
Deep-gAnswer: A Knowledge Based
Question Answering System

Yinnian Lin, Minhao Zhang, Ruoyu Zhang, and Lei Zou(B)

Peking University, Beijing, China
{linyinnian,zhangminhao,ry zhang,zoulei}@pku.edu.cn

Abstract. In this demonstration, we present Deep-gAnswer, a know-
ledge-based question answering system. gAnswer is based on semantic
parsing and heuristic rules for entity recognition, relation recognition, and
SPARQL generation. By making use of a pre-trained model, we imple-
ment new entity and relation recognition networks. Also, it is found that
the traditional method works better when information of entity and rela-
tion is correctly given. Therefore, we combine entity and relation recogni-
tion networks with the previous SPARQL generation process to get Deep-
gAnswer. Experimental results show that Deep-gAnswer outperforms the
previous one, especially on Chinese dataset.

1 Introduction

Knowledge graph has been through rapid development and is applied in many 
fields. Knowledge-based question answering (KBQA) [9] is one of its most popu-
lar applications. Given a natural language question, KBQA systems are designed 
to extract the answers from a background knowledge base. A common solution 
in previous systems is transforming the question into a knowledge base query 
such as SPARQL [3] to return answers. gAnswer [4] is one of such systems with 
satisfying performance, which won the first place in QALD-9 [7].

However, gAnswer’s performance severely relies on its two components: the 
dependency tree parser and paraphrase dictionary. gAnswer parses the question 
into a dependency tree for node and relation recognition that decides which 
parts of the question (usually called mentions) may refer to an entity, a relation, 
or a variable. Paraphrase dictionary aims to find the proper matching between 
relation mentions and predicates in the knowledge graph. However, most depen-
dency tree parsers only work well on simple questions. When the number of 
relations in the question increases, errors often occur in the dependency parsing 
stage and are passed to the following stages, severely harming the overall per-
formance. Meanwhile, the paraphrase dictionary requires a very large amount 
of data and time to construct. What’s worse, the dictionary is closely related 
to the background knowledge graph. So, when we change to another knowledge 
graph, the former dictionary may become useless because the predicates in the 
new knowledge graph vary.

To overcome the problems above, we make use of the up-to-date pre-trained 
models. Such models like BERT [5] are trained on massive data and able to

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85899-5_33&domain=pdf


Deep-gAnswer: A Knowledge Based Question Answering System 435

extract underlying features from natural language sentences. In other words,
their generality is better than the old ways in gAnswer.

In this demo, we propose a novel KBQA framework based on gAnswer, named
Deep-gAnswer. We take node recognition as a sequence labeling task while rela-
tion recognition as a ranking task, and train two models respectively. The recog-
nition model is intended to improve mention detection and dependency tree
parsing while the relation ranking model can replace paraphrase dictionary.

We conduct a comparative experiment between gAnwser and Deep-gAnswer
and experimental results show that Deep-gAnswer prevails gAnswer in terms of
F1 score, especially on Chinese questions and complex questions.

2 System Architecture

The Deep-gAnswer system consists of four parts: question understanding, query
graph construction, SPARQL generation, and answer collection. The system
architecture is depicted in Fig. 1.

Fig. 1. The Deep-gAnswer architecture

Question Understanding. This is the first step for Deep-gAnswer to answer a
question. The purpose of this procedure is to detect all the mentions of entities
and variables via a node recognition network. Then, in entity linking module,
every entity mention will be mapped to a set of exact entity names in the knowl-
edge graph with a dictionary and string similarity. Notice that one mention may
be linked to multiple entities as long as their similarity is high enough. In prac-
tice, the system will maintain a fixed number of linking results of a mention and
generate a list of ranked SPARQL.



436 Y. Lin et al.

Query Graph Construction. In this step, the system first parses the question
to find the relations among entity mentions and variable mentions. The system
builds a dependency tree of the question to extract the relation between men-
tions. Then, the system enumerates every relation and feeds it to the relation
ranking network to get its possible predicate. Having all entity, variable, and
relation information, the system builds a semantic query graph in a depth-first
search manner.

SPARQL Generation and Answer Collection. As mentioned before, most
errors of gAnswer come from node and relation recognition and we have improved
them with deep-learning-based models. Therefore, we simply follow the subgraph
matching strategy from gAnswer for SPARQL generation and answer collection.
The system generates a list of ranked SPARQLs and sends them as queries to a
graph database to get the final answers.

3 Techniques

In this section, we mainly focus on the implementation of the new node recog-
nition network and relation ranking network.

Node Recognition Network. In our definition, there are four kinds of nodes in
a question: entities, variables, literals, and types. Generally, an entity represents
a specific thing or person and a type refers to a category of entity. Sometimes
type itself can be taken as an entity. A literal means a value or an attribute.
For example, a specific actor is an entity, while his height and nickname are
literals. A variable is an unknown node that can indicate an entity, a type, or
a literal. We design the node recognition network to solve a sequence labeling
task with tag space {O,Eb,Ei,Vb,Vi, VTb,VTi,Tb,Ti,VLb,VLi,Lb,Li}. The
specific meanings of these tags are shown in Table 1.

In terms of the NER problem, BERT-based models have been proved suc-
cessful in previous works [1,5]. Therefore, we adopt this strategy to use a BEAT-
based model as an encoder. A question first goes through RoBERTa [6] encoder

Table 1. Tag meanings

Tag Meaning

O Not an entity nor variable

Eb,Ei Mention to an entity

V b, V i Mention to variable that refers to an entity

V Tb, V T i Mention to variable that refers to a type

Tb, T i Mention to a type

V Lb, V Li Mention to a variable that refers to a literal value

Lb, Li Mention to literal value



Deep-gAnswer: A Knowledge Based Question Answering System 437

Fig. 2. Workflow of the node recognition network and the relation ranking network

and then to the output layer for the tag sequence. We choose RoBERTa because
it outperforms other models in our experiments.

To train the model, we also developed a dataset by ourselves annotating node-
to-mention mappings. We manually tagged natural language questions with the
previously mentioned tag space. The questions come from the existing KBQA
question sets. We mainly used LC-QUAD question set [8] for English questions
and CCKS question set [2] for Chinese questions. Both question sets provide
natural language questions and corresponding SPARQLs. Tagged questions serve
as the input of our node recognition network and relations extracted from the
given SPARQLs are feed to the relation ranking model.

Relation Ranking Network. The goal of relation recognition is to find all
pairs of related nodes and their predicates. Due to the complexity of the natural
language questions and lack of training data, an end-to-end model may not
handle this task very well. However, we can first attain all related node pairs
and use a ranking model to get the top k most likely predicates easily.

Our experiments show that with node mentions given, a dependency tree
parser can reach a satisfying accuracy. Therefore, we can extract all related node
pairs from the dependency tree. For each pair, we query the knowledge graph
for candidate predicates. If one of the nodes is an exact entity set, we can simply
search for its connected predicates. If both nodes are variables, we search the
query graph to find an entity and get its k-hops-away predicates as candidates.
For each candidate predicate, we concatenate the question, the mentions of the
two related nodes, and the predicate itself to form an input sentence and sent
it to RoBERTa encoder. We use a full connected layer as a decoder to output a
score. The encoder is shared between both node recognition and relation ranking
network to learn global information. In this way, we get a ranked predicate list
for each relation. The workflow of the two models is in Fig. 2.

4 Demonstration

We build a website to demonstrate how Deep-gAnswer answers a natural lan-
guage question, providing users with a friendly interface and straightforward



438 Y. Lin et al.

Fig. 3. Demonstration of Deep-gAnswer

visual results of the translation from natural language questions to SPARQL.
We use an English knowledge graph, DBpedia, to set up the background system.

Figure 3(a) is our query page. Users can input a question freely in the center
text box and ask the system. Here we use a complex question, In which films
directed by Garry Marshall was Julia Roberts starring? as an example.

Figure 3(b) shows the result demonstration page. At the top is the query
graph. We can see Gary Marshall, Julia Roberts and films are recognized as
mentions. In the middle, user can see the result of relation detection. With
correct node mentions given, the dependency parser can successfully identify
the relation and its corresponding mentions. The generated SPARQL list is at
the bottom. Relation mentions become actual predicates with the help of the
relation ranking model and the score of a SPARQL here is based on the score of
each predicate. To check the final answer, users can jump to the answer page as
shown in Fig. 3(c).

Acknowledgment. This work was supported by National Natural Science Founda-
tion of China(NSFC) under grant 61932001. The corresponding author of this work is
Lei Zou.

References

1. Akbik, A., Blythe, D., Vollgraf, R.: Contextual string embeddings for sequence
labeling. In: Proceedings of the 27th International Conference on Computational
Linguistics, pp. 1638–1649 (2018)

2. Han, X., et al.: Overview of the CCKS 2019 knowledge graph evaluation track:
entity, relation, event and QA. arXiv preprint arXiv:2003.03875 (2020)

3. Hommeaux, E.P.: SparQL query language for RDF (2011)
4. Hu, S., Zou, L., Yu, J.X., Wang, H., Zhao, D.: Answering natural language questions

by subgraph matching over knowledge graphs. IEEE Trans. Knowl. Data Eng. 30(5),
824–837 (2017)

5. Kenton, J.D.M.W.C., Toutanova, L.K.: Bert: pre-training of deep bidirectional
transformers for language understanding. In: Proceedings of NAACL-HLT, pp.
4171–4186 (2019)

6. Liu, Y., et al.: Roberta: a robustly optimized BERT pretraining approach. arXiv
preprint arXiv:1907.11692 (2019)

http://arxiv.org/abs/2003.03875
http://arxiv.org/abs/1907.11692


Deep-gAnswer: A Knowledge Based Question Answering System 439

7. Ngomo, N.: 9th challenge on question answering over linked data (QALD-9). Lan-
guage 7(1) (2018)

8. Trivedi, P., Maheshwari, G., Dubey, M., Lehmann, J.: LC-QuAD: a corpus for com-
plex question answering over knowledge graphs. In: d’Amato, C., et al. (eds.) ISWC
2017. LNCS, vol. 10588, pp. 210–218. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-68204-4 22

9. Unger, C., Freitas, A., Cimiano, P.: An introduction to question answering over
linked data. In: Reasoning Web International Summer School (2014)

https://doi.org/10.1007/978-3-319-68204-4_22
https://doi.org/10.1007/978-3-319-68204-4_22



