q15 is also a set of 1-
hop successor queries based on the answers of the first round.
They can also be evaluated in parallel. Note that the parallel query
processing not only leverages the massively parallel processing
capability of GPU but also leads to coalesce memory accessing.
Merge Updates. When finishing the whole mixed batch B, we
launch a compaction process to merge edges with identical source
and destination nodes but different timestamps. The timestamp of
the merged edge is set the last one among all edges to be merged.
7 EXPERIMENTAL EVALUATION

Datasets: Table 2 gives statistics of datasets in our experiments,
which are from SNAP [19].

• Orkut is a free on-line social network where users form
friendship between each other.

• Graph500 is a synthetic dataset generated by Graph500
RMAT [20] to synthesize a power law graph.

• LiveJournal is a free on-line community with about 10
million members, which contains the activities among the
members.

• Pokec is the most popular on-line social network in
Slovakia. The dataset contains 1.6 million users and their
friendship connection.

• cit-Patents is a U.S. patent citation network includes all
citations made by patents granted between 1975 and 1999,
totaling 16,522,438 citations.

• Road is a road network of Texas, in which intersections
and endpoints are represented by nodes, and roads con-
necting these intersections or endpoints are represented by
undirected edges.

• Stack is a temporal network of interactions on the
stack exchange web site Stack Overflow. The graph has
63,497,050 temporal edges associated with timestamps
and 36,233,450 unique edges in total.

• Wiki is a temporal network representing Wikipedia users
editing each other’s Talk page. The graph has 7,833,140
temporal edges associated with timestamps and 3,309,592
unique edges in total.

For the first six graph datasets, we shuffle edges in a random
order to assign the timestamps to simulate dynamic graphs. Both
Stack and Wiki use the original associated edge timestamps. In

10

experiments, we load these edges incrementally in batches to build
dynamic graph structures.
Setup: We experimentally compare LPMA with state-of-art GPU
dynamic graph data structures, including GPMA+ [8], faimGraph
(sort version) [11], Hornet [9] and HashBased [10]. We obtain
their codes from downloadable URL8. All experiments are imple-
mented with CUDA 7.5 and GCC 4.8.5 and run on Red Hat 4.8.5
server that has Intel(R) Xeon(R) E5-2640 (6-cores, 2.60GHz) with
128GB main memory and NVIDIA Tesla P100 GPU with 16GB
main memory.

7.1 LPMA-B VS. GPMA+ in Expansion Performance
LPMA is designed to address the expansion cost in GPMA+.

So, we first evaluate the expansion cost in both LPMA and
GPMA+. In this subsection, we adopt the bottom-up update
strategy in LPMA (Section 3.2), denoted as LPMA-B. During the
insertion, some batches would trigger the expansion and we denote
them as expansion batches. We have the same parameter settings
for both LPMA-B and GPMA+, including the same density
thresholds and the same segment sizes. Thus, both structures have
the same time point to trigger the expansion. In this experiment,
we compare LPMA-B with GPMA+ in expansion batches. We
evaluate the average update time of one expansion batch in both
LPMA-B and GPMA+ in Figure 8.

Orkut Graph500Livejournal Pokec cit-Patents Road Stack Wiki
103

104

105

69× 66× 63× 61× 65× 37×
62×

40×

L
a
te
n
cy

(µ
s)

GPMA+ LPMA-B

50

60

70

80

90

U
n
n
ec
es
sa
ry

R
e-
B
a
la
n
ce
s
R
ed

u
ce
d
(%

)Unnecessary Re-Balances Reduced By LPMA

(a) 104 Batch

Orkut Graph500Livejournal Pokec cit-Patents Road Stack Wiki
103

104

105

45× 46× 43× 38× 42×
27×

43×
31×

L
a
te
n
cy

(µ
s)

GPMA+ LPMA-B

50

60

70

80

90

U
n
n
ec
es
sa
ry

R
e-
B
a
la
n
ce
s
R
ed

u
ce
d
(%

)Unnecessary Re-Balances Reduced By LPMA

(b) 105 Batch

Fig. 8: Expansion Performance and Unnecessary Re-balances
Reduced by LPMA (only Expansion Batch)

When a batch contains 104 edge insertions, LPMA-B has
69-61× speedups over GPMA+ on the first four datasets, 37×
speedups on Road, 62× speedups on Stack and 40× speedups on
Wiki. As we analyzed in Section 3.3, GPMA+ always needs to
re-balance the whole array during the expansion. The expansion
cost depends on the size of the array. The array size grows quite
large in the last few rounds on Pokec and cit-Patents, thus the
expansion costs increase rapidly. However, LPMA-B performs the
localized re-balance. The quantitative analysis in Section 3.3 states

8. GPMA+:https://github.com/desert0616/gpma demo
Hornet:https://github.com/hornet-gt/hornet
faimGraph:https://github.com/GPUPeople/faimGraph
HashBased:https://github.com/gunrock/gunrock/tree/dynamic-graph

that LPMA-B can reduce most re-balance cost in GPMA+. Figure
8 also confirms that more than 80% re-balance costs can be saved
in LPMA-B in 104 batch.

When the batch size increases to 105 edges, the LPMA has
46-38–speedups over GPMA+ on the first four datasets, 27×
speedups on Road, 43× speedups on Stack and 31× speedups
on Wiki in Figure 8. Note that Figure 8 only considers expansion
batches. The advantage of LPMA weakens with the increment of
batch size during expansion batches, since the expected numbers
of non-associated segments (Lemma 1) is reduced. Actually, the
overall update performance of LPMA increases with regard to
larger batch sizes in Figure 11, as analyzed in Section 7.2.

7.2 Evaluating three Re-balance Strategies

In this subsection, we evaluate our proposed three re-balance
strategies of LPMA: bottom-up (LPMA-B), top-down (LPMA-
T) and hybrid (LPMA-H). Figure 9 shows the latency curves of
the three strategies on Pokec. With the arrivals of batches, the
density of LPMA grows until the expansion. LPMA-B has the
good performance when the density is low but has up to 83×
latency spikes when the density is high. LPMA-T has a more flat
latency curve and the spikes are flattened because the redundant
re-balances are reduced by the top-down strategy, but it has extra
costs to roll down from the root layer to the leaf layer when
the density is low. In most batches, LPMA-H follows the better
performance between LPMA-B and LPMA-T except the probe
rounds. When the density reaches π, where π is an empiric value
(60%), the probe rounds bring some fluctuations to the latency
curve of LPMA-H, but Figure 10 shows that LPMA-H has better
average update performance than LPMA-B and LPMA-T.

When a batch contains 104 edge insertions, LPMA-T saves
21–27% re-balances on LPMA-B (see Figure 10). The reduced re-
balances are considered as redundant re-balances that are analyzed
in Section 4. However, the extra costs to roll down from the
root layer to the leaf layer bring down the average performance
of LPMA-T. In the eight datasets, LPMA-B has around 1.3×
faster than LPMA-T. LPMA-H saves 15–20% redundant re-
balances which are fewer than LPMA-T. Generally, LPMA-H
follows the better performance between LPMA-B and LPMA-T
in most batches and has the best update performances. In the eight
datasets, LPMA-H has around 2× speedups over LPMA-T and
1.4× speedups over LPMA-B. When a batch contains 105 edge
insertions, LPMA-T could save 33–37% re-balances on LPMA-B
because the larger batch size causes the larger increment speed of
density. In the eight datasets, LPMA-B has around 1.5× speedups
over LPMA-T. LPMA-H saves 24–29% redundant re-balances and
has around 2.5× speedups over LPMA-B.

7.3 Overall Edge Update Performance

We compare the average latency for all edge update batches
(including expansion batches) among LPMA-H, GPMA+ [8],
faimGraph (sort version) [11], Hornet [9] and HashBased [10] in
Figure 13. Note that we also experimentally evaluate node updates
in Appendix B.
LPMA-H with different batch sizes: Figure 11 shows that the
throughput of LPMA-H increases significantly varying the batch
size from 103 to 106. For every 10× the batch size, the throughput
increases by 5–9×. The acceleration effect caused by the larger
batch size is due to two reasons: the lower average transfer cost
and the higher parallel power. The larger batch size makes full

11

80 100 120 140 160 180 200 220 240 260 280 300

104

105

Batch Number

L
a
te
n
cy

(µ
s)

Bottom-up Strategy Top-down Strategy Hybrid Strategy

Fig. 9: Latency Curves of 3 Strategies on Pokec

Orkut Graph500Livejournal Pokec cit-Patents Road Stack Wiki
103

103.2

103.4

103.6

103.8

L
a
te
n
cy

(µ
s)

LPMA-B LPMA-T LPMA-H

0

10

20

30

40

50

R
ed

u
n
d
a
n
t
R
e-
B
a
la
n
ce
s
R
ed

u
ce
d
(%

)Redundant Re-Balances Reduced By LPMA-T

Redundant Re-Balances Reduced By LPMA-H

(a) 104 Batch

Orkut Graph500Livejournal Pokec cit-Patents Road Stack Wiki
103

103.5

104

L
a
te
n
cy

(µ
s)

LPMA-B LPMA-T LPMA-H

0

10

20

30

40

50

R
ed

u
n
d
a
n
t
R
e-
B
a
la
n
ce
s
R
ed

u
ce
d
(%

)Redundant Re-Balances Reduced By LPMA-T

Redundant Re-Balances Reduced By LPMA-H

(b) 105 Batch

Fig. 10: Insertion Performances and Redundant Re-balances Re-
duced by LPMA-T and LPMA-H

use of PCIe bandwidth and the higher parallel power of GPU. We
also show the data transfer and synchronization time in Figure 12,
which show that the data transfer and synchronization spends 22–
38% of total update time. On the other hand, the larger batch size
causes longer latency due to more buffer time on the CPU side.
Therefore, we choose 104 and 105 batch size in our experiments.

103 104 105 106
102

103

104

105

106

Batch Size

T
h
ro
u
g
h
p
u
t
(u
p
d
a
te
s/
m
s)

Orkut Graph500 Livejournal Pokec

cit-Patents Road Stack Wiki

Fig. 11: Insertion Performance of LPMA-H in Different Batch
Sizes

Comparing with GPMA+: As discussed in Section 3.3 and
4, LPMA-H reduces unnecessary re-balances in the expansion
batches and redundant re-balances in the non-expansion batches.

Orkut Graph500 Livejournal Pokec cit-Patents Road Stack Wiki
0

2,000

4,000

6,000

38.1%

37.58%

40%

38.28%

37.09%

38.85%

36%

34.88%

29.28%

30.17%

50.13%

22.97%

36.71%

43.86%

32.46%

46.23%L
a
te
n
cy

(µ
s
)

Transfer and Syc Time (104 Batch)

Transfer and Syc Time (105 Batch)

Orkut Graph500 Livejournal Pokec cit-Patents Road Stack Wiki
0

2,000

4,000

6,000
GPU Kernel Running Time (104 Batch)

GPU Kernel Running Time (105 Batch)

Fig. 12: Data Transfer and Synchronization Cost and GPU Kernel
Running Time

Orkut Graph500 Livejournal Pokec cit-Patents Road Stack Wiki

102

103

104

L
a
te
n
cy

(µ
s
)

LPMA-H GPMA+ faimGraph Hornet HashBased

(a) 104 Batch

Orkut Graph500 Livejournal Pokec cit-Patents Road Stack Wiki

102

103

104

105

L
a
te
n
cy

(µ
s
)

LPMA-H GPMA+ faimGraph Hornet HashBased

(b) 105 Batch

Fig. 13: Overall Update Performance (All Update Batches)

The two optimizations give LPMA-H a huge advantage on up-
dating. When edges arrive in 104 batches, LPMA-H has 6–9×
speedups over GPMA+. In 105 batches, LPMA-H has 10–20×
speedups over GPMA+. Although the advantage of LPMA weak-
ens in large batch sizes during expansion batches, the expansion
happens more frequently in larger batches. Therefore, consider
the overall update performance, LPMA-H has more speedups over
GPMA + in larger size batches.
Comparing with faimGraph: In the 104 batch sizes, LPMA-H
has 1.4–1.7× speedups over faimGraph on the large graphs: Orkut,
Livejournal, Pokec and cit-Patents. On the small graph with even
degree distribution, faimGraph has 1.1× speedups over LPMA-H.
In the 105 batch sizes, LPMA-H has 1.3–1.5× speedups on Orkut
and Graph500. On Livejournal, Pokec and cit-Patents, LPMA-H
and faimGrah have simlar performanc. On Road, faimGraph has
1.6× speed up.

The performance diversities on different datasets are caused by
the different insertion method. In faimGraph, the insertion batches
are partitioned by the source nodes and merged into the associated
neighbor lists. Each neighbor list is assigned a thread or a warp to
process the insertion. In skewed degree distribution graphs (such
as Orkut and Graph500), faimGraph has worse performance due
to unbalanced workloads. LPMA-H inherits the segment oriented
parallel strategy from GPMA+ and the workloads among the
threads are always balanced. Thus, LPMA-H has better perfor-
mance in this case. However, in Road graphs with small and even

12

degrees, faimGraph is better than LPMA, especially in large batch
sizes.
Comparing with Hornet: Since Hornet does not sort the neighbor
lists, Hornet is faster than LPMA-H, GPMA+ and faimGraph in
104 batch. However, Hornet dose not maintain the sorted graph
and has worse performance on graph queries (see Section 7.4).
In the 105 batch sizes, the performance of LPMA-H surpasses
Hornet because the scalability of Hornet is worse than LPMA-
H. Hornet assigns a continuous array to the neighbor list of each
node. If the array is full, Hornet assigns a double size new array
to the neighbor list and move the whole list to the new space. The
expansion operation of Hornet happens much more frequently than
GPMA+ and LPMA-H. The larger batch size brings even more
frequent expansion and the massive data movements effect the
update performance significantly.
Comparing with HashBased: For each update, all the five
dynamic graph system needs to perform the edge existence check
to eliminate the duplicated edge records. The hash based neighbor
list of HashBased structure accelerates the edge existence check
and HashBased outperforms LPMA, Hornet and faimGraph sig-
nificantly, as shown in Figure 13. However, HashBased does not
maintain the order of neighbor lists as LPMA does. Thus, LPMA
has much better performance than HashBased on some graph
queries, such as sorted CSR converting and triangle counting than
HashBased. More details are given in Section 7.4.

7.4 Query Performance
In this subsection, we evaluate the query performance us-

ing query-only batches. We consider different query primitives
over five structures: LPMA, GPMA+, faimGraph, Hornet and
Hashbased as well as the time of converting these dynamic data
structures into CSR formats. Since three re-balance strategies of
LPMA only effect the update processing and the query perfor-
mance keep the same, thus, we only denote LPMA in the following
experiments.
Query Primitives: Since query primitives are fundamental of
many other graph algorithms like BFS and n-hop neighbor, which
are executed by performing query primitives iteratively. Thus, we
compare LPMA with GPMA+, faimGraph and Hornet in these
query primitives: edge query and sorted 1-hop neighbor query. We
random generate four query workload batches: 104 edge queries,
105 edge queries, 104 neighbor queries and 105 neighbor queries.
Figure 17 shows the results of the query primitives performance9.
Since GPMA+ and LPMA has the same logical structure, they
have similar query performance.

For the edge query, LPMA has 12× and 6× speedups over
faimGraph in 104 and 105 batches. To run the edge query parallel,
faimGraph assigns one thread for each query edge and runs binary
search on the associated neighbor list. LPMA assigns one thread
for each query edge and run the binary search on the whole
edge array. Although LPMA has larger searching space for each
query edge, the shared memory prefetch could reduce the main
memory access and speed up the parallel query evidently. For the
sorted neighbor list query, LPMA has 1.5× and 1.2× speedups
over faimGraph in 104 and 105 batches. faimGraph assigns one
thread for each query node to read the associated neighbor list
and the uneven lengths of neighbor lists could cause unbalanced
workload. LPMA first uses node oriented strategy to read the offset
and locate the associated segments. Then LPMA uses segment

9. Due to space limit, Figures 17 is given in Appendix D.

oriented strategy to read the neighbor lists parallel that avoid the
unbalanced workload.

Since Hornet does not maintain the sorted edges, thus LPMA
has 5× speedups on the edge query and 3× speedups on the sorted
neighbor query. The experiment results show that edge query on
the hash table is faster than the binary search on the sorted edge
array. The hash based neighbor list accelerates the update and edge
query performance significantly and HashBased has 10× speedups
over LPMA on edge query. However LPMA has 5-10× speedups
on the sorted neighbor query since LPMA maintains the sorted
edge array.
CSR Converting Performance: As we discussed in Section 2.2,
CSR is a de facto structure for many existing graph algorithms.
To enable use existing graph analysis libraries, we need to convert
a dynamic graph structure to CSR format. Thus, we compare the
CSR converting time cost for these four data structures.

In experiments, we load eight datasets and convert the dynamic
graph structure into the CSR format. GPMA+ and LPMA maintain
a sorted edge array. By compacting the empty cells in the array,
both GPMA+ and LPMA could be converted into CSR within a
small cost. Similar as sorted neighbor list query, faimGraph uses
the node oriented strategy to extract CSR and the performance is
limited by the unbalanced workload. Hornet does not maintain the
ordered graph and needs to be sorted first before the converting.
Figure 14 shows that GPMA+ and LPMA has the same perfor-
mance, 30–7× speedups over Hornet and around 1.5× speedups
over faimGraph on most of the datasets. The only exception
is that faimGraph has better CSR converting performance than
LPMA on the Road dataset, since the road graph has evener
degree distribution and the average degree is small, which favors
faimGraph that assigns one thread for each query node to read the
associated neighbor list.

In codes of HashBased [10], the hash neighbor neighbor list
only be converted into unsorted CSR on GPU side, i.e., all neigh-
bors of each node are not sorted by the destination node IDs. We
show the CSR converting performance of different approaches in
Figure 15. Obviously, the unsorted version of CSR converting has
the fastest time; but LPMA is faster than converting HashBased
to sorted CSR no matter sorting on CPU or GPU. Specifically, the
data movement and the sort on CPU side cause 11–20× latency
for the sorted CSR converting. LPMA still has 3–8.5× speedups
over HashBased for the sorted CSR converting on GPU side.

Orkut Graph500 Livejournal Pokec cit-Patents Road Stack Wiki

104

105

106

L
a
te
n
cy

(µ
s
)

LPMA-H GPMA+ faimGraph Hornet HashBased

Fig. 14: CSR Converting Performance
Graph Algorithms Performance: We conduct Triangle counting
(Figure 18), PageRank (Figure 19) and BFS (Figure 20) algorithms
on the five data structures.10.

LPMA and faimGraph (sorted version) have better perfor-
mance than Hornet and HashBased on triangle counting algorithm.
LPMA has 2.4–5× speedups over Hornet and 4–7× speedups

10. Due to space limit, Figures 18, 19, 20 are given in Appendix E.

13

Orkut Graph500 Livejournal Pokec cit-Patents Road Stack Wiki

103

104

105

106
L
a
te
n
cy

(µ
s
)

LPMA-H HashBased (Unsorted)

HashBased (Sorted on CPU) HashBased (Sorted on GPU)

Fig. 15: CSR Converting Performance (LPMA and HashBased)

over HashBased. As the set intersection takes a large proportion
in triangle counting [21], the sorted neighbor lists in LPMA
and faimGraph (sorted version) can significantly improve the
set intersection performance significantly. Therefore LPMA and
faimGraph have much better performance on triangle counting
algorithm than Hornet and HashBased.

For PageRank, LPMA has 0.9–1.1× speedups over faim-
Graph, 1.1–1.3× speedups over Hornet and 0.88–1.2× speedups
over HashBased. For BFS, LPMA has 0.9–0.92× speedups
over faimGraph, 1.1–1.2× speedups over Hornet and 1.1–1.2×
speedups over HashBased. Since LPMA and GPMA+ maintain
exactly the same sorted edge array used in the algorithms, the
algorithms have same time costs on the two structures. Hornet,
faimGraph and HashBased use the node-oriented parallel strategy
to read the the neighbor lists. LPMA, on the other hand, first
computes the segments where the neighbor lists are located and
perform the segment-oriented parallel strategy to read the the
neighbor lists. Therefore, for graph queries with uneven point
degree distribution, LPMA has an advantage. If the degree distri-
bution of points is more even, this advantage is no longer obvious.
Hornet has the worst performance since Hornet doesn’t have the
workload balance optimization.

7.5 Performance of Query-Update Mixed Batches
To evaluate our operation primitive oriented parallel strategy

(i.e., Opera) over query-update mixed batches, we generate 3%
of batch size queries which include edge queries, 1-hop neighbor
queries for each batch and mixed with the update edges randomly.
We load the datasets in 104 batches and 105 batches. Each edge
and query is assigned a timestamp by the time of buffering by the
CPU side. To the best of our knowledge, we are the first to consider
parallel processing for mixed batches. Thus, we only compare
LPMA-H without Opera with one with Opera.

When we load the batches into LPMA-H without Opera, the
update edges are cut into many small groups and the system
has to execute the small groups serially. The parallel power of
GPU is not fully used without Opera. In LPMA-H with Opera
system, the batch is only split into two groups and each group
could be processed in parallel. Figure 16 shows the performance
of LPMA without Opera and LPMA with Opera. In 104 Mixed
Batch, Opera has 2–6× speed up. In 105 Mixed Batch, Opera has
4–11× speedups.

7.6 Discussion
We summarize experimental results of different dynamic GPU

graph data structures and separate the discussion from two per-
spectives: graph updates and graph query/computing algorithms.
Graph updates: For edge updates, HashBased has the best per-
formance, since updated edges need to be searched and duplicated

Orkut Graph500 Livejournal Pokec cit-Patents Road Stack Wiki

103.5

104

L
a
te
n
cy

(µ
s)

LPMA-H without Opera LPMA-H with Opera

(a) 104 Mixed Batch Performance

Orkut Graph500 Livejournal Pokec cit-Patents Road Stack Wiki

104

104.5

L
a
te
n
cy

(µ
s)

LPMA-H without Opera LPMA-H with Opera

(b) 105 Mixed Batch Performance

Fig. 16: Mixed Batch Performance

check, and the HashBased has better performance than that using
binary search. In skewed degree distribution graphs, faimGraph
has worse performance than LPMA due to unbalanced workloads.
In the graphs with small and even degrees, faimGraph is better
than LPMA, especially in large batch sizes.

Considering node updates, Hornet and HashBased use the
fixed size array to store vertices and do not support node updates.
Instead, LPMA and faimGraph support dynamic node updates. For
node insertion, LPMA and faimGraph have similar performance.
For node deletion, LPMA has better performance. This is due
to the fact that when deleting nodes, the edges associated with
the nodes need to be deleted in batches, and LPMA has better
performance for node deletions in batches. More details are given
in Appendix B of the supplementary material.
Graph query/computing algorithms: For edge query, since
HashBased uses the hash table to check edge existence, it has the
best performance. For the neighbor query that does not require
sorting, LPMA does not have advantage. However, since both
LPMA and faimGraph can maintain an sorted list of neigh-
bors, LPMA and faimGraph have better performance for sorted
neighbor query. The sorted neighbor list can speed up neighbor
list intersection, which in turn accelerates triangle counting and
subgraph matching that need neighbor list intersection.

In practice, it is valuable to export a snapshot of a dynamic
graph at a given timestamp into the CSR structure for further
graph analysis. LPMA has the best performance on the sorted
CSR converting since LPMA has the similar structure as CSR.

Generally, for the graph algorithms that do not require neigh-
bor list intersection, such as PageRank and BFS, these structures
have similar performances. Due to different parallel strategies,
there are slight differences in performance under different data
distributions. For graph queries with uneven vertex degree dis-
tribution, LPMA has a clear advantage. Hornet has the worst
performance since Hornet does not employ the workload balance
optimization. For the graph algorithms requiring neighbor list
intersection, like triangle counting, LPMA and faimGraph have
much better performance on triangle counting algorithm than
Hornet and HashBased due to the sorted neighbor list.

8 RELATED WORK

Generally, we classify dynamic graph structures on GPUs into
four categories.

14

CSR-Based Structure: As an early effort, the dynamic com-
pressed sparse row (DCSR) [14] is devised to handle the dynamic
changes. By reserving empty cells in the column array, the
insertions could be added into the data structure with a small
cost. However if the insertions for row i over-range the reserve
space, the offset of row i would be divided into discontinuous
space in the column array. The defragmentation operation has to
be conducted after the insertion to maintain the good locality of
the data structure, thus, DCSR is not efficient for dynamic graphs
due to high throughput insertions. DCSR does not support deletion
and the time complexities of graph queries are high on DCSR [8].
Therefore, we do not consider DCSR as the comparable structure
in our experiments.
Neighbor List Based Structure: The neighbor list based struc-
tures maintain a variable array or list to store the neighbor lists.
STINGER [22] data structure is rst introduced as a dynamic
graph structure for both temporal and spatial graphs with meta-
data for multi-core architectures, while cuSTINGER [23] extends
STINGER to the GPUs. Hornet [9] designs a dynamic array
management system to store the neighbor list of each node. First,
Hornet uses block-arrays as store unit for edges. The system
assigns each node a default number of the cells for each neighbor
list. Once cells are full, the system reallocates the double size
of the previous space. Hornet has a Vectorized Bit Tree for each
Block-array to locate the empty cells and B+ Trees of block-
arrays to manage the Block-arrays. Hornet places the neighbor
lists in block sizes that are powers of two which sets the upper
bound for the memory allocated for the entire graph evolution:
2|E|.

faimGraph [11] stores the adjacency lists in congurable size
memory pages. The pages of one node’s neighbor list are con-
nected by the pointers. faimGraph uses a single memory pool on
GPU to manage the memory pages. It also offers both structure-
of-arrays (SoA) and array-of-structures (AoS) representations to
store edge data.
Hash Based Structure: A hash table approach is made in
Dynamic Graphs on the GPU [10]. Instead of array, this work
uses hash table for the adjacency lists storage. The GPU memory
is divided into fixed size chunks and each chunk presents a bucket
of the hash table. This work deals with the hash collisions with
linked list achieves O(1) time complexity for single edge update.
PMA-Based Structure: GPMA+ [8] adopts Packed Memory
Array (PMA) [15], [16] to maintain sorted arrays in CSR for
dynamic graphs. PMA maintains a sorted array, but leaves gaps
to accommodate fast updates with a bounded gap ratio. GPMA+
extends PMA to GPU and use it to store the sorted arrays in CSR.
They propose a segment-oriented operations to parallelize edge
insertions/deletions in a lock-free model. However, the global bal-
ance strategy in GPMA+ lead to more unnecessary re-balancing
cost, which is the motivation of our proposed LPMA in this work.

9 CONCLUSION

In this paper, we propose a multi-level array LPMA to replace
the traditional contiguous array structure in PMA and GPMA+ to
process dynamic graphs on GPU, thus reducing the unnecessary
re-balance during the expansion phase and effectively improving
the efficiency of the extension phase. Theoretical analysis and
extensive experiments demonstrate the superiority of LPMA in
reducing data movement. Also, we propose a hybrid strategy
can self-adaptively choose the more efficient strategy to execute

between the top-down and bottom-up strategies according to the
data storage density.
ACKNOWLEDGMENTS

This work was supported by NSFC under grant 61932001 and
U20A20174.
REFERENCES

[1] A. McGregor, “Graph stream algorithms: a survey,” ACM SIGMOD
Record, vol. 43, no. 1, pp. 9–20, 2014.

[2] S. Guha and A. McGregor. (2012) Graph synopses, sketches, and
streams: A survey.

[3] X. Qiu, W. Cen, Z. Qian, Y. Peng, Y. Zhang, X. Lin, and J. Zhou, “Real-
time constrained cycle detection in large dynamic graphs,” Proceedings
of the VLDB Endowment, vol. 11, no. 12, pp. 1876–1888, 2018.

[4] Y. Wang, A. Davidson, Y. Pan, Y. Wu, A. Riffel, and J. D. Owens,
“Gunrock: A high-performance graph processing library on the GPU,”
in Proceedings of the 21st ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, 2016, pp. 1–12.

[5] X. Shi, Z. Zheng, Y. Zhou, H. Jin, L. He, B. Liu, and Q.-S. Hua, “Graph
processing on GPUs: A survey,” ACM Computing Surveys (CSUR),
vol. 50, no. 6, pp. 1–35, 2018.

[6] H.-N. Tran and E. Cambria, “A survey of graph processing on graphics
processing units,” The Journal of Supercomputing, vol. 74, no. 5, pp.
2086–2115, 2018.

[7] J. Zhong and B. He, “Medusa: Simplified graph processing on GPUs,”
IEEE Transactions on Parallel and Distributed Systems, vol. 25, no. 6,
pp. 1543–1552, 2013.

[8] M. Sha, Y. Li, B. He, and K.-L. Tan, “Accelerating dynamic graph
analytics on GPUs,” Proceedings of the VLDB Endowment, vol. 11, no. 1,
2017.

[9] F. Busato, O. Green, N. Bombieri, and D. A. Bader, “Hornet: An efficient
data structure for dynamic sparse graphs and matrices on GPUs,” in 2018
IEEE High Performance extreme Computing Conference (HPEC). IEEE,
2018, pp. 1–7.

[10] M. A. Awad, S. Ashkiani, S. D. Porumbescu, and J. D. Owens, “Dynamic
graphs on the GPU,” in 2020 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). IEEE, 2020, pp. 739–748.

[11] M. Winter, D. Mlakar, R. Zayer, H.-P. Seidel, and M. Steinberger,
“faimgraph: high performance management of fully-dynamic graphs
under tight memory constraints on the GPU,” in SC18: International
Conference for High Performance Computing, Networking, Storage and
Analysis. IEEE, 2018, pp. 754–766.

[12] Y. Hu, H. Liu, and H. H. Huang, “Tricore: Parallel triangle counting
on GPUs,” in SC18: International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE, 2018, pp. 171–
182.

[13] L. Zeng, L. Zou, M. T. Özsu, L. Hu, and F. Zhang, “Gsi: GPU-friendly
subgraph isomorphism,” in 2020 IEEE 36th International Conference on
Data Engineering (ICDE). IEEE, 2020, pp. 1249–1260.

[14] J. King, T. Gilray, R. M. Kirby, and M. Might, “Dynamic sparse-matrix
allocation on GPUs,” in International Conference on High Performance
Computing. Springer, 2016, pp. 61–80.

[15] M. A. Bender, E. D. Demaine, and M. Farach-Colton, “Cache-oblivious
b-trees,” in Proceedings 41st Annual Symposium on Foundations of
Computer Science. IEEE, 2000, pp. 399–409.

[16] M. A. Bender and H. Hu, “An adaptive packed-memory array,” ACM
Transactions on Database Systems (TODS), vol. 32, no. 4, pp. 26–es,
2007.

[17] C. McGinnis, “Pci-sig® fast tracks evolution to 32gt/s with pci express
5.0 architecture,” News Release, June, vol. 7, 2017.

[18] K. Bogart and C. Stein, “Discrete math in computer science,” Depart-
ment of Computer Mathematics and Department of Computer Science.
Dartmouth College, Hanover, NH, 2002.

[19] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, Jun. 2014.

[20] R. C. Murphy, K. B. Wheeler, B. W. Barrett, and J. A. Ang, “Introducing
the graph 500,” Cray Users Group (CUG), vol. 19, pp. 45–74, 2010.

[21] S. Han, L. Zou, and J. X. Yu, “Speeding up set intersections in graph
algorithms using SIMD instructions,” in Proceedings of the 2018 In-
ternational Conference on Management of Data, SIGMOD Conference
2018. ACM, 2018, pp. 1587–1602.

[22] D. Ediger, R. McColl, J. Riedy, and D. A. Bader, “Stinger: High perfor-
mance data structure for streaming graphs,” in 2012 IEEE Conference on
High Performance Extreme Computing. IEEE, 2012, pp. 1–5.

[23] O. Green and D. A. Bader, “custinger: Supporting dynamic graph algo-
rithms for GPUs,” in 2016 IEEE High Performance Extreme Computing
Conference (HPEC). IEEE, 2016, pp. 1–6.

15

Lei Zou is a professor in Wangxuan Institute
of Computer Technology of Peking University.
He is also a faculty member in National Engi-
neering Laboratory for Big Data Analysis and
Applications (Peking University) and the Center
for Data Science of Peking University. His re-
search interests include graph databases and
software/hardware co-design for graph comput-
ing.

Fan Zhang got his doctoral degree from Peking
University in 2022. His research interests include
graph stream processing and high performance
graph computing .

Yinnian Lin is currently a Phd student at School
of Intelligence Science and Technology, Peking
University. His research interests include het-
erogeneous graph processing and high perfor-
mance computing.

Yanpeng Yu was a undergraduate student in
Peking University and he is now a PhD candidate
at the department of computer science, Yale
University. This work was done when he was
in Peking University. Now, his research interests
include memory disaggregation, programmable
networks and operating systems.

