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Abstract. Sparse problem is the major challenge in knowledge graph
completion. However, existing knowledge graph completion methods uti-
lize entity as the basic granularity, and face the semantic under-transfer
problem. In this paper, we propose an analogy-triple enhanced fine-
grained sequence-to-sequence model for sparse knowledge graph comple-
tion. Specifically, the entities are first split into different levels of gran-
ularity, such as sub-entity, word, and sub-word. Then we extract a set
of analogy-triples for each entity-relation pair. Furthermore, our model
encodes and integrates the analogy-triples and entity-relation pairs, and
finally predicts the sequence of missing entities. Experimental results on
multiple knowledge graphs show that the proposed model can achieve
better performance than existing methods, especially on sparse entities.

Keywords: Knowledge graph completion · Sequence-to-sequence model
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1 Introduction

Knowledge graphs (KGs) contain massive real world knowledge, and the knowl-
edge in KGs is generally represented by structured triples in the form of (h, r, t),
where h and t are head and tail entities respectively, and r denotes the relation
between h and t. Due to the incompleteness of KGs, various knowledge graph
completion methods are proposed to predict missing links based on existing
data of KGs. However, as the long-tail distribution of entities in KGs, the sparse
problem of entities is inevitable and becomes the major challenge for knowledge
graph completion [27]. For example, in the open source KG Freebase [2], up to
58.2% of the entities appear lower than 10 times [6].

Previous knowledge graph completion methods can be divided into two strea-
ms. 1) One is embedding-based methods, these methods learn low-dimensional
embeddings for entities and relations, and then score the candidate triples based
on embeddings [3, 17, 28]. 2) The other line is rule-based methods, which learn
logical rules form KGs, and then apply the rules on existing data to predict new
triples [11,29]. However, although much remarkable progress has been achieved,
existing methods still face the following Semantic Under-transfer Problem:



2 Shaofei Wang, Siying Li, and Lei Zou

Semantic Under-transfer Problem. Current methods utilize entities as
the basic granularity, and the granularity of entities is too coarse to transfer
the semantics well (i.e., under-transfer problem), especially for sparse entities.
For example, in Fig.1, the entity melbourne institute of technology is a
sparse entity, and it is difficult to predict its location and field. However, if
the entity is split into the fine-grained components melbourne and institute
of technology, whose semantics can be transferred from similar entities. As a
consequence, the location and field can be predicted through learning from
other analogy-triples (such as (melbourne park, location, melbourne) and
(massachusetts institute of technology, field, education)).

. . . . . .

Analogy attention

Sample n sequences

KG

Melbourne 
Cricket 
Ground

Melbourne 
Airport

Melbourne 
Park

Dublin 
Institute of 
Technology

KG

Nagoya 
Institute of 
Technology

Massachusetts 
Institute of 
Technology

Sparse entity

Melbourne 
Institute of Technology

...

 melbourne

 new south wales

 south melbourne

Predicted answers

Self-attention

×Nq

FNN

Self-attention

FNN

×Na

Analogy 
encoder Query encoder Decoder

Self-attention

Analogy attention

Encoder attention

Institute of Technology

?is located in

education

Melbourneis located in

melbourne

field

Melbourne
is located in

Melbourne
is located in Educationfield

Educationfield

?field

e1
q ek

q
[SEP] r1

q
rj

q. . .a1 an

( eq , rq , ? )

Query Analogy triples

(eh , r  , et) ... (eh , r  , et)
 Analogies 

exaction

division division division

×Nd

Sample n sequences

ea ,  ... , ea 
1 n

Sample n sequences

. . .r1
q

rj
q

Outputs

Input

Self-Att.

Output probabilities

N 

N 

Previous output

Masked Self-Att.

FNN Self-Att.

FNN

x1 x|X| y y

Self-Attention

Output probabilities

NA ND 

Previous output

Masked

Self-Attention

FNN

FNN

A1 An

Self-Attention

NS 

FNN

Analogy Attention

Entity-relation 

Attention

Analogy Attention

( h , r )

Entity-relation pair Analogy- triples

{ a1,  , an}
 Analogy-triple 

exaction

[SEP] r......

SplittingSplitting

melbourne

location

location

locationmelbourne 
cricket ground

melbourne 
airport

melbourne 
park

field

field

field

dublin 
institute of technology

nagoya 
institute of technology

massachusetts 
institute of technology

KG KG

Sparse entity

melbourne 
institute of technology

?location

?field

institute of 
technology

Analogy-triple 
Encoder

Entity-relation Encoder

Decoder

h|H|h1 t0 tk-1
...

......
k-11

Self-Att.

Output probabilities

NA ND 

Previous output

Masked Self-Att.

FNN

FNN

A1 An

Self-Att.

NS 

FNN

Analogy Att.

Entity-relation Att.

Analogy Att.

( h , r )

Entity-relation pair Analogy- triples

{ a1,  , an}
 Analogy-triple 

exaction

[SEP] r......

SplittingSplitting

Analogy-triple 
Encoder

Entity-relation Encoder

Decoder

h|H|h1 t0 tk-1
...

Fig. 1. A motivation example of our knowledge graph completion model on sparse enti-
ties. Considering a sparse entity melbourne institute of technology, the semantics
of this entity is difficult to be modeled by traditional methods due to the data scarcity.
While in our method, the entity is split into multiple fine-grained components (such as
melbourne and institute of technology). Thus the semantics of these fine-grained
components can be learnt from analogy-triples (showed in the left and right boxes re-
spectively). Finally the location and field of the sparse entity melbourne institute
of technology can be predicted.

In this paper, we propose an analogy-triple enhanced fine-grained knowledge
graph completion model, the FineKGC, to alleviate the knowledge under-transfer
problem. The main motivation of our model can be included as: 1) Traditional
models are mainly data-driven methods, so it is difficult to model the semantics of
sparse entities well due to the data scarce. While in our model, by splitting enti-
ties into fine-grained components, each component of spare entities could appear
much more frequently; 2) Besides that, in order to alleviate the sparse problem,
our model predicts entities not only based on the given entity-relation pair (such
as (melbourne institute of technology, location)), but also incorporates
the corresponding analogy-triples (such as (melbourne airport, location, mel-



Title Suppressed Due to Excessive Length 3

bourne)). Specifically, first the entities are split into fine granularities which are
helpful to transfer semantics among entities. Then analogy-triples are extracted
from KGs to enhance the modeling of entities. Furthermore, the knowledge graph
completion is conducted by the sequence-to-sequence Transformer model and fi-
nally the predicted entities are directly generated.

The contribution of this paper can be summarized in the following:

– In order to alleviate the sparse problem, we propose a fine-grained knowledge
graph completion method for sparse entities. The entities are split into fine
granularities, which are helpful for semantic transfer among entities.

– The knowledge graph completion is completed by the sequence-to-sequence
Transformer model. In the model, analogy-triples are extracted from KGs
and are incorporated to enhance the modeling of entities.

2 Transformer Model
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Fig. 2. The framework of Transformer model.

Transformer [21] is the state-of-the-art sequence-to-sequence model and achie-
ves excellent performance in multiple fields due to its self-attention mecha-
nism [24, 32]. As illustrated in Fig.2, the structure is composed of an encoder
and a decoder.

Encoder First, the input sequence X = {x1, · · · , x|X|} is first initialized to
embeddings X = [x1; · · · ;x|X|] (X ∈ Rd×|X|)1. Then X is feed into the encoder.

1 In this paper, the bold characters represent the embeddings in the model, and d is
the dimension of embeddings.
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The encoder is composed of N identical layers, and each layer is composed of
two main sub-layers: self-attention sub-layer, and feed-forward sub-layer.

In the self-attention sub-layer, the input X is transformed to three matrices:
query Q, key K, and value V . Then they are encoded by the attention function,
and the hidden states MX is obtained. Formally,

MX = Attention(Q,K,V ) = softmax(
QKT

√
gk

V ) (1)

where 1√
gk

is the scaling factor.
In the feed-forward sub-layer, the hidden states MX is processed by linear

transformations and ReLU activation:

FX = FNN(MX) = max(0,MXW1 + b1)W2 + b2 (2)

where W1, W2, b1, and b2 are trainable parameters.

Decoder The decoder is also composed of N identical layers, and each layer
mainly contains three sub-layers. The first sub-layer is the masked self-attention
sub-layer. In this sub-layer, the sequence generated by the decoder in previous
steps (i.e., {y0, · · · , yk−1}, where y0 is a special token at the beginning) are
processed by Eq. (1). The output hidden states of this sub-layer is denoted
by MY . Then in the self-attention sub-layer, the hidden states obtained by
encoder FX is integrated with the hidden states of the former sub-layer MY .
This procedure can be presented by:

FY = Attention(MY ,FX ,FX) (3)

Then FY is processed in the feed-forward sub-layer as Eq. (2). Finally, the
decoder predicts the output probability of a token by:

P (yk|X,Y<k) = softmax(W3FY + b3) (4)

where W3 and b3 are trainable parameters. yk denotes the output token in the
k-th decode time, and Y<k is the output sequence in previous steps.

The procedure of predicting a sequence Y = {y1, · · · , y|Y |} can be represented
by:

P (Y |X; θ) =

K∏
k=1

P (yk|Y<k, X; θ) (5)

Note that all these sub-layers above are followed by residual connection and
layer normalization, which are omitted for simplicity. More details can be seen
in [21].
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Fig. 3. The framework of our model. Given an entity-relation pair (h, r), first the entity
h is split into fine granularities. Then corresponding analogy-triples are extracted from
KG. Afterwards, the analogy-triples and entity-relation pair are encoded respectively,
and then are integrated in the entity-relation encoder. Finally, in the decoder, previous
output, hidden states of analogy-triples and entity-relation pair are all incorporated to
finally generate the predicted entities.

3 Methodology

3.1 Problem Formulation

Given a KG K = {E ,R}, where E represents the set of entities, and R denotes
the set of relations. KG is represented by a lot of triples (h, r, t), where entities h,
t ∈ E , and relation r ∈ R. In this study we mainly focus on the link prediction
task. Given an entity-relation pair (h, r), link prediction aims to predict the
missing tail entity t.

3.2 Proposed Method

The proposed model is composed of five main modules: fine-grained splitting,
analogy-triple extraction, analogy-triple encoder, entity-relation encoder, and
decoder. First, all the entities are split into fine granularities. Then analogy-
triples are extracted from KG based on the entity-relation pair. Afterwards, the
sequences of entity-relation pair and analogy-triples are encoded and integrated.
Finally, the sequences of predicted entities are generated by the decoder. The
framework is illustrated in Fig. 3.
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Fine-grained Splitting Fine-grained splitting is to split entities into fine gran-
ularities. In our model, we implement three different levels of granularity as
follows:

– Sub-entity granularity. Under this granularity, each unit may contain
multiple words. Take the entity teahouse in chinatown as an example, it
can be split to {teahouse in, chinatown}.

– Word granularity. Word is the basic unit, and each entity is split by
the words. Consider the entity teahouse in chinatown again, it is split to
{teahouse, in, chinatown}.

– Sub-word granularity. Under this granularity, a word can be split into
multiple sub-words. For example, the entity above can be split to {tea,
house, in, china, town}.

To achieve fine-grained splitting, we introduce the text compression algorithm
byte pair encoding (BPE) [15] in our model. In this algorithm, all the words
are first split into characters, then two characters with the highest connection
frequency are merged based on the statistics. Merging is conducted iteratively
until the number of steps is reached or there is no more combination2. In this
module, the BPE algorithm is modified to make it applicable for different levels
of granularity on entities.

In this way, fine-grained splitting is applied on all the entities of KG. The
entity h can be transformed into the sequence H, formally:

H = Splitting(h),

H = {h1, · · · , h|H|}
(6)

Thus the entity-relation pair (h, r) is transformed to sequence {H, r}. Simi-
larly, for a triple a, the head and tail entities of a are also split into sequences,
and we denote the corresponding sequence of triple a by A.

Analogy-triple Extraction This module is to extract a set of analogy-triples
for each entity-relation pair (h, r) based on the corresponding sequence {H, r}.
Specifically, the head entities of analogy-triples are similar with H, and the rela-
tions contained in analogy-triples is same as r. For example, for the given entity-
relation pair (melbourne institute of technology, location), the corre-
sponding analogy-triple set may be {(melbourne airport, location, melbou-
rne), (melbourne park, location, melbourne)}. The analogy-triples extrac-
tion can be formally represented by:

A = {A|Relation(A) = r, sim(Head(A), H) > γ} (7)

where A is a set which contains multiple sequences of analogy-triples, and A
(A ∈ A) is the sequence of an analogy-triple. Head(A) and Relation(A) are
2 Similarly, for the sub-entity granularity, entities are first split into words, and then

sub-entities can be obtained through the combination of words.
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sequences of head entity and relation of A respectively. sim(·, ·) is the similarity
function of entities, and the Levenshtein distance based similarity is used in this
paper. γ is the similarity threshold. The maximum number of analogy-triples
is set to n. In this module, a set of analogy-triples A = {a1, · · · , an} (ai is the
triple of KG K) are extracted, and the corresponding sequences with the same
level of granularity are denoted by A = {A1, · · · , An}.

Analogy-triple Encoder The goal of the analogy encoder is to obtain the
hidden states of analogy-triples and extract their features. Given the sequence
of analogy-triples A = {A1, · · · , An}, they are transformed to embeddings A =
[A1; · · · ;An] (A ∈ Rd×|A|). Then A is feed into the analogy-triple encoder.
The analogy-triple encoder is composed of NA identical layers, and each layer
contains the self-attention sub-layer and feed-forward sub-layer, which are same
as Eq. (1) and Eq. (2). We denote the output hidden states by FA.

Entity-relation Encoder The entity-relation encoder first encodes the se-
quence of entity-relation pair, and then integrates the hidden states of analogy-
triples with that of entity-relation pair. The structure of the entity-relation
encoder is NS identical layers, and each layer includes three sub-layers: self-
attention sub-layer, analogy attention sub-layer, and feed-forward sub-layer.
First, the sequence of entity-relation pair {H, r} is separated by a special to-
ken [SEP], and the sequence is transformed to S = {H, [SEP], r}. Then they
are initialized to embeddings S(S ∈ Rd×|S|).

In the self-attention sub-layer, S is encoded and transformed to the matrix
MS (MS ∈ Rd×|S|) according to Eq. (1).

The difference between the entity-relation encoder and the analogy-triple
encoder is that there is an extra analogy attention sub-layer. In this sub-layer,
the hidden states of analogy-triples FA is attended by the hidden states MS .
Formally:

US = Attention(MS ,FA,FA),US ∈ Rd×|S| (8)
Then the hidden states US is processed by the feed-forward sub-layer accord-

ing to Eq. (2). Finally, the output of entity-relation encoder is denoted by FS

(FS ∈ Rd×|S|).

Decoder The decoder aims to predict the missing entities for each entity-
relation pair. The input of decoder includes three parts: the output sequences in
previous decoding steps (a special beginning hidden states t0 (t0 ∈ Rd×1) is used
in the first step), the hidden states of analogy-triples FA and entity-relation pair
FS . The decoder is composed of ND layers, and each layer includes four main
sub-layers: self-attention sub-layer, analogy attention sub-layer, entity-relation
attention sub-layer, and feed-forward sub-layer. Finally the outputs of decoder
are the predicted sequences of entities.

First, the sequence predicted in previous k−1 steps T<k = {t0, t1, · · · , tk−1}
is processed by the self-attention layer according to Eq. (1), and the output of
this sub-layer is denoted by MT (MT ∈ Rd×k).
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Then in the analogy attention layer, the hidden states MT is used to attend
the hidden states of analogy-triples:

UT = Attention(MT ,FA,FA),UT ∈ Rd×k (9)

Next the hidden states UT is integrated with the entity-relation hidden states
FS in the entity-relation attention layer:

QT = Attention(UT ,FS ,FS),QT ∈ Rd×k (10)

Finally, the hidden states is processed in the feed-forward sub-layer and the
final output of decoder is represented by FT .

The probability distribution at the k-th decode step is predicted by:

P (tk|A, (h, r), T<k; θ) = softmax(WFT + b) (11)

where W and b are trainable parameters. Thus the sequence of predicted entity
can be obtained by T = {t1, · · · , t|T |}. Similar with [14], the output sequences
of decoder are always exactly the entities, so the generated sequences are linked
to entities through exactly string matching.

3.3 Training

During training, the parameters are optimized by minimizing the negative log-
likelihood objective function:

NLL(θ) = − 1

|T |

|T |∑
k=1

logp(tk|T<k,A, (h, r); θ) (12)

where {A} denotes the analogy-triple sets, {(h, r)} represents the entity-relation
pairs, and {t} is the set of corresponding tail entities. T<k is the decoded sequence
in previous k steps. θ represents all the parameters in the model.

4 Experiment

4.1 Experiment Setup

Datasets The experiments are conducted on three public datasets: 1) FB15k-
237 [19] is a sparse dataset which is drieved from FB15k through removing the
inverse triples. 2) YAGO3-10-dr [1] is a sparse dataset modified from YAGO3-10.
Similar with FB15k-237, some duplicate relations are removed from YAGO3-10.
3) Wikidata5M [14,25] is a large-scale benchmark dataset. The details of datasets
are displayed in Table 1.
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Table 1. Statistics of datasets.

#entity #relation #train #valid #test

FB15k-237 14,541 237 272,115 17,535 20,466

YAGO3-10-dr 122,837 36 732,556 3,390 3,359

Wikidara5m 4,818,503 828 21,343,515 5,357 5,321

Baselines We compare our method with three types of baselines as follows:

– Embedding based methods. TransE [3] and RotatE [17] are translation-
based representation learning models. DisMult [28] and ComplEX [20] are
tensor decomposition based methods.

– Rule based methods. Neural-LP [29] transforms the procedure of logic
rule learning to be differentiable, and proposes an end-to-end differentiable
model for rule learning. ProbCBR [5] extracts rules with probabilities from
other entities and then apply the rules to the given entity-relation pair.

– Pre-trained language model based methods. KGT5 [14] adopts sequence-
to-sequence pre-trained model T5 [13] to achieve knowledge graph comple-
tion. SimKGC [23] introduces negative samples and textual description of
entities and relations in the pre-trained language model BERT.

Evaluating Metrics We use mean reciprocal rank (MRR), and Hits@n ratio
to evaluate the performance. These metrics are generally used to measure the
quality of ranks. The results are evaluated under filtered settings3.

Implementation Details Our model is developed based on the papers [18,31],
and the hyper-parameters of Transformer model are same as [18]. The hidden
states d is set to 512, and the batch size is 4096. The iterations of layers in two
encoders (NA and NS) and decoder (ND) are set to 6. In the fine-grained splitting
module, for sub-word granularity, the BPE algorithm is implemented for 8000
steps on FB15k-237, and 30000 steps on YAGO3-10-dr and Wikidata5M. In the
analogy-triples extraction module, the similarity threshold γ is set to 0.5, and
the maximum number of analogy-triples n is 3.

4.2 Performance Comparison with Baselines

Table 2 shows the link prediction results on three datasets by different methods.
Lines 1-4 are results by embedding based methods4. Lines 5-6 are results of
rule based methods5. Lines 7-8 show the performance obtained by pre-trained
3 More details can be seen in paper [3].
4 These results are quoted from papers [1, 14].
5 The results of these two models are obtained through our implementation using

the open source codes. Note that the results on Wikidata5M is empty because it is
difficult to extend to large-scale KGs for these two rule-based methods [4].



10 Shaofei Wang, Siying Li, and Lei Zou

Table 2. The main results of link prediction.

# Method
FB15k-237 YAGO3-10-dr Wikidata5M

MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10

1 TransE [3] 0.288 0.198 0.441 0.190 0.136 0.323 0.253 0.170 0.392

2 DisMult [28] 0.238 0.199 0.446 0.192 0.133 0.307 0.253 0.208 0.334

3 ComplEX [20] 0.249 0.194 0.450 0.201 0.143 0.315 0.281 0.228 0.373

4 RotatE [17] 0.337 0.241 0.533 0.214 0.153 0.332 0.290 0.234 0.390

5 Neural-LP [29] 0.240 0.251 0.362 0.187 0.132 0.297 - - -

6 ProbCBR [5] 0.231 0.187 0.320 0.181 0.128 0.284 - - -

7 SimKG [23] 0.336 0.249 0.511 - - - 0.358 0.313 0.441

8 KGT5 [14] 0.276 0.210 0.414 0.211 0.151 0.327 0.300 0.267 0.365

9 FineKGC-Base 0.379 0.289 0.556 0.254 0.186 0.387 0.369 0.306 0.443

10 FineKGC-Ana. 0.389 0.299 0.567 0.273 0.204 0.404 0.387 0.321 0.452

language model based methods6. In Line 9, our model is implemented without
incorporating analogy-triples. In Line 10, the analogy-triples for each entity-
relation pair are extracted and attended in the model. In our models, the entities
are split into the sub-word granularity. The best performance is shown in bold
fonts. We can reach the following conclusions:

1) Considering the overall results, our model FineKGC-Ana. (Line 10) achieves
the best performance on three datasets, suggesting the superiority of the pro-
posed model. Specifically, compared with RotatE (RotatE performs the best on
5 out of 9 metrics in baselines), our proposed model achieves the maximum
improvement of 0.072 (Hits@10) on YAGO3-10-dr and 0.087 (Hits@1) on Wiki-
data5M. The results demonstrate the effectiveness of our model.

2) Compare the performance of our models in Lines 9-10, the performance
in line 10 are better than that of line 9 on all three datasets. The maximum
improvement is 0.019 on metric MRR of YAGO3-10-dr. The performance shows
that it is helpful to incorporate analogy-triples in our model.

4.3 Performance with Different Frequencies

Our model mainly aims to improve the performance of knowledge graph com-
pletion on sparse entities. To further verify the effect of our model on sparse
entities, in this experiment, we compare the performance of models on entities
6 For SimKGC, the results on FB15k-237 and Wikidata5M is obtained from its original

paper [23]. For KGT5, the results on FB15k-237 and Wikidata5M are quoted from
[14].
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with different frequencies. Specifically, first the validation set of FB15k-237 is
divided into four subsets according to the frequency of entities (the frequency
of entities ranges in 1-10, 10-20, 20-30, and greater than 30, respectively). Then
we randomly sample 500 test data from each subset. The results of different
methods on these four test sets are plotted in Fig. 4.

massachusetts 
institute of technology

参数：条形宽度0.5
x轴区间（0.5,4.5）
字号：18 加粗

(a) (b) (c)

Fig. 4. The performance of models on entities with different frequencies.

In Fig. 4, the X-axises denote the frequencies of entities, and the Y-axises
depict the MRR (left) and Hits@10 (right) respectively. We can see when the
frequency of entities is low (when the frequency ranges in 1-10), the MRR and
Hits@10 of three baselines are small, which demonstrates that the sparse problem
is a challenge for knowledge graph completion. While our method can obtain
remarkable progress than baselines on these sparse entities.

4.4 Performance with Different Levels of Granularity

As introduced in Section 3.2, the entities are split into different granularities.
To test the corresponding performance, we conduct experiments on the valida-
tion set of YAGO3-10-dr with different levels of granularity. Table 3 shows the
performance.

From the results, we achieve the following conclusions:
1) The comparison under different levels of granularity shows that the model

FineKGC-Ana. always performs better than FineKGC-Base. The results indicate
that incorporating analogy-triples in the model is effective under different levels
of granularity.

2) Furthermore, the sub-word granularity beats the other two levels of gran-
ularity by both FineKGC-Base and FineKGC-Ana.. The reason is supposed that
the sub-word granularity is finer than word and sub-entity granularities, which
is more helpful for semantic transfer among entities.
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Table 3. Performance with different levels of granularity.

Gran. Model MRR Hits@1 Hits@10

sub-word
FineKGC-Base 0.254 0.186 0.387

FineKGC-Ana. 0.273 0.204 0.404

word
FineKGC-Base 0.226 0.167 0.330

FineKGC-Ana. 0.238 0.178 0.350

sub-entity
FineKGC-Base 0.210 0.159 0.313

FineKGC-Ana. 0.217 0.165 0.326

4.5 Performance with Different Number of Analogy-triples

In this experiment, we discuss the influence of the analogy-triple number on
the performance of our model. Fig. 5 plots the MRR (subfigure (a)), Hits@1
(subfigure (b)) and Hits@10 (subfigure (c)) of our model when the number of
analogy-triples is 0, 1, 3, and 6 respectively.
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Fig. 5. The performance of our model with different numbers of analogy-triples.

From Fig. 5, we can see the results of model incorporating analogy-triples (the
numbers of analogy-triples are 1,3, and 6) are greater than that of model without
analogy-triples (the number of analogy-triples is 0). These results show that it
is effective to introduce analogy-triples in our model. Moreover, our proposed
model achieves the best performance when selecting 3 most similar analogy-
triples.

4.6 Case Study

We choose three examples which are predicted correctly by our model on sparse
entities (the frequencies of entities in these entity-relation pairs are all smaller
than 10). The details are displayed in Table 4.
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Table 4. Case study of our model on sparse entities.

Case 1

Entity-relation pair (shakti kapoor, nationality)
Predicted entity india

Analogy-triples
•(shammi kapoor, nationality, india)
•(shashi kapoor, nationality, india)
•(shobha kapoor, nationality, india)

Case 2

Entity-relation pair (chaozhou, location)
Predicted entity china

Analogy-triples
•(shuozhou, is located in, china)
•(chuzhou, is located in, anhui)
•(changzhou, is located in, jiangsu)

Case 3

Entity-relation pair (new york university school of law, location citytown)
Predicted entity new york city

Analogy-triples

•(johns hopkins university school of medicine,
location citytown, baltimore)

•(stanford university school of humanities and sciences,
location citytown, stanford)

•(boston university school of law,
location citytown,boston)

In Case 1, our model correctly predicts thes nationality of the entity shakti
kapoor. As kapoor is the common seen surname of India, and in the analogy-
triples, all the head entities which contain the fine-grained component kapoor has
Indian nationality. The semantic of kapoor in analogy-triples can be transferred
to the sparse entity shakti kapoor. As a consequence, the nationality can be
correctly predicted.

In Case 2, all the entities in the entity-relation pair and analogy-triples con-
tain the fine-grained component zhou and the tail entities are all in China. As
a consequence, the semantic of the fine-grained component zhou can be trans-
ferred, and the location of chaozhou may be China.

The analogy-triples in Case 3 indicate that the location information is usually
implied in the fine-grained components of university schools. Thus the location
of entity new york university school of law is predicted to be new york
city.

5 Related Work

Embedding based methods Embedding based methods aims at learning low-
dimensional embeddings for entities and relations in KGs, and then predicting
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the missing triples through scoring candidate triples based on the learnt em-
beddings. TransE [3] is one of the representative methods which models the
relations as translation operations from the head entities to tail entities. Then
TransH [26], TransD [7] and TranSparse [8] extend TransE from different per-
spectives. DisMult [28] models the procedure of scoring triples as tensor factor-
ization, and designs a bilinear formulation to score triples based on semantic
matching. ComplEX [20] extends DisMult through mapping entities and rela-
tions to complex-valued space to model symmetric and anti-symmetric relations.
RotatE [17] models relations as rotation operations from head to tail entities in
the complex-valued space.

Besides that, several methods improve the representation learning through
introducing extra resources, such as textual descriptions [10,16]. However, these
methods utilize entity as the basic granularity, which face the semantic under-
transfer problem. In our model, entities are split into different levels of granu-
larity, thus the semantics of the fine-grained components in sparse entities can
be transferred from other similar entities.

Rule based based methods Other stream of models aim to learn logic rules
from KGs, and knowledge graph completion is conducted through applying the
rules on existing data. AMIE [11] first extracts multiple candidate rules and then
designs multiple statistic-based metrics (pca-confidence and head coverage) to
evaluate the quality of candidate rules. Neural-LP [29] proposes an end-to-end
differentiable model to learn logic rules. Rudik [12] extends the form of rules, and
the obtained negative rules can be used for error recognition. ProbCBR [5] is a
case-based method, the rules are obtained from entities in the same cluster, and
the quality of rules are also obtained based on the statistic of the corresponding
cluster. However, these models learn logic rules based on the frequency patterns
of KG. For sparse entities, it is difficult to obtain qualified logic rules due to data
scarcity.

Pre-trained language model based methods Pre-trained language models
(PLMs) have recently attracted enormous interest due to its large-scale back-
ground knowledge. KG-BERT [30] employs BERT [9] to complete knowledge
graphs. First BERT is fine-tuned by knowledge graphs for relation prediction
task and link prediction task respectively, and then the entity and relation is
used as input (separated by token [SEP]), then the output embedding of spe-
cial token [CLS] is used to predicate the other entity. StAR [22] also utilizes
BERT to learn contextual embeddings of entities. Besides that, a scoring mod-
ule is designed to learn both contextualized and structured knowledge of KGs.
KGT5 [14] introduces the T5 [13] model in knowledge graph completion task
and question answering task simultaneously. For KGC task, the input is the
verbalized head/tail entities and the relations, then the output is the tail/head
entities. SimKGC [23] incorporates contrastive learning on pre-trained language
model BERT to implement knowledge graph completion. Besides that, textual
descriptions of head entities and relations are also utilized to model the relation-
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aware semantics. Different from these methods, there is no need for our model to
utilize the pre-trained language models and large amount of textual resources.
The experimental results also demonstrate the superiority of our model. In the
future we will explore to incorporate pre-trained models with our method.

6 Conclusion

In this paper, we propose an analogy-triple enhanced fine-grained Transformer
model for sparse knowledge graph completion. First, entities are split with dif-
ferent levels of granularity. In this way, the semantics of sparse entities can
be modeled and transferred from other similar entities. Then we introduce the
analogy-triples to enhance the modeling of entities. Finally, knowledge graph
completion task is conducted by the sequence-to-sequence model. In the model,
the fine grained entity-relation pairs and analogy-triples are jointly attended to
generate predicted tail entities. The experimental results demonstrate that our
model outperforms existing methods on sparse knowledge graph completion.
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