
The VLDB Journal
https://doi.org/10.1007/s00778-023-00783-3

REGULAR PAPER

Sliding window-based approximate triangle counting with bounded
memory usage

Xiangyang Gou1 · Lei Zou1,2

Received: 6 January 2022 / Revised: 30 November 2022 / Accepted: 20 January 2023
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract
Streaming graph analysis is gaining importance in various fields due to the natural dynamicity in many real graph applications.
However, approximately counting triangles in real-world streaming graphs with duplicate edges and sliding window model
remains an unsolved problem. In this paper, we propose SWTC algorithm to address approximate sliding-window triangle
counting problem in streaming graphs. In SWTC, we propose a fixed-length slicing strategy that addresses both sample
maintaining and cardinality estimation issues with a bounded memory usage. We theoretically prove the superiority of our
method in sample graph size and estimation accuracy under given memory upper bound. To further improve the performance
of our algorithm, we propose two optimization techniques, vision counting to avoid computation peaks, and asynchronous
grouping to stabilize the accuracy. Extensive experiments also confirm that our approach has higher accuracy compared with
the baseline method under the same memory usage.

Keywords Streaming graphs · Approximate algorithms · Triangle counting

1 Introduction

Graphs are an omnipresent form representing large-scale
entities and their relations in various fields, like biochemistry,
social networks and knowledge graphs. Various kinds of data
analysis can be implemented upon a graph. Among them tri-
angle counting is one of the most fundamental queries. Many
applications are based on triangle counting, like community
detection [1], topic mining [2], spam detection [3] and so on
[4–7].

In the era of big data, new challenges arise in graph anal-
ysis. Graphs not only grow in scale, but also become more
dynamic. In some applications, data are organized as stream-
ing graphs. A streaming graph is an unbounded sequence of
items that arrive at a high speed, and each item indicates an

This work was supported by NSFC under Grant 61932001 and
U20A20174.

B Lei Zou
zoulei@pku.edu.cn

Xiangyang Gou
gxy1995@pku.edu.cn

1 Peking University, Beijing, China

2 Beijing Academy of Artificial Intelligence, Beijing, China

edge between two nodes. Together these items form a large
dynamic graph. The large scale and high dynamicity make
it both memory and time consuming to store and analyze
streaming graphs accurately. It is a natural choice to resort to
efficiently compute approximations. A popular method is to
conduct graph analysis tasks over a small-size sample graph.
In this work, we focus on approximately counting triangles
in large streaming graphs using sampling techniques.

Although several algorithms have been proposed in the lit-
erature, most of them do not support edge expiration [8–10].
In other words, after an edge is received in the streaming
graph, it is permanently effective. However, in real world
applications, we usually need to delete old data in the need of
timeliness. Here we provide a motivation example. In social
networks, user communications form a streaming graph.
Spam and topics in social networks can be detected with
triangle counting [3,11]. New spam and topics need to be
detected as soon as possible, in order to control the damage
brought by potential fraudsters, or catch up with hot spots
of public opinion in real time. Therefore, we need to con-
tinuously monitor the triangle count within a recent period,
such as the last 24 hours. Elder edges are considered of little
value, as the topics or spam formed by them are out-of-date.
These most recent edges are always changing, which are
defined as a sliding window [12]. The sliding window model

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-023-00783-3&domain=pdf
http://orcid.org/0000-0002-8586-4400

X. Gou, L. Zou

is widely used in streaming graph algorithms and systems
[13–15]. Therefore, a sliding window-based continuous tri-
angle counting algorithm is desired.

Besides, there are usually duplicate edges in the stream-
ing graph, namely the same edge may appear multiple times.
In the above example, each pair of users may communicate
multiple times, and thus the raw communication logs have
duplicate edges. Generally speaking, there are two differ-
ent semantics dealing with duplicate edges, binary counting
and weighted counting (see Definitions 4). Binary counting
[10,16] only considers the existence of edges and filters out
duplication,whileweighted counting [16–18] takes duplicate
edges into account. Our proposed method can also support
duplicate edges, and apply to both weighted counting and
binary counting.

We are also strict with time and memory consumption. In
practice, we need to continuously monitor the triangle count
and issue an alert when it reaches a certain threshold. There-
fore, a low-latency continuous counting is desired. Besides,
memory consumed by such monitor algorithm needs to be
preserved. If thememory usage of an algorithm rises with the
increasing stream throughput, it may exceed the preserved
memory and introduce errors at peak time. The risk of such
memory constraint violation is high in real-world streaming
graphs, as the throughput at peak time may be multiple times
higher than ordinary days and hard to predict. Therefore, we
hope the memory usage of the algorithm can be bounded
by a pre-defined constant. According to analysis in [19], a
fixed-size-k sample needs �(log(n)k) memory, where n is
the number of distinct edges in the sliding window. Such
memory usage varies with the throughput of the streaming
graph, and can hardly be pre-bounded. Therefore, we resort
to algorithm with bounded-size sample. To the best of our
knowledge, no existing work considers such problem. There
are several following challenges:

1. Old edges will expire in the sliding windowmodel, which
changes both the original graph and the sample graph, and
makes the sample biased.

2. An edge may appear multiple times. We need to filter out
duplicate edges in binary counting.

3. When scaling up the triangle count in the bounded-size
sample graph to the original graph, it is hard to estimate
the number of edges in the sliding window, because we
cannot notice expiration of unsampled edges.

1.1 Our solution

In order to approximately count triangles in sliding window-
based streaming graphs with bounded memory, there are two
major steps. First, we maintain a sample graph with bounded
memory and estimate the number of edges in the sliding win-
dow continuously. Then, we count the triangles in the sample

graph and scale up the count according to the estimated edge
number.

Maintaining sample with bounded memory in sliding
windows is challenging. Sampling techniques used in prior
triangle counting algorithms fail to meet the demand, even
if some of them are proposed for fully dynamic streaming
graphs (details will be discussed in Sect. 3). The theoretical
bound [19] about the space complexity rules out the chance
to maintain a fixed-size sample in the sliding windows with
boundedmemory.We have to compromise to a bounded-size
sample and struggle to maximize the expected sample size.

In order to address this issue, we begin with a baseline
that combines the structure of PartitionCT [10] with BPS
algorithm [19]. However, the expected sample graph size in
this baseline is rather small compared to its memory usage.
Therefore, we further propose an optimized sampling tech-
nique, fixed-length slicing strategy. It splits a streaming graph
into multiple fixed-length slices, and performs priority sam-
pling based on these slices. A carefully designed sampling
algorithm produces a larger sample graph under the same
memory usage compared with the baseline, which is the-
oretically proven in Sect. 4.2. Also, mathematical analysis
in Sect. 4.4 and extensive experiments in Sect. 7 confirm that
our larger sample graphs can decrease themean absolute per-
centage error (MAPE) of triangle count estimation by 38%
(Fig. 10a) and max error by 37% (Fig. 10c) compared with
the baseline.

We also need to continuously monitor the number of
edges in the sliding window.1 It is a necessary parameter
when scaling up the triangle count in the sample to get an
approximation in the sliding window. Although there are
classical streaming data cardinality estimation algorithms
like [20,21], they cannot support edge expiration in sliding
windows. Fortunately, the fixed-length slicing strategy pro-
posed in Sect. 4.1 can address both sample maintaining and
cardinality estimation together. Based on it, we propose a
continuous cardinality estimation algorithm in Sect. 4.3.

Although we address both sample maintaining and cardi-
nality estimation using a uniform strategy—the fixed-length
slicing, there are still two problems: periodic computation
peak and accuracy trough. In order to solve these problems,
we propose two techniques: vision counting (Sect. 5.1)which
smooths the computation cost and asynchronous grouping
(Sect. 5.2) which stabilizes the valid sample size and accu-
racy.

Table 1 positions our method with regard to state-of-the-
art approximate triangle countingwork over dynamic graphs,
and more discussions are given in Sect. 8. Generally, our
method is the only work that addresses both edge duplication

1 Depending on the semantics of binary counting or weighted counting,
weneed to either count distinct number of edges, or include the duplicate
edges in counting.

123

Sliding window-based approximate triangle...

Table 1 Comparison with
Existing Work in Approximate
Triangle Counting over
Streaming/Dynamic Graphs

Algorithm Dynamic graph model Allowing Edge Duplication Binary or Weighted

A.Pavan et.al. [8] Insertion only ✗ ✗

WRS [22] Fully dynamic ✓ Weighted

PartitionCT [10] Insertion only ✓ Binary

SWTC Sliding window ✓ Both

and expiration. More importantly, our method can support
both binary counting and weighted counting semantics. In
summary, we made the following contributions.

1. In order to solve the problem of approximately counting
triangles in streaming graphs with sliding windows, we
propose a fixed-length slicing strategy that addresses both
sample maintaining and cardinality estimation. It applies
to both binary counting andweighted countingwhen deal-
ing with edge duplication. We theoretically prove the
superiority of our method in the sample graph size and
estimation accuracy under given memory upper bound.

2. To further improve the performance of our algorithm, we
propose two optimization techniques, vision counting to
avoid computation peaks, and asynchronous grouping to
stabilize the valid sample size.

3. Extensive experiments confirm that our method outper-
forms the baseline solution in terms of sample size and
estimation accuracy.We released all codes at Github [23].

2 Problem definition

Definition 1 Streaming Graph: A streaming graph is an
unbounded time evolving sequence of items S = {e1, e2,
e3......en}, where each item ei = (〈u, v〉, t(ei)) indicates
an edge between nodes u and v arriving at time t(ei). This
sequence continuously arrives from data sources like routers
or monitors with high speed. An edge 〈u, v〉 may appear
multiple times with different timestamps. These multiple
occurences are called duplicate edges.

A streaming graph can be either directed or undirected.
In the problem of triangle counting, as most prior work
defines triangleswithout considering edge directions,we also
ignore edge directions. Our algorithm also applies to directed
graphs, and we will discuss it in Sect. 6. Note that in the
streaming graph model, due to the high speed and large vol-
ume of the stream, we assume that it is not physically stored
and has to be processed in one-scan manner in real time. In
other words, each edge in the stream can only be processed
once upon its arrival. Besides, it should be noted that the
throughput of the streaming graph keeps varying. There may
be multiple (or no) edges arriving at each time point.

Fig. 1 Streaming Graph and Sliding Window at T = 15

In real world applications, we are only interested in the
most recent edges, which are modeled as the sliding window.
There are two kinds of sliding windows: count-based sliding
windows (also called sequence-based sliding windows) and
time-based sliding windows. In this paper, we focus on time-
based sliding windows. Count-based one can be seen as a
simplified time-based sliding window where there is exactly
one edge coming at each time point. Most previous algo-
rithms and applications also use time-based sliding windows
[13–15]. For simplicity, we use “sliding window” to denote
the time-based sliding window in the following sections.

Definition 2 Sliding window: A sliding window with win-
dow length N in a streaming graph S is a set of edges ei with
timestamps within (T − N , T], where T is the current time,
namely clock time of the system. We denote this window
with W .

The window length N depends on applications, and the
number of edges in the sliding window varies with the
throughput of the stream. More generally, we use Wt2

t1 to
represent a set of edges with timestamps between t1 and t2.
Based on the definition of the sliding window, we introduce
the snapshot graph.

Definition 3 Snapshot graph: A snapshot graph at time T ,
denoted as G, is a graph induced by all the edges within the
sliding window W .

Example 1 A streaming graph S with the sliding window
model is given in Fig. 1. The window length is N = 6 and
current time is T = 15. The timestamp of each edge is shown
above it. Current slidingwindow isW 15

9 , and there are 7 edges
in it. The separation of slices is used in SWTC algorithm, and
will be explained in Sect. 4.

In this paper, we focus on continuous triangle counting in
the sliding window model, which monitors triangle count in

123

X. Gou, L. Zou

the current snapshot graph. There are two semantics for tri-
angle counting in a graph, global counting, namely counting
all triangles in the graph, and local counting, which means
counting triangles including a specific node u. Our method
applies to both semantics.We focus on global counting in the
majority of the paper, and discuss local counting in Sect. 6.
For simplicity of presentation, we use “triangle counting” to
denote global counting unless specified.

When there are duplicate edges in the sliding window,
there are two kinds of semantics to deal with these duplicate
edges [16], i.e., binary counting and weighted counting:

Definition 4 Binary & Weighted counting: A triangle in a
graph G is defined as a tuple of three edges (〈u, v〉, 〈u, w〉,
〈v,w〉) (u, v, w are distinct nodes), where any two edges
share one common node. In binary counting, we return the
total number of distinct triangles in graph G. In weighted
counting, the weight of triangle (〈u, v〉, 〈u, w〉, 〈v,w〉) is
f (〈u, v〉) × f (〈u, w〉) × f (〈v,w〉), where f (·) denotes
number of occurrences of an edge, namely the frequency.
Weighted counting returns the sum of all triangle weight.

In binary counting, we need to filter out duplication and
only concentrate on distinct edges. On the other hand, in
weighted counting, as aweighted triangle can be seen asmul-
tiple triangles induced by duplicate edges, duplicate edges
also contribute to the triangle count. We can include them in
sampling and edge count estimation. For simplicity of pre-
sentation, we focus on binary counting in the majority of our
paper, and discuss how to extend our algorithm to weighted
counting in Sect. 6. The denotations are presented in Table 2.

Table 2 Notation Table

Notation Meaning

S Streaming graph

t(e) Timestamp of an edge e

W Sliding window

N Length of the sliding window

G Snapshot graph

Gs Sample graph

Wt2
t1 Set of edges e where t1 < t(e) ≤ t2

|Wt2
t1 | Number of distinct edges in slice Wt2

t1

ε sample edge in BPS algorithm

εtest Test edge in BPS algorithm

H(·) Function that maps edges to substreams

G(·) Function that produces edge priorities

� The latest landmark before current time T

j The second latest landmark before current time T

β[i] Edge with the largest priority in the ith substream in W �
j

ε[i] Edge with the largest priority in the ith substream in WT
�

3 Baseline

Asmentioned above, in order to estimate the number of trian-
gles, the first challenge is to retain a uniform (i.e., unbiased)
sample in the sliding window.

A naive solution is to use fixed probability sampling. We
randomly generate a priority in range 0 ∼ 1 for each edge
in the streaming graph. If the probability is smaller than a
preset threshold p, we sample the edge. p is called sampling
probability. Whenever an edge in the sample set expires, we
discard it. Although this sampling strategy is simple and uni-
form, it has the drawback of unbounded memory usage. The
size of the sample set is p|W |, and thus the memory usage is
O(|W |). Though the length of the sliding window N is fixed,
the throughput of the streaming graph varies with time. The
edge number |W | is unpredictable. At peak time of through-
put, the memory usage may exceed the preserved memory
and result into system errors. Even if we can foresee the peak
throughput and preserve enough memory, these memory is
not fully used in ordinary time, resulting into low accuracy
compared to the preserved memory size. Our experimental
results in Sect. 7.9 confirm this.

It should be noted that algorithms for fully dynamic mod-
els with bounded memory usage such as [17,18] cannot be
used in sliding windows. They need to know whenever an
edge is deleted, no matter the deleted edge is sampled or not.
In the sliding window model, edges expire automatically as
the window slides. Unless we store all edges together with
their timestamps, we cannot know when unsampled edges
expire. Therefore, algorithms like [17,18] can only work by
storing the entire sliding window, which consumes a large
amount of memory. Therefore, we need to design a new
sampling scheme to maintain uniform sample in the sliding
window model.

Before presenting our method, we first introduce some
background knowledge about the priority sampling [24]
and BPS (bounded priority sampling) algorithm [19] (in
Sect. 3.1), which benefits the understanding our baseline.
Since BPS does not consider duplication, we will discuss
how to revise it to deal with duplication and combine it with
the structure of PartitionCT [10] to improve time and mem-
ory efficiency in our baseline solution (in Sect. 3.2).

3.1 Background

BPS algorithm [19] is designed for sampling in sliding
windows without duplication. Theoretically, authors in [19]
prove that it is impossible to maintain a fixed-size uniform
sample in sliding windows with memory bounded by con-
stant2. As a compromise, BPS maintains a bounded-size
sample, which lays the foundation of our solution. For the

2 In page 3, Sect. 3.1 of [19].

123

Sliding window-based approximate triangle...

Fig. 2 Example of BPS Sampling

simplicity of the presentation, we first consider how to main-
tain a sample set with bounded size 1.

Generally speaking, BPS algorithm is based on priority
sampling [24]. Whenever a new edge e comes in the stream,
BPSgenerates a randompriorityG(e). BPS algorithm selects
the edge with the largest priority as the sample. Because
the priority is randomly generated, each edge has an equal
probability to get the largest priority. Thus the sampling is
uniform.

If there are only insertions in the stream (without edge
expiration in the sliding window), we can maintain the sam-
ple with the largest priority by comparing the sampled one,
denoted as ε, with the new coming edge. When the new edge
has a larger priority, we replace ε with it. For example, in
Fig. 2, assume that the window length is 6. The sample edge
from time 1 to 6 is edge e1 that arrives at t = 1. Note that all
unsampled edges are not stored.

However, when a sample edge expires, it is more compli-
cated to select the successor sample. Some edges after the
sample edge ε may be shaded by ε, since they have smaller
priorities. They are discarded after compared with ε and we
cannot retrieve them. These discarded edges are called blind
area. After the expiration of ε, the edges in the blind area are
still alive but we do not store them. In this case, we cannot
determine the edge with the largest priority, because we do
not know the priorities of edges in the blind area. For exam-
ple, in Fig. 2, e1 expires at time t = 7 and the four edges
arriving from time 3 to 6 form a blind area. When a new edge
e6 comes at time t = 7, we cannot select e6 as the sample
edge, as we are not sure about the priorities of edges in the
blind area. Otherwise, setting e6 as the sample will violate
the principle of priority sampling and introduce bias.

To address the aboveproblem,BPSalgorithmproposes the
following solution. When a sample edge expires, we store it
using another variable, a test edge εtest , which serves as an
upper bound of edge priorities in the blind area. On the other
hand, ε is set to the next coming edge, and then maintained
by keeping comparing new edges with it. ε is a valid sample
only when G(ε) ≥ G(εtest). In this case, since priorities of
edges in the blind area are smaller than G(εtest), they are

also smaller than G(ε). Otherwise ε is invalid. For example,
at time 7 in Fig. 2, we set ε = e6, but it is invalid.

εtest will double expirewhen its timestamp is smaller than
T − 2N , where T is the current time and N is the window
length. The length of the blind area following εtest is at most
N . It means all edges in the blind area must expire when εtest
double expires. By then we can set the current sample edge
as a valid one, since all edges in the sliding window have
participated in the competition with the current sample edge.
The winner has the largest priority. Thus it is a valid sample.
In the example in Fig. 2, e1 double expires at t = 12. At this
time, edges arriving from time 2 to 6 all expire. The current
sample is e6. Since other edges in the sliding window have
all been compared with it, we can set e6 as a valid sample.

According to the above discussion, with bounded sample
size 1, BPS algorithm cannot get a valid sample in some
periods. We call such period a vacuum period. In Fig. 2, the
vacuum period is from t = 7 to t = 12.

When extended to bounded sample size k (k ≥ 1), the
original BPS algorithm maintains two set S0 and S1, both
with size k. Each new edge is added to S0 if the size of S0 is
smaller than k, or if the new edge has larger priority than the
smallest priority in S0. Once an edge in S0 expires, it is added
to S1. And if an edge in S1 double expires, it is deleted. The
valid sample set is computed as top-k(S0∪S1)∩S0 (top-k(·)
means edges with top-k largest priority in the set). In order
to continuously monitor the valid sample set, we need to use
a data structure called Treap [25] to maintain these sets, so
that we can search for edges according to IDs and sort them
in priority at the same time.

3.2 The baselinemethod

The original BPS algorithm uses a random function G(·) to
generate priority. When there is edge duplication, we use a
hash function to define the priority G(·) instead of a random
one. With a random function, duplicate edges will get multi-
ple priorities and a higher sampling probability, which leads
to bias. The hash function generates the same priority for a
duplicate edge, no matter how many times the edge arrives.
Therefore, it can derive a uniform sample.

123

X. Gou, L. Zou

Fig. 3 Framework of the Baseline Method

The original Treap-based BPS needs O(log(k)) time cost
to maintain the Treaps upon each edge arrival. And the tree-
based structure of Treap is also memory consuming. In our
baseline method, we use the technique in PartitionCT [10] to
improve the method. Assume that the sample size is upper
bounded by k, where k is an user-specified parameter. We
use a hash function H(·) to split a streaming graph into k
substreams, like PartitionCT. In each substream, we use BPS
algorithm to obtain at most one valid sample edge. In this
case, we only need O(1) time tomaintain the sample set upon
each edge arrival. Besides, we only need a table of k bins to
maintain the sample set, each bin containing a sample edge
and a test edge, corresponding to a substream. Such table-
based structure is much more space efficient than tree-based
structure. The framework of the baseline method is shown
in Fig. 3. Notice that only valid sample edges are included in
the sample graph Gs and contribute to the triangle counter.

Let k be a user-specified parameter in the baselinemethod.
In the best case, each substream has a valid sample edge and
the number of edges in the sample graph Gs is k. There-
fore, the memory upper bound in the baseline is able to
hold a k-edges sample graph Gs . However, as each sub-
stream has an independent probability to be in the vacuum
period of BPS sampling (i.e., cannot provide a valid sam-
ple), the sample graph is smaller than k. We theoretically
prove that the expected sample size of the baseline method is

in range

[
k × |W |

|WT
T−2N | , k ×

(
1 − |WT−N

T−2N |
|WT

T−3N |

)]
(see Theorem 2

in Sect. 4.2), where |·| denotes the number of distinct edges in
the window. Assume that the streaming graph’s throughput
is steady, the expected sample size is [0.5k, 0.66k].

We can improve the sampling strategy to get a larger sam-
ple graph. In next section, we will propose a new sampling
strategy to get a larger sample graph with the same memory
upper bound, and obtain a higher accuracy in triangle count
estimation.

4 Ourmethod

In this section, we propose our algorithm (called SWTC) to
address approximate sliding-window triangle counting prob-

lem in streaming graphs with edge duplication. First, we
propose a fixed-length slicing based sampling strategy in
Sect. 4.1. In Sect. 4.2, we theoretically prove that SWTC gets
a larger-size sample graph than the baseline method under
the same memory consumption. In Sect. 4.3, we discuss how
to continuously monitor |W |, namely the number of distinct
edges in the sliding window, and estimate the triangle count
in the sliding window. In Sect. 4.4, we theoretically analyze
the accuracy of SWTC. In Sect. 4.5, we further analyze the
time cost of SWTC and compare it with the baseline method.

4.1 SWTC sampling strategy

Sampling Strategy: We propose a fixed-length slicing
method in SWTC. Specifically, we split the timeline of the
streaming graph into multiple slices with fixed-length of N
time units, and each splitting point is called a “landmark”. It
is easy to know that, the current sliding window W overlaps
with at most two slices, which are denoted as W �

j and WT
� ,

where � and j are the latest two landmarks (splitting point).
An example is shown in Fig. 1. The sliding window and each
slice all have the same length of 6 time units. Current time
is 15 and current sliding window is W 15

9 , overlapping with
slice-2 W 12

6 and slice-3 W 18
12 . Slice-3 is an ongoing slice and

only has the length of 3 time units at current time 15 (though
there are four edges in it as two edges arrive at the same time
at t = 15). The sliding window may also overlap with only
a single slice. For example, at time 12 it only overlaps with
slice-2. Similar to the baseline method, we use a hash func-
tion G(·) to generate priority for each edge, and use another
hash function H(·) to split the streaming graph into k sub-
streams. Then in each substream, we can easily retain the
edge with the largest priority in each slice, as the splitting
points are fixed. We use ε to represent the edge with the
largest priority in a slice from t1 to t2 in the a substream.
Then we just need to set ε empty at time t1, and replace it
with an incoming edge e if G(e) ≥ G(ε) or ε is empty until
t2.

Because the sliding window overlaps with at most two
slices, we record two edges in the ith substream (0 ≤ i ≤
k − 1). They are the edge with the largest priority in current
slice WT

� and the edge with the largest priority in the last
slice W �

j , respectively, denoted as ε[i] and β[i]. Only one of
them may participate in the sample graph. There are 3 cases,
as shown in Fig. 4.

Case 1: In Case 1, both β[i] and ε[i] are in the sliding
window. The larger one of them is the edge with the largest
priority in the sliding window in this substream, and it is the
valid sample edge in this substream.

Case 2:With timepassing by,Case 1 transfers toCase 2. In
this case,β[i]has already expired, but the slidingwindowstill
overlaps with W �

j . If G(β[i]) > G(ε[i]), we cannot select
a valid sample edge from this substream, because unexpired

123

Sliding window-based approximate triangle...

Fig. 4 Different Cases in SWTC

edges in W �
j are unknown to us. There may exist edges e′ in

W �
j , where G(β[i]) > G(e′) > G(ε[i]) and t(e′) > T −

N . Therefore we cannot determine if ε[i] has the largest
priority in the sliding window. There is no sample edge in
this substream in this case. On the other hand, if G(ε[i]) ≥
G(β[i]), ε[i] is a valid sample. It is the edge with the largest
priority in WT

� , and also has larger priority than all edges in
W �

j , since it has priority no less than β[i]. We can determine
that it has the largest priority in the sliding window.

Case 3: After Case 2, the sliding window further slides
and arrives at a new landmark. The sliding window no longer
overlaps with W �

j . In other words, W = WT
� . In this case,

ε[i] is the valid sample edge in the sliding window.
After Case 3, a new slice emerges, and the situation returns

to Case 1. The above three cases repeats recursively.

Algorithm 1 Processing new edge in the SWTC
Require: edge e = 〈s, d〉
Ensure: updated sample
1: p ← H(e)
2: if ε[p] = e then
3: Update the timestamp of ε[p]
4: else
5: if ε[p] = null or G(ε[p]) ≤ G(e) then
6: Gs .remove(ε[p])
7: ε[p] ← e
8: if β[p]=null or G(β[p])≤G(e) then
9: Gs .add(e)
10: Gs .remove(β[p])
11: end if
12: end if
13: end if

Algorithm 2 Gs .add(·)
Require: edge e
Ensure: updated sample
1: Gs .I nsert Edge(e)
2: Gs .I ncreaseTriangle(e)

Algorithm 3 Gs .remove(·)
Require: edge e
Ensure: updated sample
1: if e! = NULL && e is sampled then
2: Gs .DecreaseTriangle(e)
3: Gs .DeleteEdge(e)
4: end if

Edge processing: Algorithm 1 shows how to process a new
edge e. Firstly, edge e is hashed to the H(e)-th substream,
where H(·) is a hash function. Let p = H(e) (Line 1 in
Algorithm 1). If edge e is same with the recorded edge ε[p],
we just update ε[p]’s timestamp to be the current time point
T (Lines 2-3). Otherwise we compare it with ε[p]. There are
2 cases:

1. If ε[p] is empty orG(ε[p]) ≤ G(e), we update edge ε[p]
to be e (Lines 5-7). In this case, if the old ε[p] is a sample
edge in Gs , we need to remove ε from Gs and decreases
the number of triangles containing ε[p] from the triangle
counter (Lines 6).

2. If G(ε[p]) > G(e), we do nothing.

Furthermore, in the first case, we need to further check
β[p] after replacing ε[p] with e. If β[p] = null or
G(β[p]) ≤ G(e), we can conclude that edge e should be
selected as a sample edge and inserted into sample graph Gs .
We need to add the number of triangles containing e (Lines
8-9). If β[p] is a sample edge in Gs , we need to delete it
and reduce the number of triangles containing β[p] from the
counter (Lines 10).
Edge Expiration: In order to delete the expired sample
edges, we need to continuouslymonitor the oldest edge in the
sample graph Gs . This can be easily achieved with a linked
list maintaining the time sequence of the sample edges. Once
the oldest edge expires, whichmeans its timestamp is smaller
than T − N , we delete it from Gs and decrease the triangle
counter.
Slice Switching:At a landmark, namely Case 3 in Fig. 4, we
scan the k substreams. In each substream, we set β[i] = ε[i]
and ε[i] = null, as a new slice is about to emerge. Further-
more, if G(ε[i]) < G(β[i]) in the ith substream before the
scanning, edge ε[i] becomes a sample edge now. We insert
it into Gs and increase the triangle counter.

4.2 Valid sample size analysis

The accuracy of the sampling-based triangle count estima-
tion depends on the sample graph size |Gs |. Larger |Gs | leads
to more accurate estimation result, which will be analyzed
in Sect. 4.4. In this subsection, we mathematically analyze
|Gs | in our method SWTC and compare it with the baseline
approach (proposed in Sect. 3). We first give a brief analy-

123

X. Gou, L. Zou

sis about the space consumption of SWTC and the baseline
method. Then we analyze their valid sample size under the
same memory usage.

Space Analysis: SWTC and the baseline method both
consume O(k) memory, and their memory consumption is
the same given the same substream number k. For both
SWTC and the baseline, we need a table of k bins to maintain
the sample set, with each bin corresponding to a substream.
In each bin, both methods need to store 2 edges. In the base-
line method, we need to store the test edge and the sample
edge. In SWTC, we store the edge with the largest priority in
each slice and two slices are maintained. Besides, the maxi-
mum size of the sample graph is k edges for both algorithm.
The same memory is needed to be preserved for the sampled
graph in both algorithms. As k decides the amount of mem-
ory these algorithms consume, it should be set according to
the available memory in applications.

ValidSampleSizeAnalysis:Based on the analysis above,
we compare the valid sample size of SWTC and the baseline
method given the same substream number k. We have the
following results about the expectation of the valid sample
size (expected sample size for short) in our approach SWTC
and the baseline method in Theorems 1 and 2, respectively.

Theorem 1 In SWTC, the expected sample size is k× |W |
|WT

j | .We
use j to denote the second largest landmark which satisfies
j ≤ T , and k is the number of substreams.

Proof Fig. 4 shows that we get a valid sample in a substream
if and only if the edge with the largest priority in W �

j and

WT
� lies in the sliding window W . We use ρ to denote the

probability of this event at time T , namely the probability that
a substream gets a valid sample. Suppose there are η distinct
edges in this substream in period W , and η′ distinct edges in
this substream in periodWT

j = W �
j ∪WT

� . Because each edge
gets a random priority, the probability that the edge with the
largest priority inWj lies inW is η

η′ .Moreover, because edges

are mapped to different substreams randomly, η
η′ is equal to

|W |
|Wj | . In conclusion, the probability that a substream gets a

valid sample edge is ρ = |W |
|WT

j | , and the expected sample size

in k substreams is k × ρ = k × |W |
|WT

j | ��

Theorem 2 For the baseline method, the expected sample

size is in range

[
k × |W |

|WT
T−2N | , k × (1 − |WT−N

T−2N |
|WT

T−3N |)
]
.

Proof We use ρ to denote the probability that BPS algorithm
in a substream gets a valid sample. The expected sample size
of the baseline method is k × ρ. However, it is difficult to
give an exact expression of ρ, as it is cumulatively affected
by all the edges arriving beforeW . The original paper of BPS
algorithm [19] only gives a lower bound of ρ. And we further
give an upper bound here.

Lower bound:When we use BPS algorithm in a substream,
we will get a valid sample if the edge with the largest priority
inW has a larger priority than the test edge εtest which arrives
before T − N . In the worst case, εtest is the edge with the
largest priority inWT−N

T−2N . Therefore the edgewith the largest
priority in WT

T−2N needs to be in W . According to the proof

of Theorem 1, we can see that this probability is |W |
|WT

T−2N | .

Therefore, ρ ≥ |W |
|WT

T−2N | .
Upper bound: From the former proof, we know that in a
substream, if the edge with the largest priority in WT−N

T−3N

lies in WT−N
T−2N , this edge, which we represent with e′, will

definitely become a valid sample edge until it expires. By the
time of T , it becomes a test edge. And if it also has larger
priority than the edges in W , it prevents edges in the sliding
window W from becoming valid sample, and there will be
no valid sample edge in this substream. In other words, e′
is the edge with the largest priority in WT

T−3N , and it lies in

WT−N
T−2N . In this case there will definitely be no valid sample

edge in this substream. According to the former proof, this

probability is
|WT−N

T−2N |
|WT

T−3N | . Therefore, ρ ≤ 1 − |WT−N
T−2N |

|WT
T−3N | .

Combing the lower bound and the upper bound together,

we know that |W |
|WT−2N | ≤ ρ ≤ 1 − |WT−N

T−2N |
|WT−3N | . Therefore, the

expected sample size of the baseline method is k×ρ and lies

in range

[
k × |W |

|WT
T−2N | , k × (1 − |WT−N

T−2N |
|WT

T−3N |)
]
. ��

According to Theorems 1 and 2, the value of ρ depends on
the cardinality in different periods, which varies according to
both the length of the period and the throughput of the stream.
In order to make ρ intuitive and comparable, we assume that
the throughput of the streaming graph is steady. Then, we
have the following result.

Theorem 3 Assume that the throughput of streaming graph is
st steady. In SWTC, the expected sample size varies in range
[0.5k, k] periodically. In the baseline method, the expected
sample size is in range [0.5k, 0.66k].
Proof When the throughput of the streaming graph is steady,
the cardinality in a window Wt2

t1 is linear relevant with its
length t2 − t1. Based on this condition, we can compute
numerical results about the expected sample size.

For SWTC, the expected sample size is k × |W |
|WT

j | = k ×
|W |

|W �
j ∪WT

� | . The length of W �
j is always N , but the length of

WT
� varies from 0 to N periodically. The minimum value and

the maximum value appear before and after slice switching
at a landmark, respectively. Therefore the expected sample
size in SWTC varies from 0.5k to k in a cycle. The average

value is k ×
∫ N
i=0

N
i+N di
N = k × ln2 ≈ 0.7k.

In the baseline method, as it is hard to get an exact
expression of the expected sample size, we cannot com-

123

Sliding window-based approximate triangle...

pute its accurate value. But we can get its upper bound and
lower bound as shown in Theorem 2, The lower bound is
k × |W |

|WT
T−2N | = k × N

2N = 0.5k, and the upper bound is

k ×
(
1 − |WT−N

T−2N |
|WT

T−3N |

)
= k × (

1 − N
3N

) = 0.66k. In Sect. 7.6,

the experimental results show that the value of ρ is nearly a
fixed value of 0.56. ��

From the above analysis, we can see that the average
sample size of SWTC is larger than the upper bound of the
baseline method. Figure7 in Sect. 7 confirms our analysis.

4.3 Estimating of triangle count

In this section, we show how to estimate triangle count in the
snapshot graph G with the sample graph Gs .

Suppose there are n distinct edges in G, and m valid sam-
ple edges in Gs . We use tc to denote the triangle count in
Gs . Because each edge in the sliding window has an equal
chance to become one of them valid sample edges, the prob-
ability that all the three edges in a triangle are selected is
m(m−1)(m−2)
n(n−1)(n−2) . We can estimate the number of triangles in the

sliding window as tc × n(n−1)(n−2)
m(m−1)(m−2) . Detailed proof can be

found in Sect. 4.4.
It is difficult to directly estimate n, namely the number

of distinct edges in the sliding window. Existing algorithms
like [20] cannot deal with edge expiration. However, we
split the streaming graph into slices, and these slices can
be viewed as fixed time windows with no edge expiration.
Therefore, prior algorithms in cardinality estimation can be
used in these slices. We can first estimate the cardinality of
the slices which overlap with the sliding window, and then
estimate the cardinality of the sliding window with it. More
fortunately, as we have already stored the largest priority in
each substream, we can easily transform these priorities into
a HyperLogLog sketch [20] for cardinality estimation, and
no other data structure is needed. HyperLogLog sketch is
also the state-of-the-art for cardinality estimation.

For the ith substream,wehave storedG(β[i]) andG(ε[i]).
The larger one between them, denoted with θ , is the largest
priority in this substream in WT

j . It can be transformed to a
variable R[i] = �−log(1 − θ)� with Geometric(1/2) dis-
tribution. If the substream is empty (both β[i] and ε[i] in it
are empty), we set R[i] = 0. Such variables in all the k sub-
streams form a HyperLogLog sketch [20] that estimates the
cardinality of WT

j , namely |WT
j |. |WT

j | can be computed as
αkk2∑k

i=1 2
−R[i] . This equation is derived in HyperLogLog algo-

rithm, and αk = 0.7213/(1 + 1.079/k) for k > 128. The
error bound is also the same as the analysis in [20].

Then we further estimate the cardinality of the sliding
windowW , namely n, with |WT

j |. Suppose there arem valid
samples, and M substreams that are not empty. According

to Theorem 1, we can get a valid sample in a substream
with probability |W |

|WT
j | = n

|WT
j | , which can be estimated as m

M .

Therefore we have n = |WT
j | × m

M .
Note that M ≈ k in most cases. For a substream, the prob-

ability that one edge is not mapped to it is 1 − 1
k . And the

probability that all n distinct edges in the sliding window are
not mapped to it is

(
1 − 1

k

)n ≈ e− n
k (e is the Euler num-

ber). This is the probability that a substream is empty. When
k ≤ 0.2n, which is the common case in applications, such
probability is only 0.67%. At any time point, very few sub-
streams will be empty, and as we maintain a large number of
substreams, several empty substreams will not influence the
total sample size, neither the accuracy.

4.4 Accuracy analysis

4.4.1 Discussion about hash function independence

Because hash functions are computed according to edge
IDs, hash-based sampling is a pseudo random and deter-
ministic procedure. We cannot theoretically guarantee strict
independence of the sampling. However, in most cases, the
correlation between sampling and topology properties of
edges is very weak. As a result, estimation with such sam-
pling provides similar accuracy as a strictly independence
sample. Such statistical property is due to 2 facts:

First, the hash functions nowadays are usually composed
of complex bit operations and have strong mixing ability.
Small changes of input can cause large changes in the output.
The distribution of hash results usually adheres strongly to a
uniform distribution. Though the IDs of edgesmay show cor-
relation with their topology properties, such correlation will
be dramatically weakened after hash computation. The hash
value distribution of edge sets with different topology prop-
erties has little difference, which means low correlation level
and approximate statistical independence [26] (as shown in
the chi-square independence check in Sect. 7.4). For exam-
ple, edges with large number of neighbors may have certain
ID patterns, like gathering in region 1000 ∼ 2000 or being
times of 8, but after hash computation, the hash value of these
edges will be spread all over the hash value range.

Second, the applications of our sampling method are not
antagonistic.Natural correlationbetween edge IDs and topol-
ogy properties is usually simple and can be eliminated by
hash functions. But if the data is deliberately manipulated,
bias may still happen. Fortunately, there are no malicious
adversaries in applications of our algorithm. Even in spam
detection, the spammer does not tend to filter the addresses
to send spammessages. Andwe can also keep the parameters
(like seeds) of hash functions secret as a defence.

Therefore, though we use hash functions, the correlation
between hash values and topology properties is weak. In our

123

X. Gou, L. Zou

paper, we approximately consider the hash functions we use
as completely random and independent, and they generate a
uniform output. In Sect. 7.4, we also carry out chi-squared
test to check the statistical independence between the hash
values and the number of involved triangles of each edge.

Such hash based sampling has been widely used in net-
work trafficmeasurement [27,28], graph sampling [9,29] and
systems like Hive [30]. Even with simple hash functions like
modular functions [27], the samples they produce show good
independence and uniformity. [31] also carries out an exper-
imental study of different hash functions in sampling.

However, we need to emphasize again that sampling with
hash functions is pseudo random and not theoretically inde-
pendent. We can neither give a theoretical guarantee of the
difference between our sampling and a strictly independent
sample. When dealing with duplication with hash functions,
our algorithm is heuristic, and the following mathematical
analysis is only an approximation. This is a problem faced
by most hash-based algorithms, including sketches [20,32]
and sampling methods [27,28]. How to deal with duplication
in streaming sampling with a strict theoretical guarantee is
still a challenging problem. On the other hand, when there is
not edge duplication, we can use random functions to gen-
erate priority and divide substreams, and all the following
analysis holds strictly.

4.4.2 Uniformity of sampling

In this section, we prove that the sample we generate is a uni-
form sample. For each distinct edge e in the sliding window,
the substream it is mapped into has probability ρ to produce
a valid sample (ρ is analyzed in Sect. 4.2). If this substream
has a valid sample, the sample is the edge with the largest
priority in this substream in the sliding window. As the hash
function H(·) is a uniform function, each substream has |W |

k
distinct edges in expectation. As the priority of each edge is
randomly generated, each distinct edge has the same prob-
ability to get the largest priority. Thus the probability that
e gets the largest priority in its substream and gets sampled
is ρ × k

|W | . This probability applies to all distinct edges in
the sliding window. Therefore, the sample we generate is a
uniform sample.

4.4.3 Error analysis

Based on above analysis, in this section we first prove that
our estimation of the triangle count is unbiased, then we give
somemathematical analysis about the variance of the triangle
estimation.

Theorem 4 Suppose at time T , SWTC gets m valid sam-
ple edges. There are n distinct edges in the snapshot graph
(namely |W | = n), and the number of triangles induced by

these sample edges is tc. We use� to present the set of trian-
gles in the snapshot graph, and its number is τ . We introduce
variable τ̂ = tc

γ3
where γ3 is defined as

γ j = m(m − 1)...(m − j + 1)

n(n − 1)...(n − j + 1)
(1)

Then we have:

E(τ̂) = τ (2)

Var(τ̂) = τθ3 + 2ζθ5 + 2ηθ6 (3)

where ζ is the number of unordered pair of distinct triangles
in � which share one edge, and η = 1

2τ(τ − 1) − ζ is the
number of unordered pairs of distinct triangles in � which
share no edge. And we define θ3 = 1

γ3
− 1, θ5 = γ5

(γ3)2
− 1,

θ6 = γ6
(γ3)2

− 1

Proof First we prove the correctness of the expectation. We
propose the following lemma: ��

Lemma 1 At time T , the probability of SWTC sampling edge
e1, e2....e j given m is

P(e1, e2.....e j ∈ Gs) = γ j (4)

where γ j is defined as Eq.1.

Given j different edges e1, e2....e j and a set of different
substreams {Sc1,Sc2 ...Sc j }, where all these substreams have
valid sample edges.We can compute the probability that edge
ei is sampled in substream Sci (1 ≤ i ≤ j). As analyzed in
Sect. 4.4.2, the sample set we generate is a uniform sample.
Thus we can find that any j different edges has equal prob-
ability to be sampled in these substreams. There are totally
n(n − 1)....(n − j + 1) different ways of selecting j differ-
ent edges and putting them into these substreams. Therefore
the probability that a particular combination is selected is

1
n(n−1)....(n− j+1) .

Because there are totallym substreamswith valid samples,
there are m(m − 1)....(m − j + 1) different ways to select
indexes {c1, c2...c j }. Therefore, the overall probability that
j edges e1, e2....e j are sampled as valid sample edges are:

P(e1, e2.....e j ∈ Gs) = m(m − 1)....(m − j + 1)

n(n − 1)....(n − j + 1)

Recall that m = ρk. The probability that an edge is sam-
pled is m

n = ρ× k
n where n = |W |. This is also in accordwith

the analysis in Sect. 4.4.2. According to this lemma, we find
that any triangle with three edges e1, e2, e3 in the snapshot
graph G has probability γ3 = m(m−1)(m−2)

n(n−1)(n−2) to be included in

123

Sliding window-based approximate triangle...

the sample. Therefore, given the number of triangles in the
sample, tc, we have:

E(τ̂) = E

(
tc

γ3

)
= τ

Next we compute the variance of τ̂ . For a triangle σ in
the snapshot graph G, we set a variable ξσ to be 1 if all the 3
edges of σ are valid sample edges at time T and 0 otherwise.
We can compute the variance of τ̂ given the number of valid
sample edges m as:

Var
(
τ̂
)

= Var(

∑
σ∈� ξσ

γ3
)

=
∑

σ,σ∗∈� Cov(ξσ , ξσ∗)
(γ3)2

=
∑

σ∈� Var(ξσ)

(γ3)2

+
∑

σ,σ∗∈�,σ �=σ∗ E(ξσ ξσ∗) − E(ξσ)E(ξσ∗)
(γ3)2

According to lemma 1, we have

Var(ξσ) = γ3 − (γ3)
2 (5)

E(ξσ)E(ξσ∗) = (γ3)
2 (6)

E(ξσ ξσ∗) =
{

γ5 σ and σ ∗ share one edge.
γ6 σ and σ ∗ share no edge.

(7)

Given the definition of ζ , η, θ3, θ5 and θ6, we can get Eq.2
in Theorem 4 with the former equations. ��

The expectation and variance of the baseline method can
be computed similarly. Because the number of valid sample
edges in the baseline method is smaller than SWTC, it has a
larger variance compared to SWTC.

4.5 Time cost analysis

We have analyzed the space cost of SWTC and the baseline
method in Sect. 4.2. In this Section, we further analyze their
time cost.

4.5.1 Time cost of SWTC

For SWTC, the time cost can be divided into 2 parts. The
first part is the cost of maintaining the sample edge set. The
second part is the cost of counting triangles induced by the
sample edges. We will discuss these 2 parts separately.

The first cost can be further divided into 3 components:
the cost of processing new edges, the cost of deleting expired
samples, and the cost of slice switching in each substream
at landmarks. The cost of processing a new edge includes

computation of hash functions H(·) and G(·), and the cost
of compare the new edge with the two stored edges in the
mapped substream, which are all O(1). Therefore, the cost
of processing each new edge is O(1). The cost of deleting
one expired sample is also O(1). As there are at most k times
of sample expiration in N time units, and k is much smaller
than the number of edge arrivals in such a slice, the amortized
cost of sample expiration upon each edge arrival is beneath
O(1). At each landmark, SWTC needs to set β[i] = ε[i]
and ε[i] = null in all the k substreams. Besides, in some
substreams with no valid samples, we need to add ε[i] into
the sample set. These operations introduce a cost of O(k).
This cost is amortized by all the edge arrivals in the N time
units between two landmarks. As discussed above, k is much
smaller than the number of edge arrivals in such a slice. Thus
the amortized cost is beneath O(1). Overall, for the first part,
the amortized cost upon each edge arrival is O(1)

Thenwe consider the cost of the second part.When a sam-
ple edge is inserted into or deleted from the sample graph, we
need to update the triangle counter tc with triangle counting
functions I ncreaseTriangle(·) or DecreaseTriangle(·).
These 2 functions compute the size of common neighbors
of the edge’s endpoints, and the cost is O(ρk). Recall that
ρ is the probability that a substream produces a valid sam-
ple, and thus ρk is the number of edges in the sample graph.
As ρ varies with time, the cost of such functions also varies
with time. For simplicity of analysis, we use an approximate
cost of O(k) for these functions. Then the amortized cost
of the second part is O(#TriangleCounting × k), where
#TriangleCounting is the amortized number of triangle
counting function calls upon each edge arrival.

Next we analyze #TriangleCounting. In the following
analysis, we use ρt to represent the value of ρ at time t .
Whenever an edge becomes a valid sample, it induces 2 calls
of triangle counting functions, one upon its insertion, and
another upon its deletion (no matter it is replaced or expires).
As analyzed in Sect. 4.4, the sample we produce is a uniform
sample. Therefore, if an edge arrives at time t and has no
duplicate copy in the sliding window yet, it has probability
ρt k
|W | to become a new valid sample upon its arrival, inducing
2ρt k
|W | function calls. Besides, at each landmark L , there are

(1 − ρL)k substreams which produce new samples (see the
slice switching part of Sect. 4.1), inducing 2(1−ρL)k func-
tion calls. The amortized number of function calls upon each
edge arrival is

#TriangleCounting

=
∑

e∈S
ρt(e)k

|Wt(e)
t(e)−N | + ∑

L∈S(1 − ρL)k

||S|| × 2

(8)

||S|| is the number of edge arrivals in the streaming graph.
e denotes edges where there are no e′ in the last N time

123

X. Gou, L. Zou

units before t(e), and e′ is a duplicate copy of e. L denotes
landmarks in the streaming graph.

In order to make this cost intuitive, we consider a sim-
ple case where there are no duplicate edges in the streaming
graph, and there is exactly one edge arrival in each time unit.
In this case |Wt(e)

t(e)−N | is always N . ρL is always 0.5 as dis-

cussed in Theorem 3, and the number of landmarks is ||S||
N .

Thus the formula above can be transformed into

#TriangleCounting =
(∑

e∈S ρt(e)

||S|| × k

N
+ 0.5k

N

)
× 2

(9)

According to the analysis in Theorem 3,
∑

e∈S ρt(e)

||S|| ≈ ln2.

Thus the number of function calls is (2ln2+1)k
N .

In summary, the amortized cost upon each edge arrival
is the sum of O(1) cost of the first part and O(#Triangle
Counting × k) cost of the second part, where #Triangle
Counting is (2ln2+1)k

N for a streaming graph with exactly
one distinct edge in each time unit.

4.5.2 Time cost of the baseline method

The time cost of the baseline method can be analyzed sim-
ilarly: The cost of maintaining the sample set including the
cost of processing new edges, deleting expired samples and
erasing double expired test edges. The cost of the first opera-
tion is O(1), and the amortized cost of the other 2 operations
is beneath O(1). Overall, the amortized cost of maintaining
the sample set upon each edge arrival is O(1). The cost of
maintaining triangle count is determined by the number of
triangle counting function calls. Similar to SWTC, for each
edge which arrives at time t and has no duplicate copy in
the sliding window yet, it has probability ρt k

|W | to become a

new valid sample upon its arrival, inducing a cost of 2ρt k
|W |

function calls. Upon the double expiration of each test edge,
there will also be a new valid sample produced, inducing 2
function calls. Therefore, the number of triangle counting
function calls upon each edge arrival is

#TriangleCounting

=
∑

e∈S
ρt(e)k

|Wt(e)
t(e)−N | + #DoubleExpiration

||S|| × 2

(10)

When there is exactly one edge arrival in each time unit
and no edge duplication, ρ is nearly a fixed value in the base-
line method (as will be experimentally proved in Sect. 7.6),

and
∑

e∈S ρt(e)

||S|| = ρ. Besides, because there are (1 − ρ)k
substreams with no valid sample in a sliding window, there
are (1 − ρ)k times of test edge double expiration in N time

units. Thus #DoubleExpiration
||S|| = (1−ρ)k

N . We can transform
the former formula to

#TriangleCounting

=
(

ρ × k

N
+ (1 − ρ)k

N

)
× 2 = 2k

N

(11)

In summary, the amortized cost is the sum of O(1) cost
of the first part and O(#TriangleCounting× k) cost of the
second part, where #TriangleCounting is 2k

N for a stream-
ing graph with exactly one distinct edge in each time unit.

If we use Treap-based BPS to maintain the sample set, the
cost of counting triangle is the same as the above analysis,
but the cost of maintaining sample set becomes O(log(k))
rather than O(1). Therefore, Treap-based method is slower
than the baseline method, which will also be confirmed in
the experiments of Sect. 7.5.

Comparing the time cost of the baseline method with
SWTC, we can find that the number of triangle counting
function calls is larger in SWTC, as it produces more valid
samples. Besides, the sample graph is larger in SWTC, and
thus each function call is also slightly slower. Overall, the
speed of SWTC is slower than the baseline method. We
believe that this is a necessary cost for getting larger valid
sample size and higher accuracy. Besides, The cost of main-
taining the sample set is the same in both methods, and the
amortized number of triangle counting function calls upon
each edge arrival is small. Therefore, the difference in speed
is not large.

5 Optimization techniques

There are still two problems in SWTC: computation peak at
landmarks, andperiodic troughof sample size. In this section,
We propose two optimization techniques: vision counting
(Sect. 5.1) and asynchronous grouping (Sect. 5.2) to solve
these problems.

5.1 Vision counting

Although SWTC can generate a larger sample graph and
produce a more accurate triangle count estimation, there is a
performance problemwhen the slidingwindow reaches land-
marks, i.e., Case 3 in Fig. 4. Assume that G(β[i]) > G(ε[i])
in Case 2, there is no sample edge in the ith substream. But,
when the slidingwindow reaches a landmark (Case 2 is trans-
ferred intoCase 3), a new sample edgewill be generated. This
case may happen in multiple substreams simultaneously, and
it will lead to the emerging of large quantities of new samples
at the same time. Adding these edges intoGs and counting the
number of increased triangles will bring peak of computation
cost, and may sharply increase the latency of processing new

123

Sliding window-based approximate triangle...

edges. To address this issue, we propose a new technique
named vision counting. This technique spreads the compu-
tation overhead of Case 3 over the entire sliding window
period, so that we can avoid the burst of computation cost.

In the vision counting technique, we maintain 2 counters
in Gs . One is the effective triangle counter tc, and the other
vc maintains number of triangles composed of ε[i] in all
substreams. When G(ε[i]) < G(β[i]) in Case 2 of Fig. 4,
no sample edge is selected in this substream. However, we
can forecast that at the next landmark, ε[i] will become a
new sample edge. We insert it into Gs , but tag it as an invalid
sample. vcmaintains the number of triangles composed of all
ε[i], whether they are valid samples or not. We continuously
maintain the set of sample edges and invalid sample edges, as
well as counter tc and vc. When a landmark comes, because
all ε[i] will become valid samples, the value of vc is just the
triangle count in the snapshot graph. We simply set tc = vc.
Besides, we need to set β[i] = ε[i] and ε[i] = null in
each substream and set vc = 0, in order to prepare for a
new slice. Compared to the basic version, massive triangle
counting at landmarks is avoided. The computation cost at
peak time is spread over the entire window sliding, in the
form of maintaining vc.

5.2 Asynchronous grouping

5.2.1 Implementation

In SWTC, the expectation of valid sample size is k × |W |
|WT

j |
(Theorem 1), where k is the number of substreams in SWTC.
It varies as the window slides. When the throughput of the
stream is steady, it varies from 0.5k to k in a cycle (Theorem
3). The instability of valid sample size in SWTC is a huge
drawback. In some cases the valid sample size may reach the
minimum value, and a small valid sample size brings a low
accuracy.

In this section, we propose a technique, Asynchronous
Grouping, AG-technique for short, to solve this problem.
This technique will stabilize the valid sample size. It will
increase the lower bound of the expected sample size under
the same memory usage, and sharply shrink the fluctuation
range, which is defined as follows:

Definition 5 Fluctuation range: the gap between the maxi-
mum value and the minimum value of the expected sample
size of SWTC in a streaming graph with steady throughput.

Before optimization, the fluctuation range of SWTC is
0.5k, and the minimum sample size is 0.5k. With AG-
technique, we can shrink the fluctuation range by more than
10 times, and arise the minimum sample size to 0.67k. With
a much higher lower bound of the sample size, we can reduce
the risk of getting low accuracy.

The idea of AG-technique is simple yet effective: we can
divide the substreams into multiple groups. These groups
use asynchronous slicing, which means they use different
landmark sequences. In each group, the expected sample size
varies as the window slides, but as a whole, the sample size
of these groups is stable. We call the algorithm with AG-
technique as SWTC-AG.

To be precise, we divide the k substreams into g groups
{GPi |0 ≤ i ≤ g − 1}, with k

g substreams in each group,

and group GPi contains substreams i kg to (i + 1) kg − 1. In
each group, there is a landmark sequence, with a gap of N
time units between adjacent landmarks. In different groups,
the landmark sequences are asynchronous. The ith landmark
in GPj+1 is larger than the ith landmark in GPj by N

g , and
the first landmark of group GP0 is 0. An example of the
landmarks and slices is shown in Fig. 5. In this example the
number of groups is set to g = 3.

Each group works as a SWTC algorithm:
Sampling: In substream j of group GPi , we maintain

2 edges, denoted as ε[j] and β[j]. They are edges with
the largest priority in the last 2 slices in this substream.
Note that these slices are partitioned with the landmark
sequence of GPi , and different groups have different land-
mark sequences. We compare these 2 stored edges, and try
the select the edge with the largest priority in the sliding win-
dow in this substream as a sample edge, as discussed in Fig. 4
of Sect. 4.1. The sample edges from all the g groups together
form the sample graph.We continuously monitor the triangle
count tc in the sample graph.

Estimating: In group GPi , we also monitor the number
of distinct edges mapped to it in the sliding window. The
procedure is the same as discussed in Sect. 4.3, except that
only the k

g substreams in this group take part in the compu-
tation. We add the estimated edge number of the g groups
together, and get the number of distinct edges in the sliding
window. Then we can scale up the triangle count tc in the
sample graph to the snapshot graph with the estimated slid-
ing window cardinality n as tc × n(n−1)(n−2)

m(m−1)(m−2) , where m is
the number of edges in the sample graph.

Slice switching: There is another difference between
SWTC-AG and SWTC. In SWTC, we encounter a landmark
whenever the window slides N time units, and we update
all the k substreams at the landmark. On the other hand,
In SWTC-AG, we will encounter a landmark whenever the
window slides N

g . This landmark belongs to a specific group
GPi , and we only update the substreams in GPi . In the
jth substream which belongs to GPi , we set β[j] = ε[j]
and ε[j] = NULL . Furthermore, if G(ε[j]) < G(β[j])
before the updating, edge ε[j] becomes a sample edge now.
We insert it into the sample graph and increase the triangle
counter.

123

X. Gou, L. Zou

Fig. 5 Example of Slicing of SWTC-AG

The AG technique also relieves the problem of compu-
tation peak discussed in Sect. 5.1. We spread the cost of
switching slices to g landmarks in each N time units. And at
each landmark we only need to update k

g substreams. There-
fore, we will not suffer from heavy computation cost at one
landmark like in the basic version of SWTC. Furthermore,
AG technique can also cooperate with vision counting tech-
nique to further smooth the computation cost.

5.2.2 Valid sample size analysis

Next we analyze the sample size in SWTC-AG. We use �i
and ji to represent the latest landmark and the last landmark
in group GPi in the following analysis. We propose the fol-
lowing theorem:

Theorem 5 The expected sample size of SWTC-AG is k
g ×

|W | ×
(∑g−1

i=0
1

|WT
ji

|

)

Proof According the Theorem 1, in the ith group which has
k
g substreams, the expected sample size is k

g × |W |
|WT

ji
| where

T is current time and N is the length of the sliding window.

The sample size of g groups is
∑g−1

i=0

(
k
g × |W |

|WT
ji

|

)
= k

g ×

|W | ×
(∑g−1

i=0
1

|WT
ji

|

)
. ��

This sample size is influenced by the throughput of the
streaming graph. For the convenience of analysis,we suppose
the throughput is steady, which means the number of distinct
edges in a slice is linear related with its length. Then we have
the following theorem:

Theorem 6 When the throughput of the streaming graph is
steady, the expected sample size of SWTC-AG varies in range(
k ×

(∑2 g
i=g+1

1
i

)
, k ×

(∑2 g−1
i=g

1
i

)]
.

Proof In the ith group, we denote the length of the latest slice
WT

�i
as δi N . Then the sample size is:

Expected Sample Si ze

= |W | × k

g
×

⎛
⎝g−1∑

i=0

1

|WT
ji

|

⎞
⎠

= k

g
×

⎛
⎝g−1∑

i=0

|W |
|W �i

ji ∪ WT
�i

|

⎞
⎠

= k

g
×

⎛
⎝g−1∑

i=0

N

N + δi N

⎞
⎠

= k

g
×

⎛
⎝g−1∑

i=0

1

1 + δi

⎞
⎠

(12)

Note thatwe can transform |W |
|W �i

ji ∪WT
�i

| to
N

N+δi N
because under

the steady throughput assumption, the cardinality of a slice
is linear related with its length.

At any time point which is the multiple of N
g , there is a

landmark belonging to one of the g groups. Therefore, for
any time T , there is always a group GPc (0 ≤ c < g) where

�c =
⌊
(T / N

g)
⌋
× N

g and 0 ≤ T−�c < N
g (e.g.GP1 in Fig. 5).

Recall that we denote the length of WT
�c

as δcN . Therefore

0 < δc < 1
g . Suppose �c is the qth landmark in the landmark

sequence of GPc (e.g., q = 2 for GP1 in Fig. 5).
For a groupGPi (0 ≤ i < c), its latest landmark �i is also

the qth landmark, and �c − �i = (c − i) × N
g (e.g., GP0 in

Fig. 5). Therefore we have

δi = T − �i

N
= (T − �c) + (�c − �i)

N

= δc + c − i

g

(13)

123

Sliding window-based approximate triangle...

For group GPi (c < i ≤ g − 1), its qth landmark is
�c + (i − c) × N

g > T . This landmark has not arrived yet.
Therefore, its latest landmark is the (q − 1)th landmark, and
is N time units smaller than the qth landmark (e.g., GP2 in
Fig. 5). Therefor, �i is �c + (i − c) × N

g − N = �c − (g +
c − i) × N

g . In this group, we have

δi = T − �i

N
= (T − �c) + (�c − �i)

N

= δc + g + c − i

g

(14)

According to Eq.13 and 14, we can further change Eq.12
to

Expected Sample Si ze

= k

g
×

⎛
⎝g−1∑

i=0

1

1 + δi

⎞
⎠

= k

g
×

⎛
⎝ 1

1 + δc
+

c−1∑
i=0

1

1 + δi
+

g−1∑
i=c+1

1

1 + δi

⎞
⎠

= k

g
×

⎛
⎝ 1

1 + δc
+

c−1∑
i=0

1

1 + δc + c−i
g

+
g−1∑

i=c+1

1

1 + δc + g−i+c
g

⎞
⎠

= k

g
×

⎛
⎝ 1

1 + δc
+

c∑
x=1

1

1 + δc + x
g

+
g−1∑

y=c+1

1

1 + δc + y
g

⎞
⎠

= k

g
×

⎛
⎝g−1∑

x=0

1

1 + δc + x
g

⎞
⎠

= k ×
⎛
⎝2g−1∑

i=g

1

i + gδc

⎞
⎠

(15)

The transition from the 3rd equality to the 4th is based on
x = c− i and y = g− i + c. And the transition from the 5th
quality to the 6th is based on i = x + g.

The value of expected sample size varies with δc. Because
0 ≤ δc < 1

g , we have:

Lower_bound = k ×
2g∑

i=g+1

1

i

Upper_bound = k ×
2g−1∑
i=g

1

i

(16)

Lower_bound < Expected sample si ze ≤ Upper_
bound. ��
Theorem 7 The fluctuation range of sample size in SWTC-
AG is k 1

2g .

Proof Based on the lower bound and the upper bound com-
puted in Theorem 6, we can get the fluctuation range:

Upper_bound − Lower_bound

= k ×
⎛
⎝2g−1∑

i=g

1

i
−

2g∑
i=g+1

1

i

⎞
⎠

= k ×
(
1

g
− 1

2g

)

= k
1

2g
.

(17)

When we set g = 10, the value range of expected sample
size of SWTC-AG is (0.67k, 0.72k], with a fluctuation range
of 0.05k. We can see that the lower bound of expected sam-
ple size of SWTC-AG is larger than the upper bound of the
baselinemethod, and the fluctuation range is 10 times smaller
than the basic version of SWTC.

In Sect. 7, we analyze the sample size and accuracy of
SWTC-AG, basic version of SWTC and the baselinemethod.
The result in Fig. 7 confirms our analysis about expected sam-
ple size. The experimental results (likeFigs. 10c and11c) also
show that SWTC-AG obtains higher accuracy than the basic
version of SWTC in most circumstances.

6 Extension to other semantics

Weighted Counting: In weighted counting, each triangle is
weighted with the multiplication of the frequencies of its
three edges. If we treat f occurences of an edge as f distinct
edges, a triangle with weightw can also be seen ofw distinct
triangles induced by different edge tuples. Therefore, when
applying SWTC to weighted counting, we replace the hash
functions H(·) and G(·), which are responsible for mapping
an edge to substreams and generating priorities, with ran-
dom functions. In other words, multiple occurences of an
edge may be mapped to different substreams and get differ-
ent priorities. Besides, we carry out weighted counting in the
sample graphGs andmaintain the result in tc. The other oper-
ations are the same as the binary counting. The sample size
analysis in Sect. 4.2, accuracy analysis in Sect. 4.4 and the
fluctuation range analysis in Sect. 5.2.2 all apply to weighted
counting. The only difference is that notations like |Wt2

t1 | and
τ represent edge count or triangle count with duplication
in weighted counting semantics. The baseline method can
also be extended to weighted counting semantics in a similar
manner.

Directed Triangle Counting: In prior works, triangle is
defined without edge directions. When edge directions are
considered, it is in fact a more general problem named motif
counting [33,34]. There are seven kinds of triangle-shape

123

X. Gou, L. Zou

Fig. 6 Different Kinds of Directed Triangles

motifs with different direction constraints, as shown in Fig. 6.
The first two kinds only include edgeswith one direction, and
the last five kinds include bi-direction edge into considera-
tion.3 Our algorithm applies to all of them. The estimating
process is the same as discussed above, except that we need
to count the corresponding directedmotif in the sample graph
rather than un-directed triangles.

Local Counting: local counting means to count triangles
including a specified node u. Local counting is usually used
in spam detection. If one node is included into too many
triangles, there is usually a spam activity or malicious attack
around it [3]. Our algorithm also applies to local counting.
When applying to local counting, we need to maintain one
counter tcu for each node u in the sample graph. We use tcu
to continuously monitor the count of triangles including u
in the sample graph. When estimating, we scale up the local
triangle count as tcu × n(n−1)(n−2)

m(m−1)(m−2) , where m is the number
of edges in the sample graph and n is the estimated sliding
window’s cardinality. For nodes in the snapshot graph but
not in the sample graph, the local count is estimated as 0.

7 Experimental evaluation

In this section, we experimentally evaluate our method over
four real-world datasets. Details about the datasets, exper-
iment settings and metrics are shown in Sect. 7.1, Sect. 7.2
and Sect. 7.3, respectively.

As discussed in Sect. 6, weighted counting is similar to
binary counting if we view the duplicate copies of an edge as
distinct edges. Therefore, we focus on binary counting from
Sects. 7.4 to 7.11. In these subsections, we first test the inde-
pendence of the hash functions we use with the topology of
edges (7.4). Thenwe compare theTreap-basedBPS sampling
in [19] with the baseline method proposed in Sect. 3 (7.5).
Recall that the baseline method is a combined method of
Partition CT [10] and BPS [19], where edges are partitioned
into k substreams and BPS sampling with bounded size 1 is
carried out in each substream. As the result shows the base-
linemethod ismuch superior, wemainly compare our SWTC
with it in the following experiments. Then we evaluate the
valid sample size (7.6) of SWTC, SWTC-AG and the base-
line method, test their unbiasedness (7.7) and evaluate their

3 notice that a bi-direction edge means one edge marked as bi-direction
rather than 2 edges with reverse directions. In the latter case the motif
include 4 edges rather than 3.

accuracy (7.8). In Sect. 7.9, We compare SWTC with fixed
probability sampling based method discussed in Sect. 3. In
Sect. 7.10 and 7.11, we evaluate the performance of SWTC,
SWTC-AG and the baseline method in semantics including
directed graph (7.10) and local counting (7.11).

In Sect. 7.12,we evaluate the performance of our proposed
method in weighted counting semantics. We also evaluate
two most recent fully dynamic algorithms WRS [22] and
ThinkD [18] in sliding window model by storing the entire
sliding window. Notice that prior work for fully dynamic
model only applies to weighted counting semantics. There-
fore we only compare with them in Sect. 7.12. In Sect. 7.13,
we further evaluate the processing speed of different versions
of SWTC and show the effect of vision counting.

Besides, we also carry out experiments to evaluation the
influence of duplication ratio, namely the percentage of
duplicate edges in the sliding window. The experimental
result is shown in the appendix which can be found one line
[23] due to space limitation.

Experiments are implemented in a PC server with dual
18-core CPUs (Intel Xeon CPU E5-2697 v4@2.3G HZ, 2
threads per core) and 192G memory, running CentOS. All
codes are written in C++ and compiled with GCC 4.8.5.

7.1 Datasets

Four real-world datasets are used in experiments. In order to
make the window length intuitive, we divide the total time
span of each dataset with the number of edges in it to get
the average time span between two edge arrivals, and use
this average time span as the unit of the window length. The
frontier of the sliding window, T , is set to the timestamp of
the last edge that the algorithm has processed. The datasets
are as follows:
(1)StackOverflow:4 This is a dataset of interactions on the
stack exchange website Stack Overflow. Nodes are users and
edges represent user interactions. There are 63,497,050 edges
with duplication and 2,601,977 nodes.
(2)Yahoo:5 This is a network flow dataset collected from
three border routers by Yahoo. We use IP addresses as
nodes and communications among them as edges. It includes
561,754,369 edges and 33,635,059 nodes.
(3)WikiTalk:6 This is the communication network of the
English Wikipedia. Nodes represent users, and an edge from
user A to user B denotes that user A wrote a message on
the talk page of user B at a certain timestamp. It includes
24,981,163 edges and 2,987,535 nodes.

4 http://snap.stanford.edu/data/sx-stackoverflow.html
5 https://webscope.sandbox.yahoo.com/catalog.php?datatype=g
6 http://konect.cc/networks/wiki_talk_en/

123

http://snap.stanford.edu/data/sx-stackoverflow.html
https://webscope.sandbox.yahoo.com/catalog.php?datatype=g
http://konect.cc/networks/wiki_talk_en/

Sliding window-based approximate triangle...

Table 3 Average Triangle Count in Different Datasets

StackOverflow Yahoo WikiTalk Actor

N 4.5M 35M 3M 4.5M

τ 2.16M 0.61M 2.63M 11.4M

(4)Actor:7 This is a dataset describing cooperation of actors.
Nodes are actors and edges represent films in which they
cooperate. There are totally 33,115,812 edges with duplica-
tion and 382,219 nodes.

The last dataset Actor does not have timestamps. There-
fore we randomly generate timestamps for it. We shuffle the
dataset three times and compute the average performance
whenever we use it. For the StackOverflow, Yahoo and Wik-
iTalk, as they have original timestamps, we sort the dataset
by these timestamps.

As the accuracy of the algorithm is relatedwith the number
of triangles in the snapshot graph, we list the average number
of triangles τ in the sliding window for each dataset in Table
3. The corresponding window length N is also listed in the
table.

7.2 Experiment settings

The number of substreams, denoted with k, decides the
memory used in both SWTC and the baseline method. In
applications, it is set according to the available memory. But
it should be noted that as shown in Sect. 4.4, too small sam-
ple size will bring a large variance. We define the ratio of k
against the window length N as sample rate, where the win-
dow length uses average time span as unit. As will be shown
in Fig. 11, we vary the sample rate to carry out experiments,
and results show that we can get a promising accuracy when
the sample rate is larger than 4%. Further growing sample
size brings relatively slow increment on accuracy. Therefore,
we suggest k to be set 4% ∼ 6% of the window length, if
the memory is enough. We also use this setting in our experi-
ments, and twomethods (SWTC and baseline) have the same
sample rate and the same memory usage.

In each experiment, we carry out SWTC and the base-
line method five times with different hash functions, and use
the average performance as experimental result. The hash
functions used in SWTC and the baseline method include
BobHash [35], MurmurHash [36], RSHash [37], APHash
[38] and so on. More hash functions can be found at [38].
The group number in SWTC-AG is set to 10.

We set a checkpoint whenever the window slides 1
10 of

the window length, namely when the maximum timestamp
of the inserted edges increases by 1

10N . We measure metrics
at these checkpoints. When T is less than two times of the

7 http://konect.cc/

window length, we do not set any checkpoint, as there are
not enough expired edges and both algorithms produce large
but not representative sample sets. For Yahoo, in which the
window length is very large and compute the accurate trian-
gle count is too time consuming, we estimate the algorithm
performance at first 50 checkpoints. For other datasets, we
estimate the algorithm performance at all checkpoints.

7.3 Metrics

In the experiments we evaluate 5 metrics of the algorithms
for global triangle counting: average valid sample size, per-
centage of valid sample, MAPE, max error and MSPE of
triangle count, defined as follows:
Average Valid Sample Size: In both SWTC and the baseline
method, the number of valid sample edges varies as the win-
dow slides. We measure the number of valid sample edges
at each checkpoint, and compute the average value of all
checkpoints to get the average valid sample size.
Percentage of Valid Sample: The ratio of the number of
valid sample edges against the total number of substreams.
MAPE: At each checkpoint, we compute the accurate trian-
gle count, denoted as τ , and the estimated triangle, τ̂ . The
Absolute Percentage Error (APE) is estimated as | τ̂−τ

τ
|. We

compute the average value of all checkpoints to get Mean
Absolute Percentage Error (MAPE).
Max Error: At each checkpoint, we compute the Absolute
Percentage Error (APE) of the triangle estimation. We use
the maximum value of all checkpoints as max error.
MSPE: At each checkpoint, the Signed Percentage Error
(SPE) is estimated as τ̂−τ

τ
. We compute the average value

of all checkpoints to get Mean Signed Percentage Error
(MSPE).

For local counting, we use 2 metrics: average Pearson and
average ε error.
Average Pearson:We organize the local counts of all nodes
in the graph as a vector x , and the estimated counts are
organized as a vector y with the same dimension. Pearson
Correlation Coefficient is defined as ρ = Cov(x,y)

σxσy
where

Cov(x, y) means the covariance of vector x and y, and σx
(or σy) means the standard deviation of x (or y). Pearson
Correlation Coefficient is used to estimated the correlation
between two vector. A high Pearson Correlation Coefficient
reveals a close relation between x and y, and implies the high
accuracy of the estimation result. We compute the Pearson
Correlation Coefficient at each check point, and compute the
average value as average Pearson.
Average ε error: ε error is defined as 1

|V |
∑

u∈V
|τ̂ (u)−τ(u)|

τ(u)+1 ,
where V is the node set in the graph. τ(u) is the local triangle
count of node u, and τ̂ (u) is the estimated local count.We add
τ(u) by 1 in case that τ(u) = 0. We compute ε error at each

123

http://konect.cc/

X. Gou, L. Zou

Table 4 Chi-squared Statistic of Different Hash Functions

MurmurHash1 MurmurHash2 BobHash1 BobHash2 CRC32 RSHash APHash

Substream Partition 78.1 80.2 90 81.9 80.4 79.8 98.9

Priority Computation 81.7 84 84.7 85 76.7 84 95.9

check point, and compute the average value as experiment
result.

7.4 Independence test of hash functions

In this section, we first use chi-squared test to check the
statistical independence between the hash functions and the
topology of the edges. We use WikiTalk dataset and the win-
dow length is set to 3M . In this test, we divide the edges
in the graph into 10 bins according to the number of trian-
gles they are involved in. Initially, we divide the value range
of involved triangle numbers of edges into 10 equal-sized
region, and each bin contains edges with involved triangle
numbers in one region. Then we recursively merge the small-
est bin with its neighbor and bisect the largest bin, until all
bins contain more than 100 edges. We do this to avoid under-
emphasizing contribution of small bins to the chi-squared
computation.We also divide the value range of the hash func-
tion into 10 equal-sized region. We compute the number of
edges in the ith bins with hash values in the jth region, denote
as ai j . We also compute the expected size of ai j , denoted as
âi j , and âi j = mi × n j

n . mi is the number of edges in the
ith bin. n j is the number of edges with hash value in the jth
region, and n is the total number of edges. This expected size
is computed under the assumption that the hash values are
independent with the involved triangle number of edges. The
chi-squared statistic is computed as follows:

χ =
9∑

i=0

9∑
j=0

(ai j − âi j)2

âi j
(18)

The hypothesis that the hash values are independent with
the involved triangle numbers of edges holds if the chi-
squared statistic is smaller than the critical value of a given
significance level, where the significance level is usually
taken as 0.05.

In the above exam, the chi-squared statistic has (10−1)×
(10−1) = 81degrees of freedom, and the corresponding crit-
ical value is 103. InTable 4.We list the chi-squared statistic of
all 7 hash functions we use, in both priority computation and
substream partition (the substream number is set to 0.12M).
MurmurHash1 andMurmurHash2 denoteMurmurHashwith
different seeds, similar to BobHash1 and BobHash2. From
the table, we can see that all chi-squared statistic is smaller

than 103, indicating independence of hash values and the
involved triangle number of edges.

7.5 Comparison of the baselinemethod with
treap-based BPS

In this section, we compare the baseline method with Treap-
based BPS, in order to show why we choose the former as a
competitor of SWTC.We use StackOverflow dataset, and set
the window length to 4.5M . We use the baseline method and
Treap-based BPS with the same bounded size k = 0.18M
to continuously maintain samples. We compute the average
valid sample size among all checkpoints, as well as memory
usage and processing speed. The result is shown in Table
5. The unit of speed is million (edge) insertions per second
(Mips). Note that we focus on the sampling procedure, and
the cost of maintaining sample graphs and counting triangles
are not included. From the table,we can see that bothmethods
get similar valid sample size, but the baseline method uses
less memory and has higher speed. As the baseline method is
superior than treap-based BPS, we mainly compare SWTC
with it in the following experiments.

7.6 Valid sample size

We conduct experiments on sample size in two ways. First,
in order to confirm our mathematical analysis in Sect. 4.2, we
build a dataset with steady throughput:We filter out duplicate
edges in Actor and arrange the timestamps so that there are
exactly one edge in each time unit. In such a dataset, the
cardinality of a window is linear correlated with the window
length. Note that this specialized dataset is only used in this
experiment. We evaluate the percentage of valid sample of
SWTC and the baseline in it. The result is shown in Fig. 7,
where the window length is set to 4M and the x-axis denotes
the total number of processed time units (i.e. average time
span defined in Sect. 7.1). The sample rate is set to 4%. In
Fig. 7, we can see that the baseline method always get a 56%
percentage of valid sample.On the other hand, the percentage
of valid sample in SWTCvaries from50% to 100% in a cycle.
This conforms to our mathematical analysis in Theorem 3.
Moreover, by using AG technique, the percentage of valid
sample in SWTC-AG is stabilized to around 72%.

We also report the average valid sample size in Actor and
Yahoo in Figs. 8a and 8b. For Actor, we fix the sample rate

123

Sliding window-based approximate triangle...

Table 5 Comparison of the
Baseline Method with
Treap-based BPS

Method Valid Sample Size Memory Usage(MB) Speed(Mips)

Baseline 108, 425 14.4 1.55

Treap-based BPS 100, 612 31 0.95

Fig. 7 Percentage of Valid Sample

Fig. 8 Valid Sample Size of Different Algorithms

to be 4% and vary the window length. For Yahoo, we fix
the window length to be 35M and vary the sample rate. We
can see that the valid sample size rises with the increasing of
the window length and the sample rate, as they both brings
a larger k. SWTC always has a larger sample size than the
baseline method, and SWTC-AG has the same average sam-
ple size as SWTC. The gap between SWTC and the baseline
method varies since the cardinality of the sliding window
varies with the throughput of the stream and the duplication
ratio in the window. In average the sample size in SWTC is
30% larger.

7.7 Unbiasedness of estimation

In this section, we experimentally check the unbiasedness
of our triangle count estimation. We compute MSPE for the
baseline method, SWTC and SWTC-AG. If the method is
unbiased, MSPE should be near 0. We use WikiTalk to carry
out experiment. The window length is set to 3M , and we
vary the sample rate. The result is shown in Fig. 9. From the
figure, we can see that the MSPE of all 3 methods is in range
−2% ∼ 2%. As the sample rate grows, MSPE becomes
closer to 0, indicating that all 3 methods are unbiased.

Fig. 9 MSPE in WikiTalk

Fig. 10 Accuracy Varying with Window Length

7.8 Accuracy

Figure10 shows the accuracy of SWTC and the baseline
method varying with window length. The sample rate is set
to 4%.

Figure11 shows the accuracy of SWTC and the baseline
method varying with sample rate. The window length is set
to 3M for WikiTalk and 35M for Yahoo.

From the figures, we can see that SWTC has an MAPE
up to 38% smaller than the baseline. And in all experiments,
MAPEof SWTC is below0.1. SWTC-AGhas a lowerMAPE
than SWTC in most cases due to its stability. The max error
of SWTC has no significant difference with the baseline
method, as it produces periodic small sample graph and low
accuracy. But in SWTC-AG, as the sample size is stabilized,

123

X. Gou, L. Zou

Fig. 11 Accuracy Varying with Sample Rate

the accuracy also becomes more reliable. The max error of
SWTC-AG is up to 34% smaller than the baseline method.

Figure10 also shows that as the window length grows,
the estimation error of algorithms decreases, because when
there are more triangles in the window, the influence of ran-
domicity decreases and the estimated result becomes stable
and accurate.

Figure11 shows that the estimation error of algorithms
decreases when the sample rate grows. This is intuitive, as a
larger sample set produces a higher accuracy.

7.9 Comparison with fixed probability sampling

As discussed in Sect. 3, there is a naive sampling method,
fixed probability sampling (fixed-p sampling for short),
which can produce uniform sample in the sliding window but
has no memory upper bound. Approximate triangle counting
algorithm can also be built with fixed-p sampling. We use
fixed-p sampling to maintain a sample edge set and build a
sample graphwith these edges.Wemonitor the triangle count
tc in the sample graph and estimate the triangle count in the
snapshot graph as tc

p3
.

In this Section. We compare SWTC with fixed-p sam-
pling. The dataset used is WikiTalk, and the window length
is set to 3M . The experimental results, including MAPE and
Max Error of triangle estimation, are shown in Table 6. We
set the sample rate of SWTC and SWTC-AG to 4%. In other
words both of them have 0.12M substreams. The memory
usage of fixed-p sampling varies with the streaming graph
throughput and has no upper bound. Therefore, we scan the
entire dataset in advance, and find themaximumdistinct edge
number that will appear in the sliding window. Based on it,

Table 6 Comparison with Fixed Probability Sampling

Algorithm MAPE (%) Max Error (%)

SWTC 4.2 21.2

SWTC-AG 3.8 13.6

Fixed-p (same memory usage) 6.2 23.2

Fixed-p (same stored edge number) 3.7 12.5

we compute the sample probability p of fixed-p sampling,
so that it has the same memory upper bound as SWTC. The
experimental results of fixed-p sampling with such setting
are shown in row 3 of Table 6. Experimental results show
that both SWTC and SWTC-AG have higher accuracy than
fixed-p sampling. The preserved memory of fixed-p sam-
pling, which is set according to the throughput of peak time,
is not fully used in ordinary times. On the other hand, SWTC
and SWTC-AGcan alwaysmake full use the preservedmem-
ory.

We also use another parameter setting (row 4 of Table 6).
It allows fixed-p sampling to store at most 240k edges, i.e.,
storing the same number of edges as SWTC, because SWTC
stores two edges in each substream. However, with such set-
ting, the maximum sample graph size in fixed-p method is
2 times of SWTC. The memory for maintaining the sample
graph, including the node table and the neighbor lists, makes
thememory upper bound of fixed-pmuch higher than SWTC.
Experimental results show that even with much higher mem-
ory preserved, the accuracy of fixed-p sampling is still close
to that of SWTC-AG. Furthermore, it is difficult to predict
the exact throughput in real world applications. Therefore
fixed-p sampling can hardly achieve the accuracy in this
experiment.

7.10 Counting directed triangles

In this section, we evaluate the performance of SWTC in
directed triangle counting.WeuseStackOverflow to carry out
experiment. There are no bi-direction edges in this dataset,
but each edge is taggedwith a label. There are totally 3 labels,
corresponding to 3 kinds of interactions. We use edges with
one label as bi-direction edges. The MAPE and MaxError of
7 types of triangles are shown in Figs. 12 and 13. We fix the
window length to 4.5M and the sample rate to 6%. Triangles
of type G are very rare, with an average number of only
164, 891, and the average numbers of the other 6 types are at
least 409, 522. Therefore the error in estimation of this type
is larger than others.We also show the result with sample rate
12% for type G. We can see that with a larger sample rate,
the error is significantly decreased. Besides, we can also see
that in all types, SWTC-AG always has the best accuracy.

123

Sliding window-based approximate triangle...

Fig. 12 MAPE in Directed Triangle Counting

Fig. 13 Max Error in Directed Triangle Counting

Fig. 14 Accuracy of local counting

7.11 Local counting

In this section,we evaluate the performance of SWTC in local
counting.We use StackOverflow to carry out experiment.We
fix the window length to 4.5M and change the sample rate,
the result is shown in Fig. 14. From the figure, we can see that
SWTC and SWTC-AG always have higher average Pearson
and lower average ε error than the baselinemethod, implying
higher accuracy.

7.12 Weighted counting

Wecarry out an experiment onweighted countingwith Stack-
Overflow dataset, with window length set to 4.5M . Besides
comparing with the baseline, we also compare our method
with 2 prior algorithms in fully dynamic stream model,

Fig. 15 Accuracy of Weighted Counting

WRS[22] and ThinkD [18]. In order to make the figure clear,
we only show AG version of SWTC here. The MAPE and
max error are shown in Fig. 15, where the x axis is the mem-
ory usage. As discussed in Sect. 3, WRS and ThinkD need
to store the entire sliding window to work. We keep tracking
the number of edges as the window slides, and find that the
maximum number of edges in the sliding window is 5.4M .
Therefore, we reserve space for storing 5.4M edges forWRS
and ThinkD. Each edge has two 4-byte node IDs and one 8-
byte timestamp. As the edges are organized as a linked list,
an additional pointer is needed by each edge. Therefore 24
bytes are needed for each edge in the slidingwindow. In total,
WRS and ThinkD need at least 129.6MB memory to start to
work. Therefore, in the figure we begin to present their accu-
racy at 150MB. We can see that they begin to have MAPE
lower than 4% only when the memory is larger than 210MB.
On the other hand, our algorithms get same accuracy with
only 60MB memory. In other words, our algorithms achieve
competitive performance with much less space. Besides, the
memory used by WRS and ThinkD is unbounded in real
world applications, because the number of edges in the slid-
ingwindowvarieswith the throughput, and they need to store
all the edges to work. The result in Fig. 15 also shows that
in weighted counting, SWTC-AG still has a higher accuracy
than the baseline.

7.13 Processing speed

In this section, we compare the speed of different versions
of SWTC and the baseline method. We use Actor dataset in
this experiment, and set the window length to be 4.5M . The
sample rate is set to 4%, and the triangles are count in binary
counting semantics. We calculate average processing speed
of the algorithms in each batch with 45K time units, and
draw the curve of processing speed varying with total num-
ber of processed time units. The result is shown in Fig. 16.
The measurement of speed is million insertions per second
(Mips). The figure shows the change of speed at a landmark.
We can see that at the landmark, the speed of SWTC suffers
from a sharp decrease, because at the landmark, SWTC need
a period to add new valid samples and count the triangles. On

123

X. Gou, L. Zou

Fig. 16 Processing Speed of Different Algorithms

the other hand, in SWTC-AG, there is a small computation
peak in every 0.45M time units, namely 1

10 of the sliding
window. As SWTC-AG carries out slice switch for a group
of k

10 substreams at these time points. With vision counting
technique (SWTC-VC), the processing speed is completely
smoothed. Notice that vision counting technique can also be
implemented with SWTC-AG, and the speed is the same as
SWTC-VC. The processing speed of the baseline method is
also shown in the figure. Because the baseline method has
a relatively small valid sample size, it processing speed is
slightly higher. But as shown in the experiments above, its
accuracy is also poorer.

8 Related work

8.1 Prior arts in triangle counting

The problem of counting triangles in large graphs has been
researched for decades. It can be divided into 2 problems,
counting global triangles (triangles in the entire graph) and
local triangles (triangles which include a certain node). Com-
pared to algorithms [39–43] which exactly count the number
of triangles in large graphs, approximately counting algo-
rithms [44–47] are much faster and consume less memory.
Recent work in approximation triangle counting includes the
algorithm of Pavan et al. [8] which uses a neighborhood sam-
pling to sample and count triangles, and the algorithm of Jha
et al. [48] which samples wedges to estimate triangle count.
Tsourakakis et at. [49] proposes to sample each edge with a
fixed-probability and their algorithm can be directly used in
streaming graphs. Ahmed et al. [9] presents a general edge
sampling framework for graph statistics estimation including
the triangle count.

The above algorithms do not consider edge duplication.
TRIJEST [17] uses reservoir sampling method [50] and has a
fixed sample size. It supports edge deletions in fully dynamic
streaming graphs with a technique named random pairing
[51]. It also supports weighted counting with edge duplica-
tion. But it can neither support binary counting, nor support
sliding window model. PartitionCT [10] estimates triangle
counts in streaming graphs by filtering duplicate edges and

counting binary triangles. It divides the streaming graph
into substreams with a hash function. In each substream,
it performs a priority sampling with another hash function.
PartitionCT also solves the problem of cardinality estimation
with the help of prior works including [20,21]. However it
cannot be directly used in slidingwindows, as it does not sup-
port edge expiration. Subsequent work includes [16,18,22],
but they either do not support deletion or do not support
binary counting semantics. Besides, as discussed in Sect. 3,
even algorithms supporting deletions in fully-dynamicmodel
cannot support the expiration in sliding windows. To the best
of our knowledge, no algorithm has addressed the problem
of triangle count estimation in streaming graphs with sliding
window and edge duplication using bounded-size memory.

8.2 Sampling algorithms in sliding windows

It has been proved impossible to maintain a fixed-size sam-
ple with bounded memory over a time-based sliding window
[19]. Therefore most related works sample data streams in
sliding windows with unbounded memory like [24,52,53].
We find them not suitable for sampling in the triangle count-
ing problem for 2 reasons. First, unbounded memory usage
makes it difficult to reserve enoughmemory in advance. Sec-
ond, most of them need to compute sample set upon query,
but we hope to achieve continuous query in triangle counting.
BPS algorithm [19] suits the need of triangle counting most,
because It has a strict upper bound of the memory usage and
achieves continuous query. But its sample set has an uncer-
tain size as a cost. In the baseline method, we use a simplified
version of BPS, where we only need to maintain at most one
sample in the sliding window. We combine such BPS algo-
rithm with PartitionCT to achieve sampling with bounded
size k.

8.3 HyperLogLog algorithm

The HyperLogLog algorithm [20] is proposed by Flajolet et
al. It is a highly compact algorithm to estimate the number
of distinct items (i.e., cardinality) in a set.

It uses a sketch with m counters c1.c2.....cm and 2 hash
functions. The counters are all 0 initially. One hash function
is g(·) which uniformly maps the input to integers in range
1 ∼ m. The other hash function is y(·) whose output has
a Geometric(12) distribution. In other words, the probability
that y(e) = x is 1

2x for x = 1, 2, 3.... When inserting an
item e, it first uses g(·) to map it to one of the m counters
ci (1 ≤ i ≤ m). Then it computes y(e) and set ci = y(e) if
y(e) > ci . After inserting all the items, apparently a counter
will get higher value when more distinct items are mapped
to it, and duplicate items will not influence the sketch, as the
same item will always get the same value in y(·) and g(·).

123

Sliding window-based approximate triangle...

The cardinality is estimated as αmm2∑m
i=1 2

−ci
, and αm is used to

correct the bias which is αm = 0.7213/(1 + 1.079/m) for
m > 128. The error percentage is about 1.04√

m
.

9 Conclusion

Triangle counting in real-world streaming graphs with edge
duplication and sliding windows has been an unsolved prob-
lem. In this paper, we propose an algorithm named SWTC .
It uses an original sampling strategy to retain a bounded-
size sample of the snapshot graph in the sliding window.
With this sample, we can continuously monitor the triangle
count in the slidingwindowwith boundedmemory usage.We
further propose two optimization techniques to improve the
performance of SWTC: vision counting and asynchronous
grouping. Mathematical analysis and experiments show that
SWTC generates a larger sample set and has higher accuracy
than the baseline method, which is a combination of several
existing algorithms, under the same memory consumption.

10 Appendix

10.1 Influence of duplication ratio

In order to evaluate the influence of duplication ratio of the
streaming graph, we use a synthetic dataset FF to carry out
experiments. This dataset is generated by Fire-Forest model
[54]. It includes 18, 311, 282 edges and 1M nodes. There are
originally no duplicate edges. We generate edge frequencies
for it with power-law distribution and vary the duplication
ratio to carry out experiments. The timestamps are randomly
generated in this dataset. We formally define the duplication
ratio as total number of edges

number of distinct edges − 1. The window length is
set to be 3M and the sample rate is set to be 4%. We use
binary counting semantics in this experiment. The memory
usage and the valid sample size does not change with the
duplication ratio. The experimental result in Fig. 17 shows
that MAPE and max error decreases with the increment of

Fig. 17 Accuracy Varying with Duplication Ratio

duplication ratio. Because with more duplicate edges, the
number of distinct edges in the sliding window decreases,
and the sample size becomes relatively large.

References

1. Berry, J.W., Hendrickson, B., LaViolette, R.A., Phillips, C.A.:
Tolerating the community detection resolution limit with edge
weighting. Phys. Rev. E 83(5), 056119 (2011)

2. Jean-Pierre, E., Elisha, Moses: Curvature of co-links uncovers hid-
den thematic layers in the world wide web. Proc. Natl. Acad. Sci.
USA 99(9), 5825–5829 (2002)

3. Becchetti, L., Boldi, Paolo, Castillo, C., Gionis, A.: Efficient algo-
rithms for large-scale local triangle counting. ACM Trans. Know.
Dis. Data (TKDD) 4(3), 13 (2010)

4. Milo, R., Shen-Orr, Shai, Itzkovitz, S., Kashtan, N., Chklovskii,
D., Alon, Uri: Network motifs: simple building blocks of complex
networks. Science 298(5594), 824–827 (2002)

5. Kang, U., Meeder, B., Papalexakis, Evangelos E., Faloutsos, C.:
Heigen: Spectral analysis for billion-scale graphs. IEEE Trans.
Know. Data Eng. 26(2), 350–362 (2012)

6. Yang,Z.,Wilson,C.,Wang,X.,Gao,T., Zhao,B.Y.,Dai,Y.:Uncov-
ering social network sybils in the wild. ACM Trans. Know. Dis.
Data (TKDD) 8(1), 1–29 (2014)

7. Li, Z., Yunting, Lu., Zhang, W.-P., Li, R.-H., Guo, J., Huang, X.,
Mao, Rui: Discovering hierarchical subgraphs of k-core-truss. Data
Sci. Eng. 3(2), 136–149 (2018)

8. Pavan, A., Tangwongsan, K., Tirthapura, S., Kun Lung, Wu.:
Counting and sampling triangles from a graph stream. Proc. Vldb
Endowment 6(14), 1870–1881 (2013)

9. Ahmed, N. K., Duffield, N., Neville, J., & Kompella, R.: Graph
sample and hold: A framework for big-graph analytics. In: Acm
Sigkdd International Conference on Knowledge Discovery & Data
Mining, (2014)

10. Wang, P., Qi, Y., Sun, Yu., Zhang, X., Guan, X.: Approximately
counting triangles in large graph streams including edge duplicates
with a fixedmemory usage. Proc.VldbEndowment 11(2), 162–175
(2017)

11. Boykin, P.O., Roychowdhury, Vwani P.: Leveraging social net-
works to fight spam. Computer 38(4), 61–68 (2005)

12. Datar, M., Gionis, A., Indyk, P., Motwani, R.: Maintaining stream
statistics over sliding windows. Siam J. Comput. 31(6), 1794–1813
(2002)

13. Li, Y., Zou, L., Özsu, M.T., Dongyan, Z.: Time constrained con-
tinuous subgraph search over streaming graphs. In 2019 IEEE
35th International Conference on Data Engineering (ICDE), pages
1082–1093. IEEE, (2019)

14. Crouch, M.S., McGregor, A., Stubbs, D.: Dynamic graphs in the
sliding-window model. In European Symposium on Algorithms,
pages 337–348. Springer, (2013)

15. Qiu, X., Cen, W., Qian, Z., Peng, Y., Zhang, Y., Lin, X., Zhou,
J.: Real-time constrained cycle detection in large dynamic graphs.
Proc. VLDB Endowment 11(12), 1876–1888 (2018)

16. Jung,M., Lim,Y., Lee, S., Kang,U.: Furl: fixed-memory and uncer-
tainty reducing local triangle counting formultigraph streams.Data
Min. Know. Dis. 33(5), 1225–1253 (2019)

17. De Stefani, Lorenzo, Epasto, Alessandro, Riondato,Matteo, Upfal,
Eli: Triest: counting local and global triangles in fully dynamic
streams with fixed memory size. ACM Trans. Know. Dis. Data
(TKDD) 11(4), 1–50 (2017)

18. Shin, Kijung, Sejoon, Oh., Kim, Jisu, Hooi, Bryan, Faloutsos,
Christos: Fast, accurate and provable triangle counting in fully

123

X. Gou, L. Zou

dynamic graph streams. ACM Trans. Know. Dis. Data (TKDD)
14(2), 1–39 (2020)

19. Gemulla, R., Lehner, W.: Sampling time-based sliding windows
in bounded space. In: Acm Sigmod International Conference on
Management of Data, (2008)

20. Flajolet, P., Fusy, É., Gandouet, O., Meunier, F.: Hyperloglog:
the analysis of a near-optimal cardinality estimation algorithm. In
Discrete Mathematics and Theoretical Computer Science, pages
137–156. Discrete Mathematics and Theoretical Computer Sci-
ence, (2007)

21. Ting, D.: Streamed approximate counting of distinct elements:
Beating optimal batch methods. In Proceedings of the 20th ACM
SIGKDD international conference on Knowledge discovery and
data mining, pages 442–451 (2014)

22. Dongjin, L., Kijung, S., Christos, F.: Temporal locality-aware sam-
pling for accurate triangle counting in real graph streams. The
VLDB Journal, pages 1–25 (2020)

23. Source code of swtc and the baseline method. https://github.com/
StreamingTriangleCounting/TriangleCounting.git

24. Brian, B.,Mayur, D., Rajeev,M.: Sampling from amovingwindow
over streaming data. In Proceedings of the thirteenth annual ACM-
SIAM symposium onDiscrete algorithms, pages 633–634. Society
for Industrial and Applied Mathematics (2002)

25. Seidel, R., Aragon, Cecilia R.: Randomized search trees. Algorith-
mica 16(4), 464–497 (1996)

26. Kac, Mark: Statistical Independence in Probability. Courier Dover
Publications, Analysis and Number, New York (2018)

27. Duffield, N.G., Grossglauser, M.: Trajectory sampling for direct
traffic observation. IEEE/ACMTrans. Netw. 9(3), 280–292 (2001)

28. Duffield, Nick: Sampling for passive internet measurement: A
review. Stat. Sci. 19(3), 472–498 (2004)

29. Aggarwal, C.C., Yuchen, Z., Yu, P.S.: Outlier detection in graph
streams. In 2011 IEEE 27th international conference on data engi-
neering, pages 399–409. IEEE, (2011)

30. Ashish, T., Sen, S.J., Namit, J., Zheng, S., Prasad, C., Ning, Z.,
Suresh, A., Hao, L., Raghotham, M.: Hive-a petabyte scale data
warehouse using hadoop. In: 2010 IEEE 26th international con-
ference on data engineering (ICDE 2010), pages 996–1005. IEEE
(2010)

31. Maurizio, M., Saverio, N., Duffield, N.G.: A comparative exper-
imental study of hash functions applied to packet sampling. In:
Proc. of International Teletraffic Congress (ITC) (2005)

32. Slota, G.M., Madduri, Kamesh: Space/time trade-offs in hash cod-
ing with allowable errors. Commun. ACM 13(7), 422–426 (1970)

33. Slota, G.M., Kamesh, M.: Complex network analysis using paral-
lel approximate motif counting. In 2014 IEEE 28th International
Parallel and Distributed Processing Symposium, pages 405–414.
IEEE, (2014)

34. Bressan, M., Chierichetti, F., Kumar, R., Leucci, S., Panconesi, A.:
Motif counting beyond five nodes. ACM Trans. Know. Dis. Data
(TKDD) 12(4), 1–25 (2018)

35. Bobhash function. http://burtleburtle.net/bob/hash/doobs.html
36. Murmurhash function. Published by Austin Appleby at https://

github.com/aappleby/smhasher
37. Sedgewick, R.:. Algorithms in c. Pearson Education, (2001)
38. Aphash and collection of other hash functions. http://www.partow.

net/programming/hashfunctions/#RSHashFunction
39. Alon, N., Yuster, R., Zwick, U.: Finding and counting given length

cycles. Algorithmica 17(3), 209–223 (1997)
40. Shaikh, A., Maleq, K., Madhav, M.: Patric: a parallel algorithm

for counting triangles in massive networks. In Acm International
Conference on Information & Knowledge Management, (2013)

41. Xiaocheng, H., Yufei, T., Chung, C.W.: Massive graph triangula-
tion. In: Acm Sigmod International Conference onManagement of
Data, (2013)

42. Jinha, K., Wook, S.H., Sangyeon, L., Kyungyeol, P., Yu, H.: Opt:a
new framework for overlapped and parallel triangulation in large-
scale graphs. (2014)

43. Ha-Myung, P., Sung-Hyon,M., Kang, U.: Pte: Enumerating trillion
triangles on distributed systems. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 1115–1124 (2016)

44. Bar-Yossef, Z., Kumar, R., Sivakumar, D.: Reductions in streaming
algorithms, with an application to counting triangles in graphs.
In: Proceedings of the thirteenth annual ACM-SIAM symposium
on Discrete algorithms, pages 623–632. Society for Industrial and
Applied Mathematics (2002)

45. Buriol, S.L., Frahling, G., Leonardi, S., Marchetti-Spaccamela, A.,
Sohler, C.: Counting triangles in data streams. In Acm Sigmod-
sigact-sigart Symposium on Principles of Database Systems,
(2006)

46. Jowhari, H., Ghodsi, M.: New streaming algorithms for counting
triangles in graphs. In International Computing and Combinatorics
Conference, pages 710–716. Springer, (2005)

47. Lim, Y., Kang, U.: Mascot: Memory-efficient and accurate sam-
pling for counting local triangles in graph streams. In: Proceedings
of the 21th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pages 685–694. ACM (2015)

48. Jha, M., Seshadhri, C., Pinar, A.: A space efficient streaming algo-
rithm for triangle counting using the birthday paradox. (2013)

49. Tsourakakis, C.E., Kang, U., Miller, G.L., Faloutsos, C.: Doulion:
counting triangles in massive graphs with a coin. In Proceedings of
the 15th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 837–846, (2009)

50. Vitter, Jeffrey S.: Random sampling with a reservoir. ACM Trans.
Math. Soft. (TOMS) 11(1), 37–57 (1985)

51. Gemulla, R., Lehner, Wolfgang, Haas, P.J.: Maintaining bounded-
size sample synopses of evolving datasets. The VLDB J. 17(2),
173–201 (2008)

52. Braverman, V., Ostrovsky, R., Zaniolo, C.: Optimal sampling
fromslidingwindows. InTwenty-eighthAcmSigmod-sigact-sigart
Symposium on Principles of Database Systems, (2009)

53. Cormode, G., Muthukrishnan, S., Yi, K., Zhang, Q.: Optimal sam-
pling from distributed streams. In Proceedings of the twenty-ninth
ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems, pages 77–86, (2010)

54. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: Den-
sification and shrinking diameters. ACM Trans. Know. Dis. Data
(TKDD), 1(1):2–es, (2007)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123

https://github.com/StreamingTriangleCounting/TriangleCounting.git
https://github.com/StreamingTriangleCounting/TriangleCounting.git
http://burtleburtle.net/bob/hash/doobs.html
https://github.com/aappleby/smhasher
https://github.com/aappleby/smhasher
http://www.partow.net/programming/hashfunctions/#RSHashFunction
http://www.partow.net/programming/hashfunctions/#RSHashFunction

	Sliding window-based approximate triangle counting with bounded memory usage
	Abstract
	1 Introduction
	1.1 Our solution

	2 Problem definition
	3 Baseline
	3.1 Background
	3.2 The baseline method

	4 Our method
	4.1 SWTC sampling strategy
	4.2 Valid sample size analysis
	4.3 Estimating of triangle count
	4.4 Accuracy analysis
	4.4.1 Discussion about hash function independence
	4.4.2 Uniformity of sampling
	4.4.3 Error analysis

	4.5 Time cost analysis
	4.5.1 Time cost of SWTC
	4.5.2 Time cost of the baseline method

	5 Optimization techniques
	5.1 Vision counting
	5.2 Asynchronous grouping
	5.2.1 Implementation
	5.2.2 Valid sample size analysis

	6 Extension to other semantics
	7 Experimental evaluation
	7.1 Datasets
	7.2 Experiment settings
	7.3 Metrics
	7.4 Independence test of hash functions
	7.5 Comparison of the baseline method with treap-based BPS
	7.6 Valid sample size
	7.7 Unbiasedness of estimation
	7.8 Accuracy
	7.9 Comparison with fixed probability sampling
	7.10 Counting directed triangles
	7.11 Local counting
	7.12 Weighted counting
	7.13 Processing speed

	8 Related work
	8.1 Prior arts in triangle counting
	8.2 Sampling algorithms in sliding windows
	8.3 HyperLogLog algorithm

	9 Conclusion
	10 Appendix
	10.1 Influence of duplication ratio

	References

