
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

SGSI – A Scalable GPU-friendly Subgraph
Isomorphism Algorithm

Li Zeng, Lei Zou, M. Tamer Özsu

Abstract—Due to the inherent hardness of subgraph isomorphism, the performance is often a bottleneck in various real-world
applications. We address this by designing an efficient subgraph isomorphism algorithm leveraging features of GPU architecture.
Existing GPU-based solutions adopt two-step output scheme, performing the same join twice in order to write intermediate results
concurrently. They also lack GPU architecture-aware optimizations that allow scaling to large graphs. In this paper, we propose a
Scalable GPU-friendly subgraph isomorphism algorithm, SGSI. SGSI incorporates a Prealloc-Combine strategy based on the
vertex-oriented framework, which avoids joining-twice in existing solutions. It uses a GPU-friendly data structure (called PCSR) to
represent an edge-labeled graph. We also study fine-grained load balance strategies and discuss how to handle enormous graphs that
cannot be resident in GPU memory. A partition-based pipeline framework is proposed. Extensive experiments on both synthetic and
real graphs show that SGSI outperforms the state-of-the-art algorithms by up to several orders of magnitude and has a good scalability
with graph size scaling to billions of edges.

Index Terms—SGSI, GPU, Subgraph Isomorphism, Scalability

F

1 INTRODUCTION

G RAPHS have become increasingly important in modeling
complicated structures and schema-less data such as chem-

ical compounds, social networks and RDF (Resource Descrip-
tion Framework) datasets. The growing popularity of graphs has
generated many interesting data management problems. Among
these, subgraph search is a fundamental one: how to efficiently
enumerate all subgraph isomorphic matches of a query graph over
a data graph. This is the focus of the current paper. Subgraph
search has many applications, e.g., chemical compound search [1]
and search over a knowledge graph [2], [3], [4]. A running
example (query graph Q and data graph G) is given in Figure 2
and Figure 2(c) illustrates the matches of Q over G.

Subgraph isomorphism is a well-known NP-hard problem [5]
and most solutions follow some form of tree search with back-
tracking [6]. Figure 3 illustrates the search space for Q over G
of Figure 2. Although existing algorithms (e.g., [7], [8]) propose
many pruning techniques to filter out unpromising search paths,
due to the inherent NP-hardness, the search space is still exponen-
tial. Therefore, scaling to large graphs with billions of vertices is
challenging. One way is to employ hardware assist.

The DFS (depth-first search)-style backtracking tree search
is not suitable for parallel computing over GPU. An alternative
solution is to employ multiway join to find all matches of Q by
leveraging massively parallel processing capability of GPUs to
explore the search space in parallel; this follows BFS (Breadth-
First Search)-style search. Considering a triangle query Q′ with
three vertices u0, u1 and u2 (a subgraph component of Q in
Figure 2), finding matches of Q′ over data graph G is equivalent
to multiway join M(Q′) = T1 on T2 on T3, where each Ti

• Li Zeng and Lei Zou are from Peking University in China; M. Tamer Özsu
is from University of Waterloo in Canada.
E-mail: {li.zeng,zoulei}@pku.edu.cn, tamer.ozsu@uwaterloo.ca;

• Lei Zou is the corresponding author of this work.

contains all data edges matching one query edge in Q1. There
are two different methods to execute the multiway join: one is to
execute a sequence of binary joins to evaluate the query, which
is edge-at-a-time-join. Figure 1 shows the edge tables T1 and T2
matching query edges u0u1 and u1u2 and intermediate join results
T1 on T2. Note that all existing GPU subgraph isomorphism
algorithms follow this edge join strategy [9], [10].

An alternative strategy is worst-case optimal join (WOJ) [11],
[12], [13], which matches the query graph one (query) vertex
at-a-time using a multiway join operator that performs multi-
way intersections. We call this vertex-at-a-time-join (or simply
vertex-oriented) approach. Considering the same triangle query
Q′(u0, u1, u2), table T1 in Figure 8 contains all data edges
matching query edge u0u1. For each candidate edge vivj in T1,
if ω = N(vi, b) ∩N(vj , b) ∩C(u2) 6= φ, {vivj} × ω generates
all triangle query matches containing edge vivj , where N(vi, b)
denotes neighbors of vertex vi with edge label b, and C(u2)
denotes all candidate vertices (in G) matching query vertex u2.
Iterating the same computation over all edges vivj in T1 produces
all matches of Q.

In this paper we propose the first vertex-oriented WOJ-based
suite of techniques for subgraph isomorphism computation that is
suitable for executing on GPUs for hardware assist. GPU-friendly
subgraph isomorphism solution (GSI) targets in-core processing
of graphs that can fit GPU memory, and Scalable GPU-friendly
subgraph isomorphism solution (SGSI) targets larger graphs for
out-of-core processing.

There are two state-of-the-art GPU-based subgraph iso-
morphism algorithms in the literature: GpSM [9] and Gun-

1. Note that the multiway self-join approaches by default find subgraph
homomorphisms, which allow one matched subgraph in the data graph to
contain a vertex that matches multiple query graph vertices. In order to find
subgraph isomorphism, we require that vertices that are later added through
extension cannot repeat the originally matched data graph vertices (in the
partial matches). It is a trivial issue that can be easily addressed to avoid
duplicate vertices in one match.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3230744

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Peking University. Downloaded on April 19,2023 at 06:15:38 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

0

Count

 

2

1
1

u1 u3

v2 v102

v3 v103

    

v100 v200

v100 v201

v99 v199

T2 aB C
u3u1

T1 a
u0 u1

BA

u0 u1

v0 v1

v0 v2

    

warp 1

warp 0

v0 v100
warp 99

warp 2 v100v0

(a) Step 1: Count Valid Join Results (b) Step 2: Compute Join again

warp 1
u1 u3

v2 v102

v3 v103

v100 v201

    ... 

u0

v0

v0

v0

v200v0 v100

a aT A B C
u0 u3u1

warp 2

warp 99

Exclusive Prefix Sum
(begin address)

 
1

0
0

98

Fig. 1. An example of “two-step output scheme”

A

B C

C

a b

a

a

(a) Query graph  Q

A

B C

C

a b

a

a

B

C

b

B

C

a

a

...

u0
v0

v1 v2 v100

v101 v102

...
v200

v201u1 u2

u3

a

u0 u1 u2 u3

v0 v100 v201 v200

(b) Data graph  G (c) Matching Table

Fig. 2. An example of Query Graph and Data Graph

(u0,v0)

(u1,v1)

(u2,v201)

(u3,v101)

(u1,v3)

(u2,v201)

(u3,v103)

(u1,v2)

(u2,v201)

(u3,v102)

(u1,v100)

(u2,v201)

(u3,v200)

...

...

...

thread 0 thread 1 thread 2 thread 99...

Fig. 3. An example of search tree of Q in G

rockSM [10], both of which are edge-at-a-time-join strategies.
They first collect candidates for each edge of a query graph and
perform a sequence of binary joins over edge tables. The edge-at-
a-time-join strategy suffers from high overhead when implemented
on a GPU. A key issue is how to write join results to GPU memory
in a massively parallel manner. GpSM and GunrockSM employ
the “join-twice output scheme” [14], as illustrated in Example 1.

Example 1 Consider Q and G in Figure 2. Tables T1 and T2 (in
Figure 1) show the edges matching u0u1 and u1u3, respectively.
In order to obtain matches of the subgraph induced by vertices u0,
u1 and u3, GpSM performs the edge join T1 on T2. Assume that
each processor handles one row in T1 for joining. Writing the join
results to memory in parallel may lead to a conflict, since different
processors may write to the same address.

To avoid this, the naive solution is locking, but that reduces
parallelism. GpSM and GunrockSM instead use “join-twice output
scheme”. In the first step, each processor joins one row in T1 with
the entire table T2 and counts valid matches (Figure 1(a)). Then,
based on the prefix-sum, the output addresses for each processor
are calculated. In the second step, each processor performs the
same join again and writes the join results to the calculated
memory address in parallel (Figure 1(b)).

The join-twice output scheme doubles the amount of join work,
thus suffers performance issues when GPU is short of threads on
large graphs. To avoid joining twice, GSI joins, at each iteration,
the intermediate result table M (i.e., the partial matches) with a
candidate vertex set (i.e., the candidates matching the query vertex
to be joined). To write the join results to memory in parallel, it pre-
allocates enough memory space for each row of M and performs
the vertex join only once. GSI uses vertex rather than edge as the

basic join unit, because it is hard to estimate memory space for
edge join results, but it is easy for vertex join. More details are
given in Section 5.

Vertex join has two important primitive operations: accessing
one vertex’s neighbors based on edge labels, and set operations. To
support the two primitives efficiently, we propose an efficient data
structure called PCSR (Section 4), and an efficient GPU algorithm
for set operations (Section 5). Specifically, PCSR accelerates the
retrieval of a vertex’s neighbors with specific edge labels in GPU,
and we propose a multi-granularity GPU-based set intersection.
We also propose a histogram-based strategy to achieve both inter-
block and intra-block load balance.

Many real-world graphs are too large to be resident in
GPU memory, requiring an out-of-core solution. PBE [15] is
the only existing proposal for out-of-core subgraph search over
large graphs. It divides a large graph G into a set of partitions
(subgraphs) using an edge-cut strategy (using METIS partition-
ing algorithm [16]). It then uses different methods to search
intra-partition matches and inter-partition matches. In order to
find inter-partition matches, PBE begins the search process from
each crossing edge between different partitions. To extend inter-
partition partial matches, the required adjacency lists are fetched
from the main memory (host memory) and transferred into GPU
memory. Thus, PBE uses CPU to fetch the required adjacency
lists and organize them into a continuous array so that they can be
transferred to GPU. Obviously, this is an expensive operation on
the CPU side (see more detailed discussion in Section 2.4).

In contrast, SGSI adopts the multi-way WOJ strategy, which
follows a breadth-first-search (BFS) search paradigm. At each join
step, SGSI always extends all current size-k partial matches to
size-k + 1 ones. Different from PBE, SGSI does not distinguish
intra-partition matches and inter-partition matches; all matches
have the same search strategy. To deal with large graphs out of
GPU memory, SGSI needs to move data from main memory to
GPU, for which we propose a series of optimizations as discussed
in 6.

Both of our methods – GSI for in-core and SGSI for out-of
core – have the same search strategy for subgraph search based
on WOJ. The only difference is that SGSI needs to read required
neighbor lists from main memory and partitioning the intermediate
results if they are too large to be resident at GPU memory.

The contributions of this paper are the following:

• We propose an efficient data structure (PCSR) to represent
edge-labeled graphs, which helps reduce memory latency
in GPU-based subgraph isomorphism algorithm.

• Using vertex-oriented join, we propose Prealloc-Combine
instead of two-step output scheme, which is significantly
more efficient. Leveraging GPU features, we discuss ef-

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3230744

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Peking University. Downloaded on April 19,2023 at 06:15:38 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

ficient implementation of set operations, as well as opti-
mizations including load balance and duplicate removal.

• We study several strategies to deal with large graphs that
is beyond of the capacity of GPU memory, including the
partition and the processing framework.

• We conduct experiments on both synthetic and real large
graph datasets that show that GSI outperforms the state-of-
the-art approaches (both CPU-based and GPU-based) by
several orders of magnitude. Also, our method has good
scalability with graph size scaling to billions of edges.

2 PRELIMINARIES & RELATED WORK

We first briefly review the terminology that we use in this paper.
Table 1 lists the symbols that are used.

TABLE 1
Notations

G,Q Data graph and query graph, respectively
v, u Vertex in G and Q, respectively

S(v), S(u) Encoding of vertex v or u
N(v), N(u) All neighbors of vertex v or u
N(v, l) Neighbors of vertex v with edge label l
freq(l) Frequency of label l in G
C(u) The candidate set of query vertex u in G
M ,M ′ The old and new intermediate result table, each

row represents a partial answer, each column
corresponds to a query variable

num(L) The number of currently valid elements in set
L

|A| The size of set A
D = P (G, l) Edge label l-partitioned subgraph of G

2.1 Problem Definition

Definition 1 (Graph) A graph is denoted as G =
{V,E, LV , LE}, where V is a set of vertices; E ⊆ V × V is a
set of undirected edges in G; LV and LE are two functions that
assign labels for each vertex in V (G) and each edge in E(G),
respectively.

Definition 2 (Subgraph) A graph G′ = {V ′, E′, L′V , L′E} is a
subgraph of graph G = {V,E,LV , LE} if and only if V ′ ⊆ V
and E′ ⊆ E. The ⊆ operation checks corresponding labels as
well.

Definition 3 (Graph Isomorphism) Given two graphs H and G,
H is isomorphic to G if and only if there exists a bijective function
f between the vertex sets of G and H (denoted as f : V (H) −→
V (G)), such that

• ∀u ∈ V (H), f(u) ∈ V (G) and LV (u) = LV (f(u)),
where V (H) and V (G) denote all vertices in graphs H
and G, respectively.

• ∀uiuj ∈ E(H), f(ui)f(uj) ∈ E(G) and
LE(f(ui)f(uj)) = LE(uiuj), where E(H) and E(G)
denote all edges in graphs H and G, respectively.

• ∀uiuj ∈ E(G), f−1(ui)f−1(uj) ∈ E(H) and
LE(f−1(ui)f−1(uj)) = LE(uiuj)

Definition 4 (Subgraph Isomorphism Search) Given query
graph Q and data graph G, the subgraph isomorphism search
problem is to find all subgraphsG′ ofG such thatG′ is isomorphic
to Q. G′ is called a match of Q.

This paper proposes an efficient GPU-based solution for sub-
graph isomorphism search. Without loss of generality, we assume
Q is connected and use v, u, N(v), N(v, l), num(L), and |A| to
denote a data vertex, a query vertex, all neighbors of v, all neigh-
bors of v with edge label l, i.e., {v′|vv′ ∈ E(G)∧LE(vv′) = l},
the number of currently valid elements in set L, and the size of
set A, respectively. Note that our method can also support other
graph pattern matching semantics, such as homomorphism and
edge isomorphism; and can process multi-labeled graphs as well.
We give the details in the supplementary material of this paper.

2.2 GPU Architecture
GPU is a discrete device that contains dozens of streaming
multiprocessors (SM) and its own memory hierarchy. Each SM
contains hundreds of cores and CUDA (Compute Unified Device
Architecture) programming model provides several thread map-
ping abstractions, i.e., a thread hierarchy.
Thread Hierarchy. Each core is mapped to a thread and a
warp contains 32 consecutive threads running in Single Instruction
Multiple Data (SIMD) fashion. When a warp executes a branch, it
has to wait though only a portion of the threads take a particular
branch; this is termed as warp divergence. A block consists of
several consecutive warps and each block (having at most 1024
threads) resides in one SM. Each process launched on GPU (called
a kernel function) occupies a unique grid, which includes several
equal-sized blocks.
Memory Hierarchy. In Figure 4, global memory is the slowest
and largest layer. Each SM owns a private programmable high-
speed cache, shared memory, that is accessible by all threads in
one block. Although the size of shared memory is quite limited
(Taking Titan XP as example, only 48KB per SM), accessing
shared memory is nearly as fast as thread-private registers. Access
to global memory is done through 128B-size transactions and
the latency of each transaction is hundreds of times longer than
access to shared memory. If threads in a warp access the global
memory in a consecutive and aligned manner, fewer transactions
are needed. For example, only 1 transaction is used in coalesced
memory access (Figure 5) as opposed to 3 in uncoalesced memory
access (Figure 6).

Global Memory

SM 0 SM 1

   Registers

Cores

Shared Memory

Registers

Cores

Shared Memory

Fig. 4. Memory Hierarchy of GPU
memory 
address

0 31

128 160 192 224 256

thread ID

READ

Fig. 5. An example of coalesced memory access
memory 
address

0 31

128 160 192 224 256

thread ID

READ

Fig. 6. An example of uncoalesced memory access

2.3 Challenges of GPU-based Subgraph Isomorphism
Although GPU is massively parallel, a naive use of GPU may yield
worse performance than highly-tuned CPU algorithms. There
are three challenges in designing GPU algorithms for subgraph
isomorphism that we discuss below.
Amount of Work. Let |V (G)| and |V (Q)| be the number of

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3230744

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Peking University. Downloaded on April 19,2023 at 06:15:38 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

vertices of G and Q, the amount of work is |V (G)||V (Q)| in
Figure 3. If there are sufficient number of threads, all paths can
be fully parallelized. But that is not always possible and too much
redundant work will degrade the performance. GpSM’s strategy
(filtering candidates and joining them) is better as it prunes invalid
matches early. However, Example 1 shows that the join-twice
output scheme used in GpSM doubles the amount of work in join
processing, which is a key issue that must be overcome.
Memory Latency. Large graphs can only be placed in global
memory. In subgraph isomorphism, we need to perform N(v, l)
extractions many times, and they are totally scattered due to
inherent irregularity of graphs [17]. It is hard to coalesce memory
access in this case, which aggravates latency.
Load Imbalance. GPU performs best when each processor is
assigned the same amount of work. However, neighbor lists vary
sharply in size, causing severe imbalance between blocks, warps
and threads. Balanced workload is better, because the overall
performance is limited by the longest workload.

2.4 Related Work

CPU-based subgraph isomorphism. Reference [18] and VF2
[19] are the two early efforts. Reference [18] uses the depth-
first search strategy, while VF2 proposes several graph topology-
oriented pruning rules. Most later methods [20], [21], [22],
[23] pre-compute some structural indices to reduce the search
space and optimize the matching vertex order using various
heuristic methods. They build indices based on vertex labels
and neighborhood structures. One problem in existing methods
is the super-linear space complexity of the index structure. Lee
et al. [24] experimentally compare some of the above methods
and also propose TurboISO [25], which merges similar query
vertices and enumerates all paths to find the best matching order.
TurboHOM++ [7] further extends TurboISO to handle SPARQL
queries over RDF graphs. BoostISO [26] extends the concept
of neighborhood equivalence class to data graphs and defines
four types of vertex relationships to further reduce duplicate
computation. gStore [27] and its enhanced version [4] use the
idea of vertex neighborhood encoding to find candidates, while
Nauty [28] pre-computes all automorphisms within a data graph to
reduce the cost of subgraph isomorphism. CFL-Match [8] defines
a Core-Forest-Leaf decomposition and selects the matching order
based on minimal growth of the intermediate table. VF3 [29]
improves VF2 by using more pruning rules (node classification,
matching order, etc.) and favors dense queries.

The above methods follow depth-first search with backtrack-
ing, but they differentiate in search ordering, pruning techniques
and pre-compute costs. Different from these, EmptyHeaded [12]
and CBWJ [13] aim to solve subgraph isomorphism based on edge
table join, following a breath-first search. They combine worst-
case optimal join [30] and binary join to generate better plans.
CBWJ explores larger plan space and adopts more precise cost
estimator, achieving better performance than EmptyHeaded.

The recent experimental work [31] provides the comprehen-
sive comparison with different subgraph isomorphism algorithms.
However, due to inherent exponential search space, the scalability
and performance are two major concerns when running CPU-
based algorithms on large data graphs.
GPU-based subgraph isomorphism. Computing subgraph iso-
morphism on GPUs allows the exploitation of the massive par-
allelism of these devices. The first work along this line is Sun

and Luo [32], which first finds candidates for STwigs [33] and
then joins these intermediate results. It uses hash method instead
of binary search to join two relation tables of STwigs, indicating
a constant time cost. However, the hash method always brings
the heavy cost of random memory access, which limits its per-
formance. STwig-based framework is not suitable for GPU due to
large intermediate results.

GPUSI [34] adapts TurboISO to GPU by in parallel search
of different candidate regions. Its performance is limited by
depth-first search within each region. Backtracking-based GPU
algorithms always have issues of warp divergence and uncoalesced
memory access [35], leading to bad performance.

GpSM [9] and GunrockSM [10] (based on [36]) outperform
previous works by leveraging breadth-first search that favors
parallelism in GPU. Their main ideas have been introduced in
Section 1. To avoid parallel write conflicts, they both adopt join-
twice output scheme to write join results, doubling the workload.

MAGiQ [37] and Wukong+G [38] are two GPU-based RDF
systems that support SPARQL queries. Wukong+G develops an
efficient swapping mechanism between CPU and GPU, while
MAGiQ utilizes existing CUDA libraries of linear algebra for
filtering. Wukong+G is based on relational table join, processing
one triple at a time, and develop an efficient swapping mechanism
between CPU and GPU. MAGiQ is based on linear algebra and
utilizes existing CUDA libraries to perform matrix operations. It
finds candidates for all query edges and joins these tables one-by-
one, with all non-tree edges being verified at the end. These two
systems are not optimized for table joins, making them inefficient
in some large data graphs.

Recently, Wang and Owens [39] propose a subgraph matching
algorithm based on Gunrock [40], but it mainly targets unlabeled
graphs. This is different from the design goal of our proposed
PCSR data structure (Section 4) that focuses on edge-labelled
graphs. Furthermore, it adopts 2-look-head neighborhood filtering
[29], which only fits for induced subgraph isomorphism rather
than general cases of subgraph isomorphism.

To support a large data graph that is beyond the capability of
GPU memory, the recent work PBE [15] divides the graph into
several paritions each of which can be placed in GPU memory.
It processes one partition at-a-time, searching all matches within
the partition since it is a small graph. To find matches across
several partitions, PBE enumerates each query edge e as the
cross-partition edge, then expands the solution from matches of e.
Furthermore, it proposes a shared execution strategy to eliminate
redundant matches. In this way, PBE can scale to graphs with
billions of edges. However, the search of cross-matches is very
costly. PBE needs to collect all neighbor sets of the intermediate
table and organize them as a big array, which is done by CPU and
is a long and tedious work. PBE assumes that neighbor sets in
this array and intermediate results can be stored on GPU memory,
which limits its scalability over large graphs.
Graph mining. GraphZero [41], Peregrine [42] and Sandslash
[43] are all single-machine graph mining systems, which provide
high-level interface for productivity at the cost of expressiveness
and performance. They are CPU-based, and cannot be easily
ported to GPU; they cannot scale to large graphs either. Pangolin
[44] supports both CPU and GPU processing and is mainly
designed for the graph mining tasks, including frequent subgraph
mining, subgraph matching and clique detection. However, Pan-
golin is designed for unlabelled graphs and focus on small-size
pattern graphs (no more than 4 edges). This is different from

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3230744

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Peking University. Downloaded on April 19,2023 at 06:15:38 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

our problem definition. One of our contributions is to design an
efficient GPU-oriented data structure (i.e.,PCSR in Section 4) for
edge-labelled graphs.

3 SOLUTION OVERVIEW

Our solution consists of two phases: filtering and joining. In the
filtering phase, a set of candidate vertices in data graph G are
collected for each vertex in the query graph Q; in the joining
phase, these candidate sets are joined according to the constraints
of subgraph isomorphism (see Definition 4). We discuss how to
use GPU to accelerate both phases in the following sections.

3.1 Filtering Phase

Generally, a lightweight filtering method with high pruning power
is desirable. Many pruning techniques have been proposed (e.g.,
[4]). The basic pruning strategy, for vertex-oriented approach, is
based on “neighborhood structure-preservation”: if vertex v in
G matches vertex u in Q, the neighborhood structure around u
should be preserved in the neighborhood around v. In this work,
we propose a suitable data structure that fits GPU architecture to
implement pruning.

We encode the neighborhood structure around a vertex v in G
as a length-N bit vector signature S(v) with two parts. The first
part is vertex label encoding that hashes a vertex label into K bits.
The second part encodes the adjacent edge labels together with the
corresponding neighbor vertex. We divide the (N −K) bits into
N−K

2 groups with two bits per group. For each (edge, neighbor)
pair (e, v′) of a vertex v, we combine LE(e) and LV (v′) (i.e.,
the labels of edge e and v′) into a string key and hash it to a
bounded integer (MurmurHash2 is used in our implementation),
which represents the ID of some group. Each group has three
states: “00”– no pair is hashed to this group; “01”–only a single
pair is hashed to this group; and “11”–more than one pair are
hashed to this group. Figure 7(a) illustrates vertex signature S(v0)
of G in Figure 2. We compute offline all vertex signatures in G
and record them in a signature table (see Figure 7(b)). We have the
same encoding strategy for each vertex u in Q. It is easy to prove
that if S(v)&S(u) 6= S(u), v is definitely not a candidate for u
(“&” means “bitwise AND operation”). We discuss the parameter
tuning in Appendix C in the supplementary materials.

Given a query graph Q, we compute online vertex signatures
for Q. For each query vertex u, we check all vertex signatures in
the table (such as Figure 7(b)) to fix candidates. We can perform
filtering in a massively parallel fashion. Furthermore, the natural
load balance of accessing fixed-length signatures is suitable for
GPU. To further improve the performance, we organize the vertex
signature table column-first instead of row-first. Recall that all
threads in a warp read the first element of different signatures
in the table, the row-first layout leads to gaps between memory
accesses (see Figure 7(c)), i.e., these memory accesses cannot be
coalesced. Instead, the column-first layout provides opportunities
to coalesce memory accesses (see Figure 7(d)).

3.2 Joining Phase

The outcome of filtering are candidate sets for all query ver-
tices. For the example in Figure 2, candidate sets are C(u0) =

2. MurmurHash is a non-cryptographic hash function suitable for general
hash-based lookup. More details can be found at https://en.wikipedia.org/wiki/
MurmurHash

{v0}, C(u1) = {v1, v2, ..., v100}, and C(u2) = C(u3) =
{v101, v102, ..., v201}. Figure 8 demonstrates our vertex-oriented
join strategy. Assume that we have matches of edge u0u1 in table
M and candidate vertices C(u2). In Q, u2 is linked to u0 and
u1 according to the edge labels b and a, respectively. Thus, for
each record (vi, vj) in M , we read N(vi, b) and N(vj , a) and do
the set operation N(vi, b) ∩N(vj , a) ∩ C(u2) \ {vi, vj}, where
N(vi, b) and N(vj , a) denote neighbors of vi with edge label b
and vj with edge label a, respectively. If the result is not empty,
new partial answers can be generated, as shown in Figure 8.

Notice that there are two primitive operations: accessing
one vertex’s neighbors based on the edge label (i.e., N(v, l)
extraction) and set operations. We use a novel data structure for
graph storage on GPU (Section 4) that aids this access. We have
efficient implementation of set operations, including a parallel join
algorithm (Section 5).

4 DATA STRUCTURE OF GRAPH: PCSR
Compressed Sparse Row (CSR) [45] is widely used in existing
algorithms (e.g., GunrockSM and GpSM) over sparse matrices
or graphs, and it allows locating one vertex’s neighbors in O(1)
time. Figure 9 shows, as an example, the 3-layer CSR structure of
G in Figure 2. The first layer is “row offset” array, recording
the address of each vertex’s neighbors. The second layer is
“column index” array, which stores all neighbor sets consecutively.
The corresponding weight/label of each edge is stored in “edge
value” array. If no edge weight/label exists, we can remove “edge
value” array and work with the 2-layer CSR structure. To extract
N(v, l) in CSR, all neighbors of v must be accessed and checked
whether or not corresponding edge label is l. Obviously, the
memory access latency is very high and it suffers from severe
thread underutilization because threads extracting wrong labels are
inactive thus wasted. We carefully design a GPU-friendly CSR
variant to support accessing N(v, l) efficiently. The complexity
of N(v, l) extraction consists of locating and enumerating. In our
structures, N(v, l) is stored consecutively, i.e., the complexity of
enumerating is the same: O(|N(v, l)|). Thus, we use the time
complexity of locating N(v, l) as a metric.

To speed up memory access, we divide G into different
edge label-partitioned graphs (for each edge label l, the edge l-
partitioned P (G, l) is the subgraphG′ (ofG) induced by all edges
with label l). These partitioned graphs are stored independently
and edge labels are removed. The straightforward way is to store
each one using traditional CSR. However, this would not work
well, since vertex IDs in a partitioned graph are not consecutive.
For example, the edge partitioned graph P (G, b) has only two
edges and four vertices (v0,v1,v101,v201). The non-consecutive
vertex IDs disable accessing the corresponding vertex in the row
offset inO(1) time (by vertex ID). There are two simple solutions:

(1) Basic Representation. The entire vertex set V (G) is
maintained in the row offset for each edge partitioned graph CSR,
regardless of whether or not a vertex v is in the partitioned graph
(see Figure 10(a)). Clearly, this approach can locate a vertex’s
neighbors in O(1) time using the vertex ID directly, but it has
high space cost: O(|E(G)|+ |LE(G)|× |V (G)|), where |LE(G)|
is the number of distinct edge labels. In complex graphs such as
DBpedia, there are tens of thousands of different edge labels and
this solution is not scalable.

(2) Compressed Representation. A layer called “vertex ID”
is added, and binary search is performed over this layer to find

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3230744

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Peking University. Downloaded on April 19,2023 at 06:15:38 UTC from IEEE Xplore.  Restrictions apply. 

https://en.wikipedia.org/wiki/MurmurHash
https://en.wikipedia.org/wiki/MurmurHash


JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

0001 00 11 00 01 00 S(v0)
...

1010 10 00 01 00 00...

1010 01 00 01 00 10...

0110 10 10 01 00 01...

000100110001      00 101010000100     00

S(v1)

S(v2)

S(v201)

...

t0 t1Row-first

011    0 000    1 ... 001    0 000    1

(d) Column-first Layout

t0 t1t2 t201

Memory Access Gap

Coalesced Access 

Column-first

(c) Row-first Layout

(b) Vertex Signature Table

0001

vertex label

00 11 00 01 00

A

B C

a b

B B

a

...

v0

v2 v100 v201
v1

...

edge-neighbor

a

(a) Encoding Structure of S(v0)

t0

t1

t2

t201

......

...

...

Fig. 7. Encoding table of data vertices

intermediate table M
u0 u1

θ

...

v0 v200 v201

new intermediate
table M'

3

1
2

2

...

L99

a

...

0

197

exclusive
prefix sum

count
of Li

a GBA allocation

...

0

1

2

3

197

198

199

buf0

buf1

buf2

buf99m99

b a

1

3
v0warp 1

v1

v2

v0warp 0

v201

L99

b

v0warp 2 v3

v0warp 99 v100

u0 u1 u2

v0 v100 v201

(a) Prealloc-Combine by label a
b

candidate set C

u2

...
v101

v200

v201

a
(b) set operations of bufi  with mi, C, Li, Li

Fig. 8. Vertex-oriented Join Strategy

row 
offset

edge 
value

0 101 299
v0      

... ... 401 402 404
v1      ... v100    ... v200    v201    

column 
index

... ...v1 v100 v201 v0 v0
... v100 v0v100

a ... a b a ... a ... a a b

Fig. 9. Traditional CSR structure

corresponding offset (see Figure 10(b)). Obviously, the overall
space cost is lowered, which can be formulated as O(|E(G)|).
However, this leads to more memory latency. Theoretically, we
require dlog (|V (G, l)|+ 1)e + 2 memory accesses to locate
N(v, l), where |V (G, l)| denotes the number of vertices in the
edge l-partitioned graph P (G, l).

Therefore, neither of the above methods work for a large data
graph G. In the following we propose a new GPU-friendly data
structure to access N(v, l) efficiently, called PCSR (Definition
5). We reorganize the row offset layer using hashing. The row
offset layer is an array of hash buckets, called group. Each item
hashed to the group is a pair (v, ov), where v is a vertex ID and
ov is the offset of v’s neighbors in column index ci. Let Θ be a
constant to denote the maximum number of pairs in each group.
The last pair is an end flag to deal with the overflow. We require
that 2 ≤ Θ ≤ 16, then one group can be read concurrently by a
single memory transaction using one warp.

Definition 5 PCSR structure. The Partitioned Compressed
Sparse Row of an edge l-partitioned graph P (G, l) is defined
as follows:

• ci is the column index layer that holds the neighbors.
• gl = {gi} is an array of groups and each group is a

collection of pairs. Each group has no more than Θ pairs.
• Each pair in gi is denoted as (v, ov) except for the last

pair, where v is a vertex ID and ov is the offset of v’s
neighbors in the column index ci, i.e., a prefix sum of
the number of neighbors for vertices. Let nv be the offset
of next pair. v’s neighbors start at ci[ov] and end before
ci[nv]. All vertices in one group have the same hash value.

• The last pair (GID,END) is the overflow flag. GID =
−1 means no overflow; otherwise, overflowed vertices are
stored in the GID-th group. Note that gi.END is the end
position of previous vertex’s neighbors in ci, i.e., the first
ov in group gi+1.

Figure 10(c) is an example of PCSR corresponding to edge
a-partitioned graph. Let D denote P (G, l), the edge label l-
partitioned graph. Algorithm 7 in Appendix A builds PCSR for
D. We hash |V (D)| vertices into ∆ groups. For each node v, we
hash v to one group using a hash function f (Lines 3-4). If some
group gi overflows (i.e., more than Θ−1 vertices are hashed to this
group), we find another empty group gj (we can tune parameter ∆
to guarantee that we can always find empty groups to store these
overflowed vertices and more details are given later) and record
group ID of gj in the last pair in gi to form a linked list (Lines
5-8).

Based on PCSR, we compute one vertex’s neighbors according
to edge label. An example of computing N(v0, a) in Figure 10(c)
is given as follows.

1) use the same hash function f to compute the group ID
idx that v0 maps to, here idx = 0;

2) read the entire 0-th group (i.e., g0) to shared memory
concurrently using one warp in one memory transaction;

3) probe all pairs (v′, ov′) in this group (g0) concurrently
using one warp;

4) we find the first pair (in group g0) that contains v0.
The corresponding offset is 0 and the next offset 100.
It means that ci[0, ..., 99] in the column index layer are
v0’s neighbors based on edge label a.

Assume that vertex v is hashed to the i-th group gi. Due to the
hash conflict, v may not be in group gi. In this case, according to
the last pair, we can read another group whose ID is gi.GID and
then try to find v in that group. We iterate the above steps until v
is found in some group or a group is found whose gi.GID is “-1”
(i.e., v does not exist in the edge labelled partitioned graph D).
The time and space cost of PCSR are analyzed in Appendix A.
Parameter Setting ∆: In our implementation, ∆ = |V (D)|,

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3230744

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Peking University. Downloaded on April 19,2023 at 06:15:38 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

row
offset

column
index

0 100 300

v1
... v100 v0

297...

v0
...

v0 v100v1
vertex

ID
... v102

v2
...

... v200 v201

398 399...

...

400

(b) Compressed Representation

v100 v100

row
offset 0 100

v0 v100  
297

...
v1 v201

399

v200

398 400300
...

v101  

(a) Basic Representation

v0
column
index v1

... v100
... v0

... v100 v100 ... ...v1 v100 v0 v0 v114

15 pairs as a group,128B in total

column 
index

next group ID

next offset

...

row 
offset

...v0    
0

v1 

100

... v14 

125

-1

127

(c) PCSR structure

Fig. 10. Three Representations of edge a-partitioned graph

namely, we always hash |V (D)| vertices into |V (D)| groups.
This is done for two reasons. First, when ∆ = |V (D)|, once
some group gi overflows, we can always find empty groups to
store the overflow vertices (Claim 1 of Appendix A proves this).
Second, under ∆ = |V (D)|, the expected number of memory
transactions for reading N(v, l), neighbors of v with edge label l
is amortized O(1) (see Time/Space Complexity of Appendix A).
Obviously, ∆ > |V (D)| leads to less hash conflict, but sacrifices
more GPU memory. Therefore, we set ∆ = |V (D)|.

5 PARALLEL JOIN ALGORITHM

In the following discussion, we assume that the data graph G can
be resident in GPU’s global memory. In Section 6, we extend our
approach to deal with large graphs that are beyond of capacity of
GPU’s global memory.

Algorithm 1 outlines the join algorithm, where the interme-
diate table M stores all matches of partial query Q′. In each
iteration, we consider one query vertex u and join M with
candidate set C(u) (Lines 9-11). Heuristically, the first selected
vertex u′ has the minimum score(u′) = C(u′)

deg(u′) (Lines 5-7).
In later iterations, we consider the adjacent edge label frequency
(freq(l)) when selecting the next query vertex to be joined.

Algorithm 1: The whole join process
Input: query graph Q, data graph G
Output: the final matches of Q in G

1 Let Q′ be the partial query graph, set Q′ = φ;
2 foreach node u′ in Q do
3 score(u′) = C(u′)

deg(u′) ;
4 for i = 1 to |V (Q)| do
5 if i == 1 then
6 uc = argminu′score(u′);
7 set intermediate table M = C(uc) and add uc to Q′;
8 else
9 u = argminu′ /∈Q′{score(u′)|u′ is connected to Q′};

10 Call Algorithm 2 to join M with C(u) (generating
new intermediate table M ′);

11 set M =M ′, uc = u and add u to Q′;
12 foreach edge ucu′ in Q do
13 score(u′) = score(u′)× freq(LE(ucu′));
14 return M as final result;

Algorithm 2 lists how to process each join iteration (i.e., Line
10 in Algorithm 1). We first study some of its key components.
Each warp in GPU joins one row of M with candidate set C(u):
acquires neighbors of vertices in this row leveraging restrictions
on edge labels, and intersects them with C(u) (set intersection).
The result of the intersection should remove the vertices in this
row (set subtraction), to satisfy the definition of isomorphism.

Let Q′ be the partial query graph induced by query vertices u0
and u1. Figure 8 shows the intermediate table M , in which each
row mi represents a partial match of Q′. For each row mi, we

assign a buffer (bufi) to store temporary results. Assuming that
the next query vertex to be joined is u2, let us consider the last
warp w99 that deals with the last row m99 = {v0, v100}. There
are two linking edges u0u2 and u1u2 with edge labels a and b,
respectively. Warp w99 works as follows:

1) Read v0’s neighbors with edge label a, i.e., N(v0, a);
2) Write buf99 = (N(v0, a) \ {v0, v100}) ∧ C(u2);
3) Read v100’s neighbors with edge label b, i.e., N(v100, b);
4) Update buf99 = buf99 ∧N(v100, b).
5) If buf99 6= φ, each item in buf99 can be concatenated to

the partial match m99 to form a new match of Q′ ∪ u2.
We write these matches to a new intermediate table M .

Problem of Parallelism. When all warps write their correspond-
ing results to global memory concurrently, conflicts may occur.
To manage concurrent writing, existing solutions use join-twice
output scheme, which means the join is performed twice. In the
first round, the valid join results for each warp are counted. Based
on prefix-sum of these counts, each warp is assigned an offset.
In the second round, the join process is repeated and join results
are written to the corresponding addresses based on the allocated
offsets. An example has been discussed in Example 1. Obviously,
this approach doubles the amount of work.
Prealloc-Combine. Our method, called “Prealloc-Combine”, per-
forms the join only once (Algorithm 2). Each warp wi joins one
row (mi) in M with candidate set C(u). Before join processing,
for each warp wi, we allocate memory for bufi to store all valid
vertices that can be joined with row mi (Line 1 in Algorithm 2).
A question is how to decide the size of each buffer bufi. Let
Q′ be the partial query graph that has been matched. We select
one linking edge e0 = u′0u in query graph Q (u′0 ∈ V (Q′)),
and u (/∈ V (Q′)) is the query vertex to be joined. Assume that
the edge label is “l0”. As noted above, mi denotes one partial
match of query graph Q′. Assume that vertex v′i matches u′0 in
mi. It is easy to prove that the capacity of bufi is upper bounded
by the size of N(v′i, l0). Based on this observation, we can pre-
allocate memory of size |N(v′i, l0)| for each row. Note that this
pre-allocation strategy can only work for “vertex-oriented” join,
since we cannot estimate the join result size for each row in the
“edge-oriented” strategy. During each iteration, the selected edge
e0 is called the first edge and it should be considered first in Line
2 of Algorithm 2. For example, in Figure 8, u1u2 is selected as
e0, thus the allocated size of buf99 should be |N(v100, a)| = 3.

Though buffers can be pre-allocated separately for each row
(i.e., each row issues a new memory allocation request), it is better
to combine all buffers into a big array and assign consecutive
memory space (denoted as GBA) for them (only one memory
allocation request needed). Each warp only needs to record the
offset within GBA. The benefits are two-fold:

(1) Space Cost. Memory is organized as pages and some pages
may contain a small amount of data. In addition, pointers to bufi

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3230744

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Peking University. Downloaded on April 19,2023 at 06:15:38 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

need an array for storage (each pointer needs 8B). Combining
buffers together helps reduce the space cost because it does not
waste pages and only needs to record one pointer (8B) and an
offset array (each offset only needs 4B).

(2) Time Cost. Combined preallocation has lower time over-
head due to the reduced number of memory allocation requests.
Furthermore, the single pointer of GBA can be well cached and
the number of global memory load transactions decreases thanks
to the reduction in the space cost of pointer array.

Algorithm 2: Join a new candidate set
Input: query graph Q, current intermediate table M ′

corresponding to the partial matched query Q′,
candidate set C(u) (u is the vertex to be joined), and
linking edges ES between Q′ and u.

Output: new intermediate table M
1 Call Algorithm 3 to select the first edge e0, and pre-allocate

memory GBA and offset array F .
2 foreach linking edge e = u′u in ES do
3 let l be the label of edge e in Q;
4 launch a GPU kernel function to join M ′ with C(u) ;
5 forall each row mi (partial match) in M do
6 let bufi be the segment Fi~Fi+1 in GBA;
7 assign a unique warp wi to deal with mi;
8 assume that v′i match u′ in mi;
9 if e is the first edge e0 then

10 do set subtraction bufi = N(v′i, l) \mi ;
11 do set intersection bufi = bufi ∩ C(u) ;
12 else
13 do set intersection bufi = bufi ∩N(v′i, l) ;
14 do prefix-sum scan on {num(bufi)};
15 allocate memory for new intermediate table M ;
16 launch a GPU kernel function to link M and buf0,...|M|−1 to

generate M ;
17 forall partial answer mi in M ′ do
18 /*mi × bufi*/ ;
19 read mi into shared memory;
20 assign a unique warp wi to deal with mi;
21 forall z in bufi do
22 copy mi and z to the corresponding address of M as a

new row;
23 return M as the result;

Algorithm 3 shows how to allocate bufi for each row mi.
Assume that there exist multiple linking edges between Q′ (the
matched partial query graph) and vertex u (to be joined). To reduce
the size of GBA, among all linking edges, we select the linking
edge u′0u whose edge label l0 has the minimum frequency in G
(Line 1). We perform a parallel exclusive prefix-sum scan on each
row’s upper bound |N(v′i, l0)| (Lines 3-5), later the offsets (F [i],
∀0 ≤ i < |M |) and capacity of GBA (F [|M |]) are acquired
immediately. With the computed capacity, we pre-allocate the
GBA and offset array F [0, ..., |M | − 1] (Line 7). Each buffer
bufi begins with the offset F [i].

Figure 8(a) depicts the process of GBA allocation. First, a
parallel exclusive prefix sum is done on num(N(vi, a)) and the
size of GBA is computed (200). Then GBA is allocated in global
memory and the address of bufi is acquired. For example, the final
row m99 has three edges labeled by a, thus num(N(v99, a)) is 3
and the beginning address of buf99 in GBA is 197. However,
if u0u2 is selected as the first edge e0, we can yield smaller
GBA (100). The label b of u0u2 is more infrequent than a, thus
heuristically it is superior, as illustrated in Algorithm 3. For ease
of presentation, we still assume that u1u2 is selected as e0.

In each join iteration, Algorithm 2 handles all linking edges
between Q′ and u. It allocates GBA (Line 1), processes linking
edges one by one (Lines 2-13), and finally generates a new
intermediate table M (Lines 14-22). Obviously, GBA is allocated
only once in Algorithm 2 and no new temporary buffer is needed.
Figure 8(a) performs the GBA allocation by edge u1u2 and
Figure 8(b) finishes set operations. Correspondingly, edge u1u2 is
joined first. For example,N(v99, a) subtractsm99 and the result is
{v200, v201}, which are stored in buf99 (Line 10). Next, for each
valid element x in buf99, we check its existence in candidate set of
u2 (Line 11). The second edge is u0u2 and it is processed by Line
13, where buf99 is further intersected with Lb

99 and the result is
{v201}, i.e., num(buf99) = 1. We acquire the matching vertices
of each row mi in bufi, then a new prefix sum is performed to
obtain size and offsets of M (Line 14). After M is allocated, wi

copies extensions of mi to M (Lines 15-22).

Algorithm 3: Function: Pre-allocate Memory
Input: query graph Q, current intermediate table M

corresponding to the partial matched query Q′,
candidate set C(u) (u is the query vertex to be joined),
and linking edges ES between Q′ and u.

Output: Allocated memory GBA and Offset arrary F .
1 Among all edges in ES, select edge e0 = u′0u, whose edge

label l0 has the minimum frequency in G.
2 Set offset F [0]=0;
3 foreach row mi in M , i = 0, ..., |M | − 1 do
4 Assume vertex v′i matches query vertex u′0 in row mi.
5 F [i+ 1]=F (i)+|N(v′i, l0)|. // Do exclusive prefix-sum

scan.
6 Let |GBA| = F [|M |];
7 Allocate consecutive memory with size |GBA| and let GBA

record the beginning address.
8 Return GBA and offset array F [0, ..., |M | − 1].

GPU-friendly Set Operation. In Algorithm 2, set operations
(Lines 10,11,13) are in the innermost loop, thus frequently per-
formed. Traditional methods (e.g., [46]) target the intersection of
two lists. However, in our case there are many lists of different
granularity for set operations. A naive implementation launches
a new kernel function for each set operation and uses traditional
methods to solve it. This method performs inefficiently due to load
imbalance, so we propose a new GPU-friendly solution to fit set
interesection with different granularities.

We use one warp for each row and design different strategies
for different granularities: small (partial match Mi), medium
(neighbor list N(v, l)) and large (candidate set C(u)):

• For small list Mi, we cache it on shared memory until the
subtraction finishes.

• For medium list N(v, l), we read it batch-by-batch (each
batch is 128B) and cache it in shared memory, to minimize
memory transactions.

• For large list C(u), we first transform it into a bitset, then
use exactly one memory transaction to check if vertex v
belongs to C(u).

Lines 10 and 11 can be combined together. After subtraction, the
check in Line 11 is performed on the fly.

We also add a write cache to save write transactions, as there
are enormous invalid intermediate results that do not need to
be written back to bufi. It is exactly 128B for each warp and
implemented by shared memory. Valid elements are added to

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3230744

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Peking University. Downloaded on April 19,2023 at 06:15:38 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

cache first instead of written to global memory directly. Only when
it is full, the warp flushes its cached content to global memory
using exactly one memory transaction.

6 SCALING TO LARGE GRAPHS

In real-world applications, graphs may be too large (e.g., several
billions) to be resident in GPU’s global memory. In this case,
CPU-GPU hybrid computing provides a more scalable solution.
In these environments, it is necessary to partition both the graph
and intermediate tables as well as the auxiliary data structures
we have proposed in previous sections. We first discuss how to
partition the signature table as well as PCSR (representing data
graphs) in Section 6.1. The join processing over the partition of
intermediate result tables is discussed in Section 6.2.

Algorithm 4: Partitioned join of the first edge
Input: intermediate table M ′, candidate set C(u), linking edge

e = u′u with edge label l and partitioned PCSRs for all
segments of l-partitioned graphs.

Output: matches of u for each row of M ′

1 Initialize flagi := 0 for each row mi

2 forall segment x do
3 transfer x to GPU memory ;
4 forall each row mi (partial match) in M ′ do
5 /*Each warp handles each row mi in parallel*/
6 assume that v′i match u′ in mi;
7 if flagi < 0 then
8 continue ;
9 if v′i exists in x then

10 read v′i’s neighbors Nx(v
′, l) in x;

11 append Nx(v
′, l) \mi ∩ C(u) to bufi ;

12 set flagi := 1 if flagi = 0 ;
13 else
14 set flagi := −1 if flagi > 0 ;
15 return bufi for each row mi of M ′;

6.1 Partition of graph structures

Signature Table Partition. As discussed in Section 3.1, we use
the vertex signature table to filter out unpromising vertices. In
large data graphs, the signature table may itself be beyond the
capacity of GPU memory. Furthermore, a longer signature is
needed to improve the pruning power over large graphs, which
further aggravates the space overhead. We vertically divide a large
signature table that cannot be resident in GPU memory into several
buckets, as shown in Figure 11(b). Each bucket contains the same
number of columns, as the signature table is stored in column-
first layout. If a bucket is still too large (even if there is only
one column in a given bucket), we further divide each bucket
horizontally into different segments such that (1) each segment
contains the same number of vertices (called vertex subset)(Figure
11(c)), and (2) the size of each segment fits GPU memory.
For each vertex subset vs, all of its corresponding buckets are
processed iteratively, after which the valid results from all vertex
subsets are unioned. Note that the number of vertices in each
segment should be multiples of 32, which favors the coalesce
memory accesses in a warp (a warp has 32 threads).
PCSR Partition. For large data graphs, PCSR structures become
too large to be placed in GPU memory, requiring their partitioning.
Recall that, in building the PCSR, the original data graph has
been divided into different edge label-partitioned graphs. Note
that each PCSR corresponds to a label-partitioned graph. Each

0001 S(v0)...

1010 ...

1100

...

0110 ...

S(v1)

S(v200)

S(v201)

Column-first
(a) Vertex Signature Table

t0

t1

t200

t201

... ...

...

(b) Partition into buckets (c) Partition into segments

0 0 ...

1 0 ...

0 1 ...

t0

t1

t200

t201

... ...

0 1

1 0

1 1
...

...0 0

1 0

...

bucket 0 bucket 1

0 0 ...

1 0 ...

0 1 ...

t0

t1

t200

t201

... ...

0 1

1 0

1 1 ...0 0

1 0

....... ... ...

..

segment 0 segment 1

Fig. 11. Partition of the signature table

time we consider a linking edge (Lines 2-13 in Algorithm 2), only
the corresponding PCSR needs to be placed in GPU. However,
for some frequent edge labels, such as rdf:type in RDF graphs,
the corresponding PCSR may not fit into GPU memory. The
solution is to further divide a large edge label-partitioned graph
into segments and to build a small-size PCSR for each segment.
A straightforward strategy is to divide vertices into multiple
segments, and all edges incident to vertex v are placed in v’s
segment. However, the vertex-oriented segmentation may lead to
workload imbalance, since the vertex degree distribution is often
skewed (e.g., N(v0, l) has only one neighbor, but N(v′i, l) has
eight neighbors in Figure 12(a)). Thus, to achieve better balance,
edge-oriented partitioning is more desirable. Specifically, we sort
all edges (in a label-partitioned graph) by source and destination
nodes. Then, we evenly divide these edges into different segments
(e.g., Figure 12(a)). These segments are also ranked by segment
IDs. Obviously, the incident edges of a vertex (i.e., N(v, l)) may
be assigned to several continuous segments. Thus, extracting one
vertex v’s neighbors based on edge label l (i.e.N(v, l)) may need
to be performed over several consecutive segments if N(v, l) is
large (e.g., N(v′i, l) spans three segments in Figure 12(a)). All
segments share the same number of edges and the space cost of
each segment is within the capacity of GPU memory. This edge-
oriented partitioning is much better if the data graph has highly
skewed degree distribution.

Algorithm 5: Partitioned join of non-first edge

Input: intermediate table M ′, linking edge e = u′u and all
graph structure segments corresponding to the label l of
e.

Output: matches of u for each row of M ′

1 Initialize flagi := 0 for each row mi

2 forall segment x do
3 transfer x to GPU memory ;
4 forall each row mi (partial match) in M do
5 /*Each warp handles each row mi in parallel*/
6 assume that v′i match u′ in mi;
7 if flagi < 0 then
8 continue ;
9 if v′i exists in x then

10 read v′i’s neighbors Nx(v
′
i, l)in x;

11 let bufi[z + 1] be the first element (in
bufi[flagi :]) exceeding the last element of vns ;

12 merge intersection of bufi[flagi : z] with
Nx(v

′
i, l);

13 set flagi := z + 1 ;
14 set flagi := −1 if flagi ≥ |bufi| ;
15 else
16 set flagi := −1 if flagi > 0 ;
17 return bufi for each row mi of M ;

Set Operations in Join. In Algorithm 2, Lines 10-11 and 13

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3230744

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Peking University. Downloaded on April 19,2023 at 06:15:38 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 1 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 2 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 3

𝑵(𝒗𝒊/, 𝒍)

𝑓𝑙𝑎𝑔6=0

……column
offset

>

𝑏𝑢𝑓6[0: 𝑧] 𝑧+1𝑧

>

𝑏𝑢𝑓6[𝑧 + 1: 𝑧/]

𝑧/+1𝑧/

𝑓𝑙𝑎𝑔6 = 𝑧 + 1
……

buffer
𝑏𝑢𝑓6

𝑓𝑙𝑎𝑔6 = 𝑧/ + 1

𝑣B 𝑣6/𝑣C 𝑣6DC/

𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 1 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 2 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 3

𝑁(𝑣B, 𝑙) 𝑵(𝒗𝒊/, 𝒍)

𝑙 − partitioned graph

𝑓𝑙𝑎𝑔6=0

……

𝑓𝑙𝑎𝑔6=+1 𝑓𝑙𝑎𝑔6=-1

has not stared
reading
𝑁(𝑣6/, 𝑙)

reading
𝑁(𝑣6/, 𝑙)

finished
reading
𝑁(𝑣6/, 𝑙)

row
offset

column
offset

(a) Partitioned PCSR and Case 1
(b) An Example of Case 2

Fig. 12. Partition of the graph structure

✭
▲
◆

i-th row ✭
▲
◆

𝑀" 𝑢" 𝑢

𝑏𝑢𝑓&

𝑀 𝑢" 𝑢

Extended Query
Vertex

(a) Intermediate Result Table 𝑀" (b) Extended Intermediate Result Table 𝑀

𝑀" 𝑢" &

maintained in
GPU memory

Fig. 13. Extending Partitioned Intermediate results

Algorithm 6: Generating New Intermediate Table
Input: subquery Q′ and extended subquery Q = Q′ ∪ u,

intermediate table M ′ and buffer bufi
Output: new intermediate table M

1 forall each column M ′[u′] in the intermediate table M ′ do
2 Load M ′[u′] into GPU memory
3 forall each i-th row M ′[u′]i in M ′[u′] do
4 if buffer bufi = φ then
5 continue ;
6 duplicate M ′[u′]i by num(bufi) times into M [u′]
7 flush M [u′] to host memory and empty the whole GPU

memory
8 forall each buffer bufi do
9 forall each valid item z in bufi do

10 copy z into M [u]
11 flush M [u] to host memory
12 return the new intermediate table M

(set operations) need to be changed to adapt to the partitioned
PCSR, since one vertex’s neighbors may be located at multiple
consecutive segments (i.e., Algorithms 4 and 5 in Appendix B
of the supplementary). For each linking edge e with label l, all
segments of the l-partitioned subgraph need to be considered (Line
2 in Algorithms 4 and 5). We sequentially scan these segments. For
each row mi (partial match) in the intermediate result table M ′,
we need to check if it can be extended to a larger match by probing
mi’s neighbors. Each warp handles each row mi independently
and is assigned a buffer bufi to store extended vertices. Due to the
partitioned PCSR, we introduce a flag variable flagi for each row
mi. Initially, flagi = 0. We consider two cases for the linking
edge e. In Algorithms 4 and 5, we consider the linking edge e =
u′u, v′i matches u′ in each row mi, and u is the vertex to be
joined. Figure 12 illustrates the two cases.
Case 1: e = u′u is the first edge (Algorithm 4)

The variable flagi has three states:

1) flagi = 0: Reading of vi’s neighbors N(v′i, l) has not
yet started (Lines 7-8 in Algorithm 4);

2) flagi = +1:Reading of neighbors N(v′i, l) has started,
but has not yet finished (Lines 9-12);

3) flagi = −1: Reading of N(v′i, l) is complete (Lines
13-14).

Initially, bufi = φ. We need to compute bufi = (N(v′i, l) \
mi) ∩ C(u) by Algorithm 4. Since PCSR is partitioned,
N(v′i, l) =

⋃n
x=1Nx(v′i, l), where Nx(v′i, l) is vi’s neighbors

in segment x. Thus, bufi =
⋃n

x=1(Nx(v′i, l) \ mi ∩ C(u)).
We sequentially scan these segments according to l-partitioned
graphs and process each one. For a segment x, if flagi ≥ 0,
we need to check if v′i exists in x. If it does, we compute
(Nx(v′i, l) \ mi) ∩ C(u) and update the flag flagi = +1 if
it is 0. If v′i is not in x and flagi = +1, wet set the flag to
−1, and the corresponding warp of mi will ignore the rest of the
segments.
Case 2: e = u′u is not the first edge (Algorithm 5)

Variable flagi has the same first and last states as in Case 1,
but the second state is different:

2) flagi > 0: Reading of neighbors N(v, l) has started,
and flagi denotes the start position (index) of the next
merge intersection (Lines 9-14 in Algorithm 5);

As in Case 2, N(v′i, l) =
⋃n

x=1Nx(v′i, l) and bufi ∩
N(v′i, l) =

⋃n
x=1(bufi ∩Nx(v′i, l)) (Line 12 in Algorithm 5).

Since all vertex IDs in each Nx(v′i, l) and in bufi are sorted
and we process each Nx(v′i, l) sequentially, we can reduce the
search space for each bufi ∩ Nx(v′i, l) computation as follows.
If v′i exists in current segment x (Line 9 in Algorithm 5), we
read the neighbors Nx(v′i, l) (Line 10). Let bufi[z + 1] (z +
1 ≥ flagi)3 be the first element larger than the last element in
Nx(v′i, l). Obviously, we only need to merge bufi[flagi : z] (the
elements from position flagi to z in bufi) with Nx(v′i, l) (Line
10). Note that flagi is initialized as 0. We update flagi = z + 1
to process the next segment (Line 13). If v′i does not exist in
segment x and flagi > 0, we set flagi = −1 and ignore the rest
segments for mi (Line 7).

In both cases, if flagi = −1, the corresponding warp of
mi will ignore the rest of the segments. Furthermore, if for all
matches mi in the intermediate result table M , the corresponding
flagi = −1, it means that we can early terminate scanning the
rest of the segments.

6.2 Intermediate results and join processing
The challenge of dealing with large graphs is not only the
size of data graph but also the unbounded intermediate re-

3. z can be found by binary search; it can also be implicitly acquired in the
end of merge intersection.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3230744

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Peking University. Downloaded on April 19,2023 at 06:15:38 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

sult sizes. It is known that, in the worst case, there may be
|V (G)||V (Q)| matches with a maximum space requirement of
O(|V (G)||V (Q)|×|V (Q)|). Obviously, this is not feasible for the
GPU memory when the data graph is large. We propose several
ways to partition the intermediate tables to fit GPU global memory.
Figure 13 illustrates a running example. Note that, for notational
consistency, we use M ′ to denote the intermediate table and M to
denote the new extended table (same as Algorithm 2).

Recall that for each row mi in M ′, if buffer bufi is not empty,
{mi}×bufi produces new matches (in the new extended tableM )
of the extended subquery (Lines 18 to 22 in Algorithm 2). Each
row mi is processed in parallel. However, Algorithm 2 requires
that both the intermediate table M ′ and the new extended table
M should be cached in GPU memory. When they are too large
to be resident in GPU memory, we store all intermediate tables
(including final result table) in the columnar fashion.

In each join iteration, we only process one linking edge u′u
(Lines 2-13 in Algorithm 2), i.e., only column M [u′] is needed
when processing linking edge u′u (as in Figure 13). Thus, we
keep only the needed column of M ′[u′] in GPU memory in each
iteration (Lines 2-13). This saves memory and memory accesses
are well coalesced with the column-oriented storage of M ′.

After processing all linking edges in ES (after Lines 13 in
Algorithm 2), according to valid items in buffer bufi, we build
the new extended table M in Algorithm 6 (see Appendix B of the
supplementary material). Figure 13 illustrates how to extend the
intermediate results in a columnar fashion. Computation iterates
over columns in the original intermediate table M ′ (Lines 1-7
in Algorithm 6). When processing column M ′[u′], we consider
each of its rows indexed by i. If bufi = φ, it means that the
current match of Q′ cannot be extended to match extended query
Q = Q′ ∪ u, and we ignore this row (Lines 4-5). Otherwise,
we duplicate M ′[u′]i by num(bufi) times into M [u′] (Line 6),
where num(bufi) denotes the number of valid items in buffer
bufi, and M [u′] denotes the corresponding column in the new
extended table M . Finally, we copy valid items in buffer bufi into
the new added column M [u] (Lines 8-11).

Algorithm 6 maintains at most two columnsM ′[u′] andM [u′]
in GPU memory (demonstrated in shaded areas of Figure 13),
which is a significant improvement over Algorithm 2. If the two
columns are still too large to be resident in GPU memory, we can
further partition each column into several subtables horizontally
and employ a pipeline strategy to process subtables.

7 LOAD BALANCING

Algorithm 2 processes rows in the intermediate table in parallel.
However, since the vertex degree of many real graphs follows
power-law distribution, it will lead to serious workload imbalance
when each warp deals with each row (Line 7). As mentioned in
Section 2.2, GPU employs the 4-layer thread hierarchy (kernels,
blocks, warps, and threads) that can be utilized to develop a 4-
layer balance scheme to address workload imbalance.

In this section, we study how to set up a 4-layer balance
scheme by a quantitative cost model. For convenience, we measure
the workload size by neighborhood set size, i.e., N(vi′ , l) in Line
10. According to neighborhood set size, we utilize different thread
hierarchy to process each row in parallel. Let us see Figure 18(a).
We introduce three parameters (W3 < W2 < W1) to select
different thread hierarchy for different workloads.

1) Extract rows whose workload sizes (N(vi′ , l)) exceed
W1, and dynamically launch a new kernel function to
handle each one;

2) Each row whose workload size is within (W2,W1] is
processed by one whole block.

3) Load rows whose workload size are within (W3,W2] to
shared memory and divide them evenly by all warps in a
block. We use multiple warps (in a block) to handle one
row when its workload size is within (W3,W2].

4) Each remaining task of the corresponding row (workload
size is below W3) is processed by one warp.

We set W2 = 1024, the maximum number of threads in a
block, to gain more opportunities of scheduling within a block.
The 4-layer balance scheme is superior to merging all tasks and
dividing them equally [47], because it reduces the overhead of
merging tasks into the work pool. Our experiments (see Table 12
of Appendix D) also confirm that.

The key issue in the 4-layer balance scheme is how to set
parameter values for Wi. An empirical method tunes these param-
eters according to real performance comparison [48]. Obviously,
the parameter tuning is a long and tedious process. Thus, we pro-
pose a histogram-based quantitative method to solve this problem.

Let one task process each row in Algorithm 2. Assume that we
have n tasks T1, T2, . . . , Tn. A histogram is built to collect task
statistics, where each interval is Ik = [32×k, 32× (k+ 1)). The
first interval of this histogram is [0, 32), while the last interval is
Ib = [32 × b, 32 × (b + 1)) (here b = bmax{|Ti|}

32 c). Each task
Ti falls into some interval Ik if 32 × k ≤ Ai < 32 × (k + 1).
To generate a histogram, for each interval Ik, we accumulate the
number of tasks that fall into Ik denoted as |Ik|. The histogram
generation can be implemented quickly on GPU, exploiting paral-
lellism [49]. We also adopt the 4-layer balance scheme by dividing
the histograms into four partitions. An example of histogram-
based balance scheme is given in Figure 18(b) of Appendix B.

We design a quantitative cost model based on GPU archi-
tecture to set up parameters. Let |SMs| be the number of SMs
available on the GPU. Each SM can run a block (1024 threads)
and each block consists of 32 warps.

First, consider the cost of the leftmost intervals, i.e., the
neighborhood size is less than W3. If an interval Ii is smaller
than W3 (see Figure 18(b) of Appendix B), each task is processed
by a warp. The workload size of one task in interval Ii is estimated
as 32× i. Since one warp has 32 parallel threads, thus, we define
the cost of each task (in interval Ii on the left of W3) is 32×i

32 = i.
Note that Ii contains |Ii| tasks and a GPU has 32 × |SMs|
warps in total. Therefore, the total computation cost of Ii can
be estimated by

fa−warp(i) = i× d |Ii|
32|SMs|

e

Second, consider the intervals (Ii) between W3 and W2. Tasks
belonging to Ii are processed by multiple warps that divide these
tasks evenly. Tasks are added to a task pool (size 1024) in shared
memory, then all threads of a block process them iteratively. For
example, assuming three tasks (R1, R2 and R3) have 300, 400
and 500 elements respectively, they will be added to the task
pool and divided evenly over 1024 threads, each thread processing
one element. In the first iteration, the task pool consists of 300
elements of R1, 400 elements of R2 and 324 elements of R3.
After these 1024 elements are processed, in the second iteration,

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3230744

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Peking University. Downloaded on April 19,2023 at 06:15:38 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

the remaining 176 elements of R3 will be added into the task
pool and processed. In each iteration, two synchronization calls
are needed within the block: one for merging tasks, the other for
processing elements. The cost of a synchronization call can be
estimated by experiments, and we denote it as tsn. Each SM is
assigned d |Ii||SMs|e tasks. According to histogram estimation, if a
task is in Ii, the workload size is estimated as 32 × i. Therefore,
the total work amount of each SM is 32i×d |Ii||SMs|e. Furthermore,
a SM has 1024 threads, thus, the cost of processing all tasks in Ii
is

fm−warp(i) = (1 + 2tsn)× d
32i× d |Ii||SMs|e

1024
e

Third, consider the intervals (Ii) between W2 and W1. Each
task of Ii is processed by a block. Each iteration also needs a syn-
chronization call within the block. Each SM processes d |Ii||SMs|e
tasks, and each task is processed by a block independently. Thus
the cost is

fa−block(i) = (1 + tsn)× d |Ii|
|SMs|

e × d 32i

1024
e

Finally, consider the rightmost intervals (i.e., larger than W1).
Let tkl be the cost of launching a kernel function. The real value of
tkl can be estimated offline by launching many lightweight kernel
functions on GPU and recording the average. If Ii is on the right
of W1, the cost will be

fkernel(i) = |Ii| × (tkl + d 32i

1024× |SMs|
e)

In the histogram, we set the interval width be 32. For con-
venience, we set W1 = 32x1, W2 = 32 × 32 = 1024 and
W3 = 32x3, where 0 ≤ x3 ≤ x1 ≤ b, x1 ≥ 32 and
b = bmax{|Ti|}

32 c. The entire histogram can be divided into four
parts. The whole computing cost is modeled in Equation 1.

C =
∑i=x3

i=0 fa−warp(i)+
∑i=31

i=x3+1 fm−warp(i)

+
∑i=x1

i=32 fa−block(i)+
∑i=b

i=x1+1 fkernel(i)
(1)

Our goal is to minimize the above equation by tuning pa-
rameters x1 and x3. This optimization problem can be solved
quickly on a GPU even using brute-force enumeration. Since
0 ≤ x3 ≤ x1 ≤ b, the number of enumerations is upper bounded
by (b + 1)2. In our experiments, the parameter setting takes less
than one second, which is only 1

45 of our SGSI algorithm (see
Section 8.4). This parameter setting strategy leads to more than
1.6× speedup (see Table 5).

8 EXPERIMENTS

We evaluate our method (called GSI) against state-of-the-art sub-
graph matching algorithmss: CPU-based VF3 [29], CFL-Match
[8], CBWJ [13], and GPU-based GpSM [9] and GunrockSM [10].
We also include the two state-of-the-art GPU-based RDF systems
MAGiQ [37] and Wukong+G [38]. Note that RDF systems are
originally designed for SPARQL queries whose semantics is
subgraph homomorphism; we extend them to support subgraph
isomorphism. To verify the efficiency of our method in dealing
with large graphs (called SGSI) that cannot be resident in GPU
memory, we also compare with PBE [15] that has recently been
proposed for this case. Although PBE targets unlabeled graphs, it
is the only work that considers the out-of-core GPU-based solution
for subgraph query in the literature. To enable fair comparison,
we revise of PBE code to handle labelled graphs, for example

TABLE 2
Statistics of Datasets

Name |V | |E| |LV | |LE | MD1 Type2

enron 69K 274K 10 100 1.7K rs
gowalla 196K 1.9M 100 100 29K rs
patent 6M 16M 453 1K 793 rs
road 14M 16M 1K 1K 8 rm

DBpedia 22M 170M 1K 57K 2.2M rs
WatDiv 10M 109M 1K 86 671K s

DB 233M 1.1B 1K 124K 17M rs
FR 65M 1.8B 1K 1K 5.2K rs
YH 417M 2.8B 1K 1K 2.5K rs
WD 97M 1B 1K 86 6.7M s

* |LV | and |LE | denote the number of vertex label and edge
label, respectively.

1 Maximum degree of the graph.
2 Graph type: r:real-world, s:scale-free, and m:mesh-like.

by introducing the label constraints when considering subgraph
match. We have ensured that both SGSI and PBE produce the same
results. All experiments are performed on a workstation running
CentOS 7 and equipped with Intel Xeon E5-2697 2.30GHz CPU
and 256G main memory, NVIDIA Titan XP with 30 SMs (each
SM has 128 cores and 48KB shared memory) and 12GB global
memory. Furthermore, to test the scalabitlity of our approach,
we perform all experiments on large graphs in Section 8.4 using
Nvidia DGX A100 workstation with 6912 cuda cores and 80GB
global memory as well as AMD Rome 7742 with 64 cores.

8.1 Datasets and Queries

The experiments are conducted on both real and synthetic datasets
listed in Table 2. We further use four large graphs that exceed the
capacity of GPU memory to evaluate SGSI: DBpedia1B (DB),
friendster network (FR), Yahoo network (YH) and WatDiv1B
(WD). Since most graphs do not contain vertex/edge labels (except
for edge labels in RDF datasets and vertex labels in patent dataset),
we assign labels following the power-low distribution. The default
numbers of vertex/edge labels are given in Table 2. To gener-
ate a query graph, we follow the same query graph generation
approaches in previous studies [50], [51] where a random walk is
performed over the data graphG starting from a randomly selected
vertex until |V (Q)| vertices are visited. All visited vertices and
edges (including the labels) form a query graph.

For each query size |V (Q)|, we generate 100 query graphs
and report the average query time. The default query size |V (Q)|
is 12 in the following experiments. We also evaluate GSI with
respect to the number of vertex/edge labels and query size.

8.2 Evaluating Join Phase

We evaluate three componenets that contribute to the performance
of GSI’s join phase: PCSR structure, the Prealloc-Combine strat-
egy and GPU-friendly set operation. Table 3 shows the results,
where GSI-b is the basic implementation with traditional CSR
structure, two-step output scheme and naive set operation. Two
metrics are compared: (1) the number of transactions for reading
data from global memory (GLD), and (2) the query response time
of answering subgraph search query. We add these techniques
to GSI-b one-at-a-time, and compare the performance of each
technique with previous implementation. For example, in Table

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3230744

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Peking University. Downloaded on April 19,2023 at 06:15:38 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

TABLE 3
Performance of techniques in join phase

Dataset Global Memory Load Transactions (GLD) Query Response Time (ms)
GSI-b1 +DS2 drop3 +PC4 drop +SO5 drop GSI-b +DS speedup +PC speedup +SO speedup

enron 3M 2.1M 30% 1.6M 25% 656K 59% 573 274 2.1× 176 1.6× 28 6.3×
gowalla 3.2M 2M 38% 1.3M 33% 848K 39% 353 172 2.1× 88 2.0× 69 1.3×
patent 3.5M 2.4M 31% 1.8M 25% 1.6M 11% 3K 1.4K 2.1× 700 2.0× 524 1.3×
road 3.4M 2.2M 35% 1.7M 22% 1.6M 5% 2.4K 675 3.6× 456 1.5× 456 1.0×

WatDiv 40M 30M 25% 21M 28% 13M 39% 43K 31K 1.4× 25K 1.2× 1K 25×
DBpedia 53M 31M 42% 24M 21% 14M 43% 85K 48K 1.8× 36K 1.3× 2K 18×
1 Basic GSI implementation with traditional CSR structure, two-step scheme and naive set operation.
3 drop: the drop of the number of transactions for reading data from global memory (GLD).
2,4,5 Add techniques to GSI- one by one: PCSR structure, Prealloc-Combine strategy and GPU-friendly set operation.

3, the column “+SO” is compared with the column “+PC” to
compute GLD drop and speedup. GSI incorporates all techniques.

TABLE 4
Comparison of CR and PCSR

Dataset GLD Time (ms)
CR PCSR drop CR PCSR speedup

enron 2.4M 2.1M 13% 311 274 1.1×
gowalla 2.5M 2M 20% 212 172 1.2×
patent 3.2M 2.4M 25% 1.8K 1.4K 1.3×
road 3.0M 2.2M 27% 873 675 1.3×

WatDiv 46M 30M 35% 42K 31K 1.4×
DBpedia 37M 31M 16% 56K 48K 1.2×

8.2.1 Performance of PCSR structure
To verify the efficiency of PCSR, we compare it with traditional
CSR structure. We set the bucket size to 128B and find that the
maximum length of conflict list is below 15, even on the largest
dataset. Therefore, with PCSR structure, GSI always finds the
address of N(v, l) within one memory transaction, which is a
big improvement compared to traditional CSR.

Table 3 shows that PCSR brings an observable drop of GLD
(about 30%), and nearly 2.0× speedup. The least improvement is
observed on WatDiv due to small |LE |, while on other datasets the
power of PCSR is tremendous, achieving more than 1.8× speedup.
The superiority of PCSR is mainly due to two factors: (1) fewer
memory transactions are needed, as presented in Table 8, and (2)
threads are fully utilized while traditional CSR suffers heavily
from thread underutilization.

We also compare PCSR with “Compressed Representation”
(CR) in Table 4. On all datasets, at least 13% drop of GLD and
1.1× speedup are achieved. The best performance is observed
over WatDiv, where CR has even higher GLD than traditional
CSR. The reason is that CR is much more complex when locating
the position of N(v, l). WatDiv has the minimum number of edge
labels, thus its edge label-partitioned graphs are very large, leading
to high cost of locating for CR. The “Basic Representation” (BR)
consumes too much memory to run on large graphs with hundreds
of edge labels.

8.2.2 Performance of Parallel Join Algorithm
In our vertex-oriented join strategy, there are two main parts: the
Prealloc-Combine strategy (PC) and GPU-friendly set operation
(SO). To evaluate Prealloc-Combine strategy, we implement the
join-twice output scheme [9] as the baseline. Table 3 shows that
on all datasets, PC obtains more than 21% drop of GLD and 1.2×
speedup. The gain originates from the elimination of double work

during join, which also helps reduce GLD, thus further boosts the
performance. PC can reduce the amount of work by at most half,
thus there is no speedup larger than 2.0×.

To evaluate the proposed GPU-friendly set operation, we
compare with naive solution: finish each set operation with a new
kernel function. Table 3 shows that SO reduces GLD by about
40%; consequently, it leads to more than 1.3× speed up. On patent
and road datasets, the improvement is not apparent because their
neighbor lists are relatively small. SO also eliminates the cost of
launching many kernel functions.

SO performs best on enron, WatDiv and DBpedia, showing
> 18× speedup. The reason is that write cache performs best on
these graphs, thus saving lots of global memory store transactions
(GST). On other graphs, the gain of write cache is small because
they have fewer matches, thus perform fewer write operations.

8.3 Comparison of GSI with counterparts

Overall Performance. The results are given in Figure 14. Note
that there is no bar if the corresponding time exceeds the threshold
of 100 seconds. In all experiments, GPU solutions beat CPU
solutions as expected due to the power of massive parallelism.

There is no clear winner between the four existing GPU
solutions, but none of them are competitive with GSI. GSI answers
queries within one second in the first four datasets. On WatDiv and
DBpedia, GSI achieves more than 4× speedup over counterparts.
Generally, GSI outperforms existing systems on all datasets by
several orders of magnitude.

e n r o n g o w a l l a p a t e n t r o a d W a t D i v D B p e d i a

1 0 0

1 0 0 0

1 0 0 0 0

1 0 0 0 0 0

que
ry 

tim
e(m

s)

 V F 3         C F L - M a t c h    C B W J
 G p S M     G u n r o c k S M   W u k o n g + G
 M A G i Q   G S I

Fig. 14. Performance Comparison on all datasets

Scalability. To evaluate GSI’s scalability, we generate a series of
RDF datasets using the WatDiv benchmark, varying the number
of edges from 10 million to 210 million. CPU solutions fail to run
even on the smallest size graph with 10 million edges; thus, we
only compare GSI with existing GPU solutions in Figure 15(a).
Note that we ignore some algorithm if its running time exceeds

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3230744

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Peking University. Downloaded on April 19,2023 at 06:15:38 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

100s, or it runs out of GPU memory. Figure 15(a) shows that the
running time of existing GPU solutions grows much faster than
GSI, because they have larger candidate tables and intermediate
tables. Due to the efficient filter, GSI occupies less memory, thus
scales to larger graphs as long as they can fit GPU memory.

5 1 0 1 5 2 0
0
1
2
3
4
5
6
7
8
9

1 0

×1 0 M

que
ry 

tim
e(m

s)

 G p S M
 G u n r o c k S M
 W u k o n g + G
 M A G i Q
 G S I

×1 0 0 0 0

(a) Scalability with the data size
5 1 0 1 5 2 0 2 5 3 0

1 . 0

1 . 5

2 . 0

2 . 5

3 . 0

 s p e e d u p
 t i m e

spe
edu

p

1 . 2
1 . 4
1 . 6
1 . 8
2 . 0
2 . 2
2 . 4
2 . 6
2 . 8
3 . 0
3 . 2
3 . 4

 qu
ery

 tim
e(m

s)

×1 0 0 0

(b) Scalability with the number of
SMs

Fig. 15. Scalability Test

We also evaluate the scalability of GSI with the number of SMs
in GPU. In order to control the number of running SMs, we limit
the number of blocks launched and withdraw dynamic parallelism,
which may degrade the performance.We choose WatDiv (see Table
2) and show the result in Figure 15(b). With the number of SMs
increasing from 1 to 30, the response time drops continuously,
though with some tiny fluctuations. The time curve drops fast in
the beginning, but slows down gradually, corresponding to the
sub-linear speedup curve. The maximum speedup is 2.85, and is
limited by the irregularity of graphs and GPU memory bandwidth,
which cause severe load imbalance and high memory latency.

TABLE 5
Elapsed time (s) of new algorithms on large graphs with A100
Dataset PBE SGSI speedup SGSI+ speedup

DB 230 56 4.1× 21 10.9×
FR 390 210 1.8× 148 2.6×
YH 2,123 596 3.5× 403 5.2×
WD 954 282 3.3× 117 8.1×

* All speedups are calculated based on PBE.

Varying the number of labels and query size. We study the
performance with regard to the number of edge/vertex labels and
query size. We use GSI and select gowalla as the benchmark. By
default, the number of vertex and edge labels are both 100, and
all queries have 12 vertices. We vary the number of labels and
show results in Figure 16(a). As the number of labels increases,
run time decreases. The “vertex label num” line shows sharper
drop because larger |LV | directly reduces the sizes of candidate
sets. However, after |LV | > 100, the drop quickly slows down to
zero as candidate sets are small enough to be fully parallelized.
Similarly, larger |LE | also helps reduce |C(u)| due to improved
pruning power of labeled edges. In addition, the size of |N(v, l)|
is also lowered as |LE | grows. This is the reason that run time
keeps dropping, though the speed also changes after |LE | > 100.
Loading Time and memory consumption. We also report the
loading time (from host to GPU) of GSI on all datasets: 1ms,
5ms, 106ms, 120ms, 144ms, 178ms. We also record the maximum
memory consumption of GPU algorithms in Table 6, including
host and GPU memories. Note that “NAN” means an algorithm
cannot end in a reasonable time. Generally, CPU solutions occupy
less memory (see Table 6).

GPU solutions that are based on BFS have larger memory
consumption on both host and GPU. Compared to counterparts,
GSI consumes more host memory due to the maintainance of

20 40 60 80 100 120 140 160
0

50

100

150

200

250

300

350

400

qu
er

y 
tim

e(
m

s)

vertex label num
edge label num

(a) Vary the number of vertex and
edge labels

12(8) 14(9) 16(10) 18(11) 20(12) 22(13) 24(14) 26(15)
45

50

55

60

65

70

75

qu
er

y 
tim

e(
m

s)

edge num
vertex num

(b) Vary the number of edges and
vertices in Q

Fig. 16. Experiments of label number and query size

signature table and PCSR structures. However, GSI consumes less
GPU memory because it has smaller candidate/intermediate tables
and in each iteration only an edge label-partitioned graph is needed
on GPU.

8.4 Evaluating SGSI on large graphs

In this subsection, we compare SGSI with PBE [15] on four very
large graphs that exceed the capacity of GPU memory.
Effects of techniques on large graphs. Table 5 shows that
SGSI achieves a high speedup (>1.9×) when compared to PBE
on all datasets. This owes to the enhanced design of SGSI,
which divides the intermediate table directly rather than search for
matches across different graph partitions. The routine of finding
cross-matches is a heavy burden for PBE, especially on large
queries. It consists of the exploration of all permutations of query
edges, which gives rise to much duplicate work. Besides, PBE
is not optimized for edge-labeled graphs, while SGSI optimizes
the structure and algorithm according to edge labels. Therefore,
SGSI achieves the highest speedup (6×) on DB, which has 124K
different edge labels. On the largest dataset (YH), SGSI also shows
considerable improvement (4× speedup). Generally, queries have
many matches on YH, thus the intermediate table is very large
and join phase dominates the total time cost. For SGSI, only
two columns reside in GPU memory, while PBE has to place the
entire intermediate tables (including old table and new table) in
GPU memory. Therefore, SGSI shows much better performance
on large graphs.

Furthermore, the comparison of the execution time breakdown
of PBE and SGSI is reported in Table 7. Obviously, the ratio of

comm
comp+comm of PBE is much larger than that of SGSI. The reason
is two folds. First, the communication cost of PBE includes two
parts. One is due to the division of a large intermediate table
beyond the GPU memory capability into small pieces that needs to
be accessed. The other one is to search of cross-partition matches.
Furthermore, the size of intermediate table of PBE is much larger
than that of SGSI, which causes high communication cost of PBE.
On the other hand, the memory access is rather distributed for
PBE when fetching adjacency lists from main memory while SGSI
always reads from main memory in fixed-size blocks sequentially.
The distributed memory access scheme brings much more memory
transactions, which marks PBE inefficient.
Effects of histogram-based load balance. To evaluate the per-
formance of histogram-based load balancing strategy (denoted as
SGSI+), we compare it against the original load balance strategy
(denoted as SGSI) based on empirical parameter tuning. Results in
Table 5 confirm that the histogram-based strategy achieves higher
than 1.6× speedup on all datasets. On DB and WD, the graph
data is more skewed, thus the improvement is more apparent. The

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3230744

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Peking University. Downloaded on April 19,2023 at 06:15:38 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 15

TABLE 6
Memory consumption of GPU algorithms

Dataset Host Memory GPU Memory
GpSM GunrockSM Wukong+G MAGiQ GSI GpSM GunrockSM Wukong+G MAGiQ GSI

enron 154M 181M 174M 284M 160M 1.3G 1.4G 667M 721M 661M
gowalla 592M 712M 599M 367M 466M 2.4G 2.8G 1.8G 725M 685M
patent 1.0G 1.3G 1.3G 1.5G 663M 3.5G 3.7G 2.1G 1.1G 915M
road 1.8G 2.0G 2.1G 2.2G 1.1G 3.6G 3.6G 2.3G 1.3G 1.2G

WatDiv 4.4G 5.7G 4.7G 6.9G 8.5G 7.3G 7.7G 7.5G 5.6G 4.9G
DBpedia 6.9G 8.2G 8G NAN 14G 9.0G 9.6G 9.6G NAN 8.1G

1 2 3 4 5 6 7 8 9
0
1
2
3
4
5
6
7
8
9

1 0

×1 B

que
ry 

tim
e(s

)

 P B E
 S G S I
 S G S I +

×1 0 0 0 0

(a) Scalability with the number of edges in
data graph

4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
0
2
4
6
8

1 0
1 2
1 4
1 6
1 8
2 0

que
ry 

tim
e(s

)

 P B E
 S G S I
 S G S I +

×1 0 0 0

(b) Scalability with the number of edges in
query graph

(c) Scalability with the number of vertex la-
bels in query graph

Fig. 17. Scalability on enormous graphs (in WD graphs)

TABLE 7
Elapsed running times (s) of PBE and SGSI on A100 (in ms)

Dataset
Computation Communication
PBE SGSI PBE SGSI

DB 132 12.9 98 8.1
FR 261 111 129 37
YH 1205 323 918 80
WD 489 76.1 465 40.9

speedup is the highest on WD, because it has the minimum number
of edge labels, which produces larger skewed workloads. YH is
the largest dataset, which has larger workloads, thus the speedup
is more obvious on YH than FR. To sum up, histogram-based
load balance strategy works the best when the workloads (during
join) are large and skewed. When equipped with this strategy,
SGSI+ achieves> 3.0× speedup when compared with PBE (15×,
3.0×, 8×, and 11.4× on DB, FR, YH, and WD, respectively).
Furthermore, the total time of histogram-based preprocessing is
very small (<1s on all datasets).
Scalability on large graphs. To evaluate the scalability of PBE
and SGSI, we conduct comparison on WatDiv datsets varying the
number of edges from 1 billion to 9 billion. Figure 17 summarizes
the experiment results. As the data size grows, the elapsed time of
all solutions rise, but SGSI and SGSI+ rise much more slowly than
PBE. On larger datasets, matches tend to cross more partitions,
which negatively impacts the performance of PBE. Furthermore,
the intermediate tables become bigger, thus the time cost of
collecting neighbors by CPU in PBE is much larger. On WatDiv6B
and larger datasets, PBE fails on most queries because it has not
been able to generate a result within 24 hours. In comparison,
SGSI does not need to find cross-matches, or collect and compact
neighbors on CPU. The structures of SGSI are well devised and
partitioned, thus there is no problem of exceeding GPU memory.
However, when the number of edges is larger than 9 billion, it

exceeds the size of host memory (CPU side), which needs a disk-
resident solution. That is beyond the scope of this work. Thus, we
only report experiment results up to graphs with 9 billion edges.

To study the impact of query size, we vary the number of query
vertices from 4 to 15 and report the elapsed time in Figure 17(c).
PBE performs very well on queries with less than 7 vertices, shar-
ing similar performance with SGSI, since small queries tend to be
in the same partition. In experiments, most matches are included
in one or two partitions when the number of query vertices is less
than 7. However, on larger queries, an complete subgraph match
crosses several partitions, thus the performance drops sharply in
PBE. The reasons are three-fold: First, PBE places all columns of
the intermediate table in GPU memory, which needs to be divided
into very small subtables for a large query. Second, the number
of edge permutations increases linearly when the query size
increases. Third, to find cross-matches, PBE needs to collect and
compact neighbors for the current intermediate table. This process
is performed by CPU, thus is very costly when encountering large
intermediate tables. Experimentally, on queries involving more
than 7 vertices, most matches cross 3-5 partitions. On queries
larger than 12, several matches can cross nearly all partitions,
which causes severe performance degradation.

When query size increases, the elapsed time also rises in
SGSI and SGSI+, as the number of join iterations increases.
However, the rate of increase is very slow, due to the optimizations
introduced earlier. During each join iteration, only two columns
of the intermediate table reside in GPU memory, no matter how
large the query is. Furthermore, SGSI does not need to find cross-
matches and all structures are well partitioned. In practice, SGSI
can easily process queries with more than 30 vertices.

We also evaluate the performance of our method varying
the number of vertex labels in WD graphs in Figure 17(c) and
it confirms that SGSI can achieve better performance with the
increasing number of vertex labels.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3230744

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Peking University. Downloaded on April 19,2023 at 06:15:38 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 16

9 CONCLUSIONS

In this paper, we propose an efficient GPU-based subgraph iso-
morphism (GSI) algorithm, which is based on filtering-and-joining
framework and optimized for the architecture of modern GPUs.
The technique contributions of GSI are two aspects: First, we
design a GPU-friendly data structure (PCSR) for edge-labelled
graphs, which facilitates one primitive operator (i.e., N(v, l)
extraction) in GPU, accessing one vertex’s all neighbors based
on edge label. Second, we are the first to study a vertex-oriented
join algorithm (i.e., worst-case optimal join) in GPU and propose
a Prealloc-Combine strategy to avoid parallel write conflicts.
Furthermore, in order to support larger graphs that are beyond the
capability of CPU memories, several extensions are proposed to
enhance GSI, called SGSI, including the partition of graph struc-
tures, the partitions of the intermediate tables, and the histogram-
based load balances. SGSI is scalable to large graphs with billions
of edges in a single GPU. We release our implementation together
with datasets at https://github.com/pkumod/GSI.

ACKNOWLEDGMENTS

This work was supported by NSFC under grant 61932001 and
U20A20174. M. Tamer Özsu’s work was supported by Natural
Sciences and Engineering Research Council (NSERC) of Canada.

REFERENCES

[1] X. Yan, P. S. Yu, and J. Han, “Graph indexing: a frequent structure-based
approach,” in Proc. ACM SIGMOD Int. Conf. on Management of Data,
2004, pp. 335–346.

[2] J. Pérez, M. Arenas, and C. Gutierrez, “Semantics and complexity of
SPARQL,” ACM Trans. Database Syst., vol. 34, no. 3, pp. 16:1–16:45,
2009.

[3] O. Lassila, R. R. Swick et al., “Resource description framework (RDF)
model and syntax specification,” W3C Recommendation, 1998.

[4] L. Zeng and L. Zou, “Redesign of the gStore system,” Frontiers Comput.
Sci., vol. 12, no. 4, pp. 623–641, 2018.

[5] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman, 1979.

[6] D. Conte, P. Foggia, C. Sansone, and M. Vento, “Thirty years of graph
matching in pattern recognition,” Int. J. Pattern Recognit. Artif. Intell.,
vol. 18, no. 3, pp. 265–298, 2004.

[7] J. Kim, H. Shin, W. Han, S. Hong, and H. Chafi, “Taming Subgraph Iso-
morphism forRDF Query Processing,” Proc. VLDB Endowment, vol. 8,
no. 11, pp. 1238–1249, 2015.

[8] F. Bi, L. Chang, X. Lin, L. Qin, and W. Zhang, “Efficient subgraph
matching by postponing cartesian products,” in Proc. ACM SIGMOD Int.
Conf. on Management of Data, 2016, pp. 1199–1214.

[9] H. N. Tran, J. Kim, and B. He, “Fast subgraph matching on large graphs
using graphics processors,” in Proc. 20th Int. Conf. on Database Systems
for Advanced Applications, ser. Lecture Notes in Computer Science, vol.
9049, 2015, pp. 299–315.

[10] L. Wang, Y. Wang, and J. D. Owens, “Fast parallel subgraph matching
on the gpu,” Proc. 25th IEEE Int. Symp. High Performance Distributed
Computing, 2016.

[11] H. Q. Ngo, C. Ré, and A. Rudra, “Skew strikes back: new developments
in the theory of join algorithms,” SIGMOD Rec., vol. 42, no. 4, pp. 5–16,
2013.

[12] C. R. Aberger, S. Tu, K. Olukotun, and C. Ré, “Emptyheaded: A
relational engine for graph processing,” in Proc. ACM SIGMOD Int.
Conf. on Management of Data, 2016.

[13] A. Mhedhbi and S. Salihoglu, “Optimizing subgraph queries by com-
bining binary and worst-case optimal joins,” Proc. VLDB Endowment,
vol. 12, no. 11, pp. 1692–1704, 2019.

[14] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang, “Mars: a
MapReduce framework on graphics processors,” in Proc. 17th Int. Conf.
on Parall. Arch. and Compilation Tech., 2008, pp. 260–269.

[15] W. Guo, Y. Li, M. Sha, B. He, X. Xiao, and K.-L. Tan, “Gpu-accelerated
subgraph enumeration on partitioned graphs,” in Proc. ACM SIGMOD
Int. Conf. on Management of Data, 2020, pp. 1067–1082.

[16] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme for
partitioning irregular graphs,” SIAM J. Sci. Comput., vol. 20, no. 1, pp.
359–392, 1998.

[17] M. Burtscher, R. Nasre, and K. Pingali, “A quantitative study of irregular
programs on GPUs,” in Proc. 2012 IEEE Int. Symp. on Workload
Characterization, 2012, pp. 141–151.

[18] J. R. Ullmann, “An algorithm for subgraph isomorphism,” J. ACM,
vol. 23, no. 1, pp. 31–42, 1976.

[19] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento, “A (sub)graph
isomorphism algorithm for matching large graphs,” IEEE Trans. Pattern
Analy. Machine Intell., vol. 26, no. 10, pp. 1367–1372, 2004.

[20] P. Zhao and J. Han, “On graph query optimization in large networks,”
Proc. VLDB Endowment, vol. 3, no. 1, pp. 340–351, 2010.

[21] K. Zhu, Y. Zhang, X. Lin, G. Zhu, and W. Wang, “NOVA: A novel
and efficient framework for finding subgraph isomorphism mappings in
large graphs,” in Proc. 15th Int. Conf. on Database Systems for Advanced
Applications, ser. Lecture Notes in Computer Science, vol. 5981, 2010,
pp. 140–154.

[22] P. Peng, L. Zou, L. Chen, X. Lin, and D. Zhao, “Subgraph search over
massive disk resident graphs,” in Proc. 23rd Int. Conf. on Scientific
and Statistical Database Management, ser. Lecture Notes in Computer
Science, vol. 6809, 2011, pp. 312–321.

[23] H. Shang, Y. Zhang, X. Lin, and J. X. Yu, “Taming verification hardness:
an efficient algorithm for testing subgraph isomorphism,” Proc. VLDB
Endowment, vol. 1, no. 1, pp. 364–375, 2008.

[24] J. Lee, W. Han, R. Kasperovics, and J. Lee, “An in-depth comparison of
subgraph isomorphism algorithms in graph databases,” PVLDB, 2012.

[25] W. Han, J. Lee, and J. Lee, “Turboiso: towards ultrafast and robust
subgraph isomorphism search in large graph databases,” in Proc. ACM
SIGMOD Int. Conf. on Management of Data, 2013, pp. 337–348.

[26] X. Ren and J. Wang, “Exploiting vertex relationships in speeding up
subgraph isomorphism over large graphs,” Proc. VLDB Endowment,
vol. 8, no. 5, pp. 617–628, 2015.

[27] L. Zou, J. Mo, L. Chen, M. T. Özsu, and D. Zhao, “gstore: answering
sparql queries via subgraph matching,” Proc. VLDB Endowment, vol. 4,
no. 8, pp. 482–493, 2011.

[28] B. D. McKay and A. Piperno, “Practical graph isomorphism, II,” J. Symb.
Comput., vol. 60, pp. 94–112, 2014.

[29] V. Carletti, P. Foggia, A. Saggese, and M. Vento, “Challenging the time
complexity of exact subgraph isomorphism for huge and dense graphs
with VF3,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 40, no. 4, pp.
804–818, 2018.

[30] H. Q. Ngo, E. Porat, C. Ré, and A. Rudra, “Worst-case optimal join
algorithms: [extended abstract],” in Proc. ACM SIGACT-SIGMOD Symp.
on Principles of Database Systems, 2012, pp. 37–48.

[31] S. Sun and Q. Luo, “In-memory subgraph matching: An in-depth study,”
in Proc. ACM SIGMOD Int. Conf. on Management of Data, D. Maier,
R. Pottinger, A. Doan, W. Tan, A. Alawini, and H. Q. Ngo, Eds., 2020,
pp. 1083–1098.

[32] X. Lin, R. Zhang, Z. Wen, H. Wang, and J. Qi, “Efficient subgraph
matching using GPUs,” Proc. Australasian Database Conf., vol. 8506,
pp. 74–85, 2014.

[33] Z. Sun, H. Wang, H. Wang, B. Shao, and J. Li, “Efficient subgraph
matching on billion node graphs,” PVLDB, 2012.

[34] B. Yang, K. Lu, Y.-h. Gao, X.-p. Wang, and K. Xu, “GPU acceleration of
subgraph isomorphism search in large scale graph,” Journal of Central
South University, 2015.

[35] J. Jenkins et al., “Lessons learned from exploring the backtracking
paradigm on the GPU,” in Proc. 17th Int. Euro-Par Conf., ser. Lecture
Notes in Computer Science, vol. 6853, 2011, pp. 425–437.

[36] Y. Wang, A. A. Davidson, Y. Pan, Y. Wu, A. Riffel, and J. D. Owens,
“Gunrock: a high-performance graph processing library on the GPU,” in
Proc. 21st ACM SIGPLAN Symp. on Principles and Practice of Parallel
Programming, 2016, pp. 11:1–11:12.

[37] F. Jamour et al., “Matrix algebra framework for portable, scalable and
efficient query engines for RDF graphs,” in Proc. 14th ACM SIGOPS/Eu-
roSys European Conf. on Comp. Syst., 2019, pp. 27:1–27:15.

[38] S. Wang et al., “Fast and concurrent rdf queries using rdma-assisted gpu
graph exploration,” in USENIX Annual Tech. Conf., 2018, pp. 651–664.

[39] L. Wang and J. D. Owens, “Fast gunrock subgraph matching (GSM) on
gpus,” arXiv, vol. abs/2003.01527, 2020.

[40] Y. Wang, Y. Pan, A. A. Davidson, Y. Wu, C. Yang, L. Wang, M. Osama,
C. Yuan, W. Liu, A. T. Riffel, and J. D. Owens, “Gunrock: GPU graph
analytics,” ACM Trans. Parallel Comput., vol. 4, no. 1, pp. 3:1–3:49,
2017.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3230744

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Peking University. Downloaded on April 19,2023 at 06:15:38 UTC from IEEE Xplore.  Restrictions apply. 

https://github.com/pkumod/GSI


JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 17

[41] D. Mawhirter, S. Reinehr, C. Holmes, T. Liu, and B. Wu, “Graphzero: A
high-performance subgraph matching system,” ACM SIGOPS Oper. Syst.
Rev., vol. 55, no. 1, pp. 21–37, 2021.

[42] K. Jamshidi, R. Mahadasa, and K. Vora, “Peregrine: a pattern-aware
graph mining system,” in EuroSys ’20: Fifteenth EuroSys Conference
2020, Heraklion, Greece, April 27-30, 2020. ACM, 2020, pp. 13:1–
13:16.

[43] X. Chen, R. Dathathri, G. Gill, L. Hoang, and K. Pingali, “Sandslash:
a two-level framework for efficient graph pattern mining,” in ICS ’21:
2021 International Conference on Supercomputing, Virtual Event, USA,
June 14-17, 2021. ACM, 2021, pp. 378–391.

[44] X. Chen, R. Dathathri, G. Gill, and K. Pingali, “Pangolin: An efficient
and flexible graph mining system on CPU and GPU,” Proc. VLDB
Endow., vol. 13, no. 8, pp. 1190–1205, 2020.

[45] A. Ashari, N. Sedaghati, J. Eisenlohr, S. Parthasarathy, and P. Sa-
dayappan, “Fast sparse matrix-vector multiplication on GPUs for graph
applications,” in Proc. ACM/IEEE Conf. on Supercomputing, 2014, pp.
781–792.

[46] J. Fox, O. Green, K. Gabert, X. An, and D. A. Bader, “Fast and adaptive
list intersections on the GPU,” in Proc. 2018 IEEE High Performance
Extreme Comp. Conf., 2018, pp. 1–7.

[47] D. Merrill, M. Garland, and A. S. Grimshaw, “Scalable GPU graph
traversal,” in Proc. 17th ACM SIGPLAN Symp. on Principles and
Practice of Parallel Programming, 2012, pp. 117–128.

[48] L. Zeng, L. Zou, M. T. Özsu, L. Hu, and F. Zhang, “Gsi: Gpu-friendly
subgraph isomorphism,” arXiv, vol. abs/1906.03420, 2019.

[49] R. Shams, R. Kennedy et al., “Efficient histogram algorithms for nvidia
cuda compatible devices,” in Proc. Int. Conf. on Signal Processing and
Communications Systems, 2007, pp. 418–422.

[50] X. Yan, P. S. Yu, and J. Han, “Graph indexing: A frequent structure-based
approach.” in Proc. ACM SIGMOD Int. Conf. on Management of Data,
2004, pp. 335–346.

[51] W. Han, J. Lee, M. Pham, and J. X. Yu, “igraph: A framework for
comparisons of disk-based graph indexing techniques,” Proc. VLDB
Endowment, vol. 3, no. 1, pp. 449–459, 2010.

[52] R. Orellana, “https://math.dartmouth.edu/archive/m19w03/public_html/,”
Discrete Mathematics in Computer Science, 2003.

Li Zeng got his doctoral degree from Peking
University in 2021. His research interests include
graph processing and high performance comput-
ing.

Lei Zou is a professor in Wangxuan Institute of
Computer Technology of Peking University. He is
also a faculty member in National Engineering
Laboratory for Big Data Analysis and Applica-
tions (Peking University) and the Center for Data
Science of Peking University. His research inter-
ests include graph databases and semantic data
management.

M. Tamer Özsu is a University Professor in
David R. Cheriton School of Computer Science
at the University of Waterloo. His research ad-
dresses data engineering aspects of data sci-
ence, focusing on large scale data distribution
and management of unconventional data (e.g.,
graphs, RDF, and streams). He is a fellow of
Royal Society of Canada, AAAS, ACM and IEEE.
He is an elected member of Science Academy,
Turkey and a member of Sigma Xi.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3230744

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Peking University. Downloaded on April 19,2023 at 06:15:38 UTC from IEEE Xplore.  Restrictions apply. 


	Introduction
	Preliminaries & Related Work
	Problem Definition
	GPU Architecture
	Challenges of GPU-based Subgraph Isomorphism
	Related Work

	Solution Overview
	Filtering Phase
	Joining Phase

	Data Structure of Graph: PCSR
	Parallel Join Algorithm
	Scaling to Large Graphs
	Partition of graph structures
	Intermediate results and join processing

	Load Balancing
	Experiments
	Datasets and Queries
	Evaluating Join Phase
	Performance of PCSR structure
	Performance of Parallel Join Algorithm

	Comparison of GSI with counterparts
	Evaluating SGSI on large graphs

	Conclusions
	References
	Biographies
	Li Zeng
	Lei Zou
	M. Tamer Özsu

	Appendix A: Analysis of PCSR
	Appendix B: 4-layer balance scheme
	Appendix C: Setting of Parameters N and K
	Appendix D: Additional Experiments
	Column-first VS. Row-first of Signature Table
	Evaluating Filtering Strategy
	Effects of 4-layer balance scheme
	Distribution of query time and result size
	Setting W2
	More Scalability Experiments


