
NREngine: A Graph-Based Query Engine For Network
Reachability

Wenjie Li1, Lei Zou1, Peng Peng2, and Zheng Qin2

1 Peking Universtity, Beijing,China
2 Hunan University, Changsha, China

{liwenjiehn,zoulei}@pku.edu.cn,{hnu16pp,zqin}@hnu.edu.cn

Abstract. A quick and intuitive understanding of network reachability is of great
significance for network optimization and network security management. In this
paper, we propose a query engine called NREngine for network reachability when
considering the network security policies. NREngine constructs a knowledge
graph based on the network security policies and designs an algorithm over the
graph for the network reachability. Furthermore, for supporting a user-friendly in-
terface, we also propose a structural query language named NRQL in NREngine
for the network reachability query. The experimental results show that NREngine
can efficiently support a variety of network reachability query services.

Keywords: Network Reachability · Network Security Policies · RDF · Graph
Database.

1 Introduction

Network reachability is an important basis for network security services, which has
attracted more and more attentions of the experts and scholars. Network reachability is a
functional characteristic of the network, which ensures smooth communication between
nodes in order for users to conveniently access the resources of the network[1].

Considering the requirement of network security or privacy protection, users usu-
ally configure various of security policies in network devices such as firewalls, routers
and so on. Security policies usually restrict the users’ access to the network, and it-
s function is to control network reachability. Obviously, there needs to be a balance
between ensuring normal network communication and achieving network security or
privacy protection. In another word, the network reachability needs to be maintained
within a suitable range. If the network reachability is more than the actual requirement,
it may cause unnecessary communication, or even create opportunities for the mali-
cious attacks; and the network reachability that is less than the actual requirement will
disrupt the normal network services, and even lead to huge economic losses. Therefore,
the network must have suitable reachability.

In order to measure the network reachability, there are many traditional methods to
check whether the network is reachable or not by using the ping, traceroute or other
tools. These methods have the following two shortcomings. First, the results are depen-
dent on the state of the devices. If some devices in the query path get offline, the query
results may be always unreachable. Second, these methods send the test data packet

(such as ICMP data packet) to evaluate the network reachability, which costs a lot of
network resources.

With the increase of network devices and the expansion of network scale, it will
become a hot and difficult point to quantify the reachability model of the whole network.
Furthermore, it has important theoretical value and application prospects to validate
the network reachability through an efficient network reachability query approach, and
intelligently locate the defects in security policies configuration according to the query
results, and optimize the security policies configuration and network performance.

After constructing the network reachability model, we can use the graph traversal
search algorithms to query the reachability. Those methods require searching the graph
globally for network reachability and often have low performances. Furthermore, if the
network reachability model is stored in two-dimensional database tables or files, we
should reconstruct the graph when querying, which greatly reduces the performance
dramatically; If the network reachability model is stored in memory, once the system is
offline or downtime, it cannot save the data of the network reachability model and also
are limited by the memory capacity. Therefore, in this study, we build up a knowledge
graph of network reachability based on network security policies and transform the net-
work reachability query into queries over the knowledge graphs. Then, we can maintain
the knowledge graph of network reachability in graph databases, like gStore [2, 3], Jena
[4], rdf4j [5] and Virtuoso [6], which can gain the high performances when evaluating
queries over the knowledge graphs of network reachability.

1.1 Key Contributions

In this paper, we focus on the query of the network reachability. The main contributions
of this paper are as follows:

1. We propose a novel model for the network reachability based on network security
policies, and construct a knowledge graph of network reachability.

2. We extend the structured query language over knowledge graphs and propose a
new structured query language called NRQL for network reachability. We design
the efficient query algorithms for evaluating NRQL statements over the knowledge
graph of network reachability.

3. We propose a novel query engine for the network reachability called NREngine,
which implements all the above techniques.

4. To evaluate the effectiveness and efficiency of NREngine, we conduct extensive
experiments.

2 Related Work
Recently, there are some effective works on the network reachability. Xie et al. have
made a pioneering work, they define the network reachability and propose a method
to model the static network reachability[1]. The key idea is to extract the configuration
information of routers in the network and reconstruct the network into a graph in a for-
mal language, so the network reachability can be calculated through classical problems
such as closure and shortest path.

Zhang et al. propose a method to merge the IP addresses with the same reachability
into the IP address sets[7]. When the network reachability is changed, the affected IP
address sets can be reconstructed quickly by splitting or merging to update the network
reachability in real-time. However, they do not provide an algorithm to answer whether
an IP is reachable along a certain path to another IP. Benson et al. propose the concept
of the policies unit[8] . The policies unit is a set of IP addresses affected by the same
security policies. A policies unit may be distributed in many subnets, or there may be
many different policies units in a subnet. They also do not provide an algorithm for the
network reachability query.

Amir et al. propose a network reachability query scheme based on network config-
urations (mainly ACLs), and construct a network reachability query tool called "Quar-
net"[9],[10]. Its ACL model still adopts FDD model, the queries need to be split by
the paths of the FDD. Chen et al. propose the first cross-domain privacy-preserving
protocol for quantifying network reachability[11]. The protocol constructs equivalent
representations of the ACL rules and determines network reachability while preserving
the privacy of the individual ACLs. They do not consider the other network securi-
ty policies(such as route table). Hone et al. propose a new method to detect IP prefix
hijacking based on network reachability, which is a specific application of network
reachability[12].

Recently, there are some effective works on network research based on the graph.
Liang et al. propose an improved hop-based reachability indexing scheme 3-Hop which
gains faster reachability query evaluation, which has less indexing costs and better s-
calabilities than state-of-the-art hop-based methods, and they propose a two-stage node
filtering algorithm based on 3-Hop to answer tree pattern queries more efficiently[13].
Rao et al. propose a model of network reachability based on decision diagram[14].
Li et al. propose a verification method of network reachability based on the topolo-
gy path. They transform the problem of the communication need into the verification
problem of topology path reachability via SNMP and Telnet-based topology discovery
and graph theory techniques[15]. Alfredo et al. propose a novel reachability-based the-
oretical framework for modeling and querying complex probabilistic graph data[16].
Hasan proposes a novel knowledge representation framework for computing sub-graph
isomorphic queries in interaction network database[17].

3 Overview

3.1 Problem Definitions

The essence of network reachability query is to determine whether a certain type of
network packet can reach another node from one node or from one subnet to another.
Given two subnets N1 and N2, and two host nodes v1 and v2, where v1 is a node of N1,
so v1 ∈ N1 holds, and v2 is a node of N2, so v2 ∈ N2 holds. The network reachability
query in this paper can be divided into three categories as follows according to the query
targets.

Node to Node. This category of query is mainly used to check the network reach-
ability between nodes. We use v1 → v2 to denote that v1 to v2 is reachable, and use
v1 9 v2 to denote that v1 to v2 is unreachable.

Node to Subset. This category of query is mainly used to check the network reach-
ability between nodes and subsets. We use v1 → N2 to denote that v1 to N2 is reachable,
and use v1 9 N2 to denote that v1 to N2 is unreachable. Obviously, the following for-
mula holds.

v1 → N2 = {∃v j, v1 → v j}(v j ∈ N2)

Subset to Subset. This category of query is mainly used to check the network reach-
ability between subnets. We use N1 → N2 to denote that N1 to N2 is reachable, and use
N1 9 N2 to denote that N1 to N2 is unreachable. Obviously, the following formula
holds.

N1 → N2 = {∃vi, v j, vi → v j}(vi ∈ N1, v j ∈ N2)

We also can divide the network reachability query into two categories as follows
according to the result of query.

1. Boolean query. The result of the query is a boolean value (such as yes or no). For
example, "SMTP server 192.168.0.32 to host 192.168.0.54 is reachable?" , and the
result is "yes" or "no".

2. Node query. The result of the query is a set of nodes that satisfy the query con-
dition. For example, "Which hosts in subset 192.168.0.0/24 can receive the email
from the SMTP server 192.168.0.32?" . The result is a set of nodes.

3.2 System Architecture

In this paper, we propose a query engine for network reachability based on network
security policies, NREngine. Fig. 1 shows the system architecture of NREngine. N-
REngine consists of two parts as follows.

In the offline part of NREngine, we collect and organize the network security poli-
cies (including ACLs and routing table). First, we remove the network security policies
where the action field value is deny and extend OPTree [18] for maintaining the network
security policies. OPTree is a homomorphic structure of network security policies, and
the redundancy policies and the conflict policies can be removed when constructing
OPTree. Then, we propose a network reachability model based on the network topol-
ogy and the network security policies, and construct a knowledge graph based on the
network reachability model. To support efficient evaluation of the network reachability
query, we maintain the knowledge graph in graph databases, like gStore [2, 3], Jena [4],
rdf4j [5] and Virtuoso [6].

The online part of NREngine is mainly responsible for processing user query re-
quests. In this part, we propose a structured query language, called NRQL (Network
Reachability Query Language) for network reachability query. Users send the query re-
quests to NREngine using NRQL statements. The key of NREngine query is to match
the query conditions by using OPTree in the network reachability model. In order to
adapt to OPTree, we propose a NRQL query parsing algorithm based on OPTree query
algorithm. NREngine can provide three categories of queries: "node to node", "node
to subnet" and "subnet to subnet". The results of those queries can be either "Yes" or
"NO", or a set of nodes satisfying the query conditions.

Considering the high real-time requirement of network reachability query, the rela-
tively low frequency of network security policies change, and the long time-consuming
construction of the network reachability model based on OPTree, we construct or up-
date the network reachability model through timing schedule in the offline part. In the
online part, NREngine provides a real-time network reachability query service based on
the high query efficiency of graph databases. In terms of system deployment, the online
part and the offline part can be deployed independently, in which the offline part can be
deployed in the intranet environment to isolate ordinary users, and the online part can
be deployed in the extranet environment to provide network reachability query services
to ordinary users by the GUI of NREngine.

Semantic
Parsing

Create NRQL
Statement

Execution
statement

NREngine

Node to Node

Node to Subset

Subset to Subset

Boolean query

Node query
OnLine

Network
security policies

Network
Reachability Model

RDF data
Network

Reachability
Graph

Database

OffLine

firewall

Router or Switcher

Fig. 1. The system architecture of NREngine

4 The Offline Part of NREngine
4.1 Network Reachability Model based on Network Security Policies
The essence of network reachability in our paper is to determine whether network data
packets can be transferred from one node to another. Many factors affect whether net-
work data packets can be transmitted from one node to another, such as the state of the
devices. The devices include firewalls, routers, switchers and hosts. If a device is not
online, the data packet can not be transmitted through it. However, the state of the de-
vice is an instantaneous state, which may be man-made shutdown or the device failure.
By opening or repairing the fault, the state of the device can be changed, so it cannot
reflect the basic state of the network.

Another key factor affecting the network data package is the network security poli-
cies. The network security policy is not an instantaneous state, and cannot be changed
due to the device off-line or the device failure. Therefore, the network security policies
can well reflect the basic state of the network, and we can build a model for the network
reachability based on the network security policies. Noted that, because the security

policies in hosts are managed by their managers and it is hard to collect the security
policies, we do not consider those security policies in our paper.

First, we formally define the network reachability model. Given a subnet N and
there are n devices (D1,D2, . . . ,Dn) in N. Here, we use the graph as the basic model
of the network reachability model. The network is denoted as G = (V, E, L), where V
denotes the set of devices like firewall, router or switcher in the subnet N; E denotes a
set of the edges between vertices and L is the labels of the edges based on the network
security policies. According to the properties of ACL and routing table, if vi has only
one outgoing edge, vi denotes a device which has packet filtering function, such as
firewall. Otherwise vi denotes a device which has packet forwarding function ,such as
router or switcher. Obviously, G is a directed graph. Fig. 2 shows an example of the
network reachability model. In Fig. 2, v5, v6 and v7 denote the network security devices
which have packet filtering function, and v1, v2, v3 and v4 denote network security
devices which packet forwarding function.

v1

v2

v3

v5

v7v4

v6

e1,2

e1,3

e2,5

e2,4

e3,4

e3,6

e4,5

e4,6
e6,7

e5,7

Host-A Host-B

Fig. 2. An example of the network reachability model

The construction of network reachablity model G = (V, E) for subset N has two
steps as follow as.

Step 1: Creating the vertices set for devices. We create a vertex for each network
security device in subset N. Noted that if a network security device Di not only has
a packet filtering function but also has a packet forwarding function, in other words,
the action field’s values of the network security policies Ri in Di have three categories:
Accept, Deny and NextDevice. we should create two virtual vertexes D′i and D′′i to
denote Di, and D′i only has a packet filtering function, and D′′i only has a packet for-
warding function.

Step 2: Linking the vertices of devices. According to the topological structure
of the network N and the flow direction of data packets, the edges between nodes are
constructed. Given a vertex vi with packet filtering function, and the next node is v j,
we construct an edge ei, j that from vi to v j, and construct the OPTree Tvi based on the
network security policies which in vi , we use L(e) to denote the label of the edge e,
that is, L(ei, j)= Tvi . If vi has the packet forwarding function, then there are many next-
hop nodes of vi. we construct an edge ei, j for each next-hop node v j, and use R(i, j) to
denote the network security policies which is in vi and the next-hop node is v j, and we
construct the OPTree TR(i, j) and L(ei, j)=TR(i, j).

4.2 Knowledge Graph of Network Reachability

After constructing the network reachability model, the next step is to efficiently evaluate
the network reachability query. Existing methods of maintaining the network reachabil-

ity model in two-dimensional database tables or files have low performances or are lim-
ited by memory capacity. Thus, in this study, we build up a knowledge graph of network
reachability based on network security policies and transform the network reachability
model into edges of knowledge graphs. Fig. 3 shows an example knowledge graph of
network reachability. Then, we can maintain the knowledge graph of network reacha-
bility in graph databases, like gStore [2, 3], Jena [4], rdf4j [5] and Virtuoso [6], which
can gain the high performance of evaluating network reachability queries.

The schema of vertices in our knowledge graph of network reachability is shown
in Table 1, which includes three categories of vertices (“DeviceType”, “Network” and
“Edge”). For the devices that have the packet forwarding function, there is more than
one “Edge” vertex, and for the devices that have the packet filtering function, there is
only one “Edge” vertex.

Name Type Remark
DeviceType property the device type of the vertex, such as

firewall,router,switcher,and host
Network property the network of the vertex belongs,such

as N1

Edge resource the edge of the vertex,such as e1,2

Table 1. Schema of Vertices in Knowledge Graph of Network Reachability

The schema of edges in our knowledge graph of network reachability is shown in
Table 2. The most important category of edges is “Label”. The value of a “Label” edge
represents the set of network security policies which is to be matched by a data packet
pass through the edge. In order to improve the query efficiency, we maintain OPTree in
memory to store the network security policies.

Name Type Remark
Label property The label value of the edge. In this s-

tudy, the value is an OPTree.
NextNode resource The vertex which the edge point to.

Table 2. Schema of Edges in Knowledge Graph of Network Reachability

5 The Online Part of NREngine

5.1 Structured Query Language for Network Rechability

In this section, we extend the structured query language over knowledge graphs, SPAR-
QL [19], for describing the user’s network reachability query request over the knowl-
edge graph of network rechability. The extended structured query language is called
NRQL (Network Reachability Query Language).

Generally, SPARQL does not support matching operations related to the policy
matching condition, a SPARQL statement only supports queries with limited steps.
If the target of a query statement is to find the data which meet the query conditions
within 3 steps, its meaning is to find data within the range of 3 edges. In network reach-
ablility query, we do not know the number of edges between the starting node and the

V1

V4

V7

V3

V2

V6

V5

e1,3

e2,4e1,2
e3,4

e4,6

e4,5

Router

N1 Network

Address(T1,2)

N1

Address(T1,3)

Address(T2,4)

e2,5

Address(T2,5)

N1

e3,6

Address(T3,4)

Address(T3,6)

N1

Address(T4,5)

Address(T4,6)

Firewall

e5,7

e6,7

N2 Firewall Address(T5,7)

N2

Address(T6,7)

N2

Host

Network

Router

Router
Router

Fig. 3. Example Knowledge Graph of Network Reachability

target node. Therefore, we replace the starting vertex recursively and perform a one step
SPARQL query in the recursive process.

A NRQL statement consists of two parts: a query target clause beginning with key-
word select and a ? to denote a query variable. Therefore, a query target clause contains
several query targets by several query variables. Fig. 4 shows an example of NRQL
statement. There are two query targets in Fig. 4.

Select ?x,?y

Where

{

?x Network ?y.

?x DeviceType “Host”.

?z NextNode ?x.

?z Label ?k.

?k <nr:in> <SIP=192.168.32.0/24,SP=any, DIP=192.168.24.212,DP=23,P=tcp>.

}

Fig. 4. Example Point Query

Fig. 4 shows a node query. We use the keyword exist to describe the boolean query,
and we only add exist for the query variables of the query statement for boolean query
is shown in Fig. 5.

The other part of the NRQL statement is a query condition clause beginning with
keyword where , which is wrapped with braces and contains several triple patterns.
Each triple pattern is a query condition for edges in knowledge graph. Here, to support

matching the data package with network security policies in the network reachability
query, we define a new predicate "<nr: in >" in NRQL. This predicate means that the
content of the object is regarded as a data packet, and then the process is transformed
into the problem of checking whether a data packet is matched with a set of network
security policies. We define this query condition clause as a policy matching condition.
In a query condition clause, there is only one policy matching condition. In [18], Li etc.
propose that using OPTree can solve this problem efficiently, so it can be transformed
into finding a predicate path in OPTree, which can be solved by using OPTree search
algorithm.

Select exist(?x)

Where

{

?x Network ?y.

?x DeviceType “Host”.

?z NextNode ?x.

?z Label ?k.

?k <nr:in> <SIP=192.168.32.0/24,SP=any, DIP=192.168.24.212,DP=23,P=tcp>.

}

Fig. 5. Example Boolean Query

5.2 Execution of NRQL Statements

After we generate NRQL query statements based on the user’s query request, then we
execute the statements over the knowledge graph of network reachability. Unfortunate-
ly, most graph databases for knowledge graphs, like gStore [2, 3], Jena [4], rdf4j [5] and
Virtuoso [6], do not directly support the NRQL query statements, but they only support
the SPARQL query statements. Therefore, when NRQL query statements are executed,
additional parsing and pre-processing of NRQL query statements are needed.

Algorithm 1: NRQLBooleanQuery(Q,G)
Input: Q:The NRQL query statement.
G:The network reachability model.
Output: True:Network is reachable; False:Network is unreachable

1 set vc=vstart;
2 result=checkIsMatch(vc,Qselect,Rkg, rmatch);
3 if result== f alse then
4 return false;
5 else
6 generate a sparql statement ask which the condition clause is Rkg − rmatch.

/* Execute the ask by the query api of the graph
database */

7 return graphDatabase.query(ask);

Before describing the query algorithm, we formally define the common concepts
which would be used in the algorithm. We use G = (V, E, L) to denote the network
reachability model, and use Q={Qselect, Qwhere} to denote a NRQL query statement, in

which Qselect denotes the query target clause and Qwhere denotes the query condition
clause. According to the above description, the query condition clause contains a set of
triple patterns, so Qwhere=Rkg, where Rkg denotes a set of edges in the knowledge graph
of network reachability and ri denotes a triple tuple in the set of Rkg. The rmatch denotes
the policy matching condition.

We design the query algorithm of the NRQL according to the categories of the query
of network reachability and the categories of the query result. For boolean query, we
design the boolen query algorithm, whose pseudo-code is shown as Algorithm 1.

Function Boolean checkIsMatch(vc,Qselect,Rkg, rmatch)

1 if vc ∈ Qselect then
2 return true;
3 else

/* get the next vertexes of vc which match with rmatch */
4 set Vnext=getNextVertexes(vc,rmatch);
5 if Vnext , ∅ then

/* match rmatch, then call the recursive function */
6 set f lag=true;
7 for i = 0 to Vnext.length do
8 set vc=Vnext[i];
9 f lag= f lag || checkIsMatch(vc,Qselect,Rkg, rmatch);

10 if f lag==false then
11 return false;
12 else
13 return true;
14 else
15 return false;

There are two key functions for boolean query in Algorithm 1. Function checkIsMatch
is a recursive function. For example, in node to node query, we use vstart to denote the
start vertex, and use vend to denote the end vertex. Firstly, we set vc=vstart and call the
function getNextVertexes to get the next nodes. In function getNextVertexes, we gen-
erate a sparql query statement to get the next vertexes by using the query api of the
graph database and use Vnext to denote the vertexes which satisfy the condition clause
Rkg-rmatch. Secondly, we check whether each vertex vi match with rmatch, if a vertex can
match with rmatch, we set vc=vi, and repeatedly execute the function checkIsMatch until
every vertex in Vnext has been checked. Finally, if the result of function checkIsMatch is
false, it means that there is no path that satisfies the query condition clause, the result of
node to node query is false. Otherwise, we generate a SPARQL ask statement where the
condition clause is Rkg-rmatch. According to the properties of ask statement of SPARQL,
the result is a boolen value.

The node query algorithm is similar to the boolean query algorithm, except that the
result is a set of nodes, and the pseudo-code of the algorithm is shown in Algorithm 2.

In Algorithm 2, we finally generate a SPARQL query statement to get the vertexes
which satisfy with Rkg-rmatch.

Function Vertexes getNextVertexes(vc, rmatch)
/* generate the query statement based on the SPARQL */

1 set sparql=’ select ?address,?z where { < vc > edge ?y. ?y label ?address. ?y NextNode
?z.}’;

2 json=graphDatabase.query(sparql);
3 if json==null then
4 return ∅;
5 else
6 set Vlist=[];
7 set edgeList= json.list;
8 for i = 1 to edgeList do

/* get the Object of the OPTree according the memory
address of the OPTree */

9 set T=Address(edgeList[i].address);
/* use the search algorithm of the OPTree */

10 set path=T.search(rmatch);
11 if path , null then

/* It means that the edge of the vertex Vc match
the rmatch when there is a path */

12 Vlist.add(edgeList[i].endNode);
13 else
14 continue;
15 return Vlist;

Algorithm 2: NRQLNodeQuery(Q,G)
Input: Q:The NRQL query statement for the network reachability query.
G:The network reachability model.
Output: the node set which satisfies the query condition

1 set vc=vstart;
2 result=checkIsMatch(vc,Qselect,Rkg, rmatch);
3 if result== f alse then
4 return null;
5 else
6 generate a sparql statement select which the query target clause is Qselect and the

query condition clause is Rkg − rmatch.
/* Excute select by using the query api of the graph

database. */
7 return graphDatabase.query(select);

5.3 Analysis

For Algorithm 1, we find the key process of boolean query is to match all the output
edges of the starting node with the policy matching condition. Because the gS tore
has a high level of query efficiency, the query time of gS tore can be ignored. This
checking process is equivalent to the searching process of OPTree. The time complexity
of OPTree search algorithm as O(m ˙log), assuming that the number of output edges of

each node is k, and there are q nodes between the starting node and the target nodes of
the query. The best case is that there is not a output edge e of the starting node which can
match the policy matching condition, then we only need to execute the checking process
for the starting node once. Thus the time complexity is O(km ˙logn). The worst case is
that we need to execute the checking process for every node between the starting node
and the target node. The time complexity is O(kqm ˙logn). Therefore, the time complexity
of the boolean query algorithm is O(kpm ˙logn)(1 ≤ p ≤ q).

Noted that the node query algorithm is similar to the boolean query algorithm, there-
fore, the time complexity of the node query algorithm is O(kpm ˙logn)(1 ≤ p ≤ q).

6 Experiments

In this section, we perform our experiments and evaluate the effectiveness and efficiency
of NREngine.

6.1 Setting

In this paper, we propose a knowledge graph-based query engine for network reacha-
bility, and construct the network reachability model based on the network topology and
the network security policies. Therefore, in our experiments, we should generate three
categories of datasets as follow.

1).Datasets of Network Topology. The data set includes the devices and the edges
between the devices. The devices include the host, router, switcher and firewalls. The
size of the devices in the generated network topology ranges from 10 to 100 with the
step length of 10, and the ratio of firewalls in those devices is 30%, the ratio of routers
or switchers in those devices is 70%, and the size of the forwarding ports in routers or
switchers is no more than 4. Noted that in our experiment, the size of subnets is 3, and
each of subnet, we generate 2 hosts.

In order to be closer to the actual situation, we generate the random size of the
forwarding ports for each router and switcher, so the size of the edges in the network
reachability model is uncertain. However, the size of the edges in the network reach-
ability model can intuitively reflect the complexity of the network. Therefore, We use
the size of the edges in the network reachability model as the metrics in our experiment.
Table 3 shows the generated data set of network topology in our experiments.

2).Datasets of Network Security Policies.We use the network security policies
generation tool ClassBench proposed in [20], which is widely used in policies genera-
tion to generate the network security policy sets of the devices in the network.The size
of the generated network security policy sets in each device range from 100 to 1000
with the step length is 100, note that each field of a network security policy generated
by ClassBench is represented as a range, we need to transform the range value to one
or more prefixes based on the properties of OPTree.

3).Datasets of NRQL Query Statements. We generate three categories of NRQL
query statement: node to node query, node to subnet query and subnet to subnet query.
We generate 100 NRQL query statements for each category. Noted that the start node
is different from the end node in the generated NRQL query statements.

Scale of Devices
Devices

Edges
Routers or Switchers Firewalls

10 7 3 89
20 14 6 503
30 21 9 912
40 28 12 1293
50 35 15 1723
60 42 18 2207
70 49 21 2498
80 56 24 2974
90 63 27 3319
100 70 30 3812

Table 3. Datasets

We perform our experiments on PC running Centos7.2 with 32GB memory and
4 cores of Intel(R) Xeon(R) processor(3.3GHz) and implement our prototype system
using Java. The graph database used for maintaining the knowledge graph of network
reachability is gS tore [2, 3].

For the offline part of NREngine, we generate the knowledge graph of network
reachability and construct OPTrees for the labels of edges. We measure the execution
time and memory usage of the knowledge graph.

For the online part of NREngine, we perform two categories of the network reach-
ability query: the boolean query and the node query. To evaluate the efficiency of N-
REngine, we measure the query time in our experiments. In our experiments, we exe-
cute the three categories network reachability query: node to node query, node to subnet
query and subnet to subnet query that use the same query condition clauses and only
change the query target clauses.

In order to make the experimental results more accurate, we execute the all NRQL
query statements, and then measure their average query time.

6.2 Experiments Results of Offline Part

For the offline part of NREngine, the results of experiments are shown in Table 4. Noted
that the number of edges is the size of edges in network reachability model. On the one
hand, the experimental results show that we can build a knowledge graph of network
reachability with 3700 edges in less than three hours, and the memory usage is less than
3GB. Because of the knowledge graph construction is an offline process, so the time
cost and the space cost are acceptable.

On the other hand, the experimental results show that the time and the memory
usage of OPTree construction are more than that of knowledge graph generation. The
reason is that OPTree Construction is a time-consuming operation, and it includes path
checking and path merging, and network reachability model can be quickly converted
into knowledge graph based on pattern matching.

Number of Edges
Knowledge Graph Generation OPTree Construction

Ave. Time(s) Ave. Memory Size(MB) Ave. Time(min) Ave. Memory Size(MB)
100 12.56 12.42 3.51 40.42
500 18.52 20.42 11.52 218.32
900 23.41 25.62 21.42 398.23
1300 26.43 31.24 35.23 612.42
1700 31.24 35.62 51.52 812.25
2100 51.42 39.42 72.51 978.07
2500 69.41 42.54 98.53 1234.23
2900 87.09 48.23 119.64 1592.31
3300 97.14 55.21 138.52 1892.18
3700 112.52 60.87 150.42 2132.52

Table 4. Results on Knowledge Graph of Network Reachability Construction

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0 3 0 0 0 3 5 0 0 4 0 0 0
0

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

6 0 0 0

7 0 0 0

Av
e. Q

uer
y T

im
e(m

s)

N u m b e r o f E d g e s

 N o d e t o N o d e
 N o d e t o S u b n e t
 S u b n e t t o S u b n e t

(a) The results of boolean query

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0 3 0 0 0 3 5 0 0 4 0 0 0
0

5 0 0 0

1 0 0 0 0

1 5 0 0 0

2 0 0 0 0

2 5 0 0 0

3 0 0 0 0

Av
e. Q

uer
y T

im
e(m

s)

N u m b e r o f E d g e s

 N o d e t o N o d e
 N o d e t o S u b n e t
 S u b n e t t o S u b n e t

(b) The results of node query

Fig. 6. The Results of Experiments

6.3 Experiments Results of Online Part

For the online part of NREngine, the results of experiments are shown in Fig. 6. The
experimental results show that on the one hand the query time of network reachability
is from milliseconds to seconds with the increase in the size of edges in network reach-
ability model. On the other hand, the efficiency of node to node query is the highest,
followed by node to subnet query, and the efficiency of subnet to subnet query is the
lowest. The reason is that we need to traverse every node in the subnet until we find
a node that satisfies the query conditions for node to subnet query and subnet to sub-
net query. Fig. 6(a) shows the experimental result of the boolean query, and Fig. 6(b)
shows the experimental result. The experimental results show that the query time of
node query is similar to that of boolean query in node to node query, and the query time
of node query is much longer than that of boolean query in node to subnet query and
subnet to subnet query. The reason is that we need find all nodes that satisfy the query
conditions in the node query, and we just find one node that satisfies the query in the
boolean query.

7 Conclusion

In this study, we propose a model of the network reachability based on the network se-
curity policies, and propose a query engine called "NREngine" for network reachablity.
In order to improve the efficiency of network reachability query, some techniques are
used to construct the network as a knowledge graph of network reachability and main-
tain the knowledge graph in graph databases. On this basis, the knowledge graph of
network reachability is proposed for network reachability query. To describe user’s net-
work reachability query requests, we propose a structured query language, which is
called NRQL, and design the the query algorithms for NRQL. The experimental results
indicate that NREngine is effective and efficient.

Acknowledgements. This work is partially supported by The National Key Research
and Development Program of China under grant 2018YFB1003504, the National Nat-
ural Science Foundation of China under Grant (No. U20A20174, 61772191), Science
and Technology Key Projects of Hunan Province (2019WK2072, 2018TP3001, 2018T-
P2023, 2015TP1004), and ChangSha Science and Technology Project (kq2006029).

References

1. Geoffrey G. Xie, Jibin Zhan, David A. Maltz, Hui Zhang, and Albert G. Greenberg. On static
reachability analysis of ip networks. In IEEE INFOCOM, pages 2170–2183, 2005.

2. Lei Zou, Jinghui Mo, and Lei Chen. gStore: Answering SPARQL Queries via Subgraph
Matching. VLDB Endowment, 4(8):482–493, 2011.

3. Lei Zou, M. Tamer Özsu, Lei Chen, Xuchuan Shen, Ruizhe Huang, and Dongyan Zhao.
gStore: A Graph-based SPARQL Query Engine. VLDB Journal, 23(4):565–590, 2014.

4. Brian McBride. Jena: Implementing the RDF Model and Syntax Specification. In SemWeb,
2001.

5. Jeen Broekstra, Arjohn Kampman, and Frank van Harmelen. Sesame: A generic architecture
for storing and querying RDF and RDF schema. In ISWC, pages 54–68, 2002.

6. Orri Erling and Ivan Mikhailov. Virtuoso: RDF Support in a Native RDBMS. In Semantic
Web Information Management, pages 501–519. 2009.

7. Bo Zhang, T S Eugene Ng, and Guohui Wang. Reachability monitoring and verification in
enterprise networks. In ACM SIGCOMM, pages 459–460, 2008.

8. Theophilus Benson, Aditya Akella, and David A Maltz. Mining policies from enterprise
network configuration. In The 9th ACM SIGCOMM conference on Internet measurement
conference, pages 136–142, 2009.

9. Amir R. Khakpour and Alex X. Liu. Quantifying and querying network reachability. In the
29th International Conference on Distributed Computing Systems (ICDCS), pages 817–826,
2010.

10. Amir R Khakpour and Alex X Liu. Quantifying and verifying reachability for access con-
trolled networks. IEEE/ACM Transactions on Networking(TON), 21(2):551–565, 2013.

11. Fei Chen, Bruhadeshwar Bezawada, and Alex X. Liu. Privacy-preserving quantification
of cross-domain network reachability. IEEE/ACM Transactions on Networking(TON),
23(3):946–958, 2015.

12. Hong, Seong Cheol, H. Ju, and W. K. Hong. Network reachability-based ip prefix hijacking
detection. International Journal of Network Management, 23(1):1–15, 2013.

13. Ronghua Liang, Hai Zhuge, Xiaorui Jiang, Qiang Zeng, and Xiaofei He. Scaling hop-based
reachability indexing for fast graph pattern query processing. IEEE Transactions on Knowl-
edge and Data Engineering(TKDE), 26(11):2803–2817, 2014.

14. Zheng Chan Rao and Tian Yin Pu. Decision diagram-based modeling of network reachabil-
ity. Applied Mechanics and Materials, 513:1779–1782, 2014.

15. Yazhuo Li, Yang Luo, Zhao Wei, Chunhe Xia, and Xiaoyan Liang. A verification method
of enterprise network reachability based on topology path. In the 2013 Ninth International
Conference on Computational Intelligence and Security, pages 624–629, 2013.

16. Alfredo Cuzzocrea and Paolo Serafino. A reachability-based theoretical framework for mod-
eling and querying complex probabilistic graph data. In IEEE International Conference on
Systems, pages 1177–1184, 2012.

17. Hasan Jamil. A novel knowledge representation framework for computing sub-graph isomor-
phic queries in interaction network databases. In 2009 21st IEEE International Conference
on Tools with Artificial Intelligence, pages 131–138, 2009.

18. Wenjie Li, Zheng Qin, Keqin Li, Hui Yin, and Lu Ou. A novel approach to rule placement
in software-defined networks based on optree. IEEE ACCESS, 7(1):8689–8700, 2019.

19. Marcelo Arenas, Claudio Gutiérrez, and Jorge Pérez. On the Semantics of SPARQL. In
Semantic Web Information Management, pages 281–307. 2009.

20. David E. Taylor and Jonathan S. Turner. Classbench: A packet classification benchmark.
IEEE/ACM Transactions on Networking, 15(3):499–511, 2007.

