
Accelerating Triangle Counting on GPU
Lin Hu

hulin@pku.edu.cn

Peking University

Beijing, China

Lei Zou

zoulei@pku.edu.cn

Peking University

Beijing, China

Yu Liu

dokiliu@pku.edu.cn

Peking University

Beijing, China

ABSTRACT
Triangle counting is an important problem in graph mining, which

has achieved great performance improvement on GPU in recent

years. Instead of proposing a new GPU triangle counting algorithm,

in this paper, we propose a novel lightweight graph preprocess-

ing method to boost many state-of-the-art GPU triangle counting

algorithms without changing their implementations and data struc-

tures. Specifically, we find common computing patterns in existing

algorithms, and abstract two analytic models to measure how work-

load imbalance and diversity in these computing patterns affect

performance exactly. Then, due to the NP-hardness of the model op-

timization, we propose approximate solutions by determining edge

directions to balance workloads and reordering vertices to maxi-

mize the degree of parallelism within GPU blocks. Finally, extensive

experiments confirm the significant performance improvement and

high usability of our approach.

KEYWORDS
Triangle counting, GPU, Edge directing, Vertex ordering

1 INTRODUCTION
Graph is a broadly used representation of data, which is getting

increasingly important. Triangle counting [8, 15, 28, 31], whose

task is computing the total number of triangles in a graph, lays

the foundation for various graph problems, such as k-truss [34],

clustering coefficient [37], and link recommendation [33].

With the scale of graphs getting larger continuously, lots of ex-

isting works resort to new hardwares with great parallel processing

ability (such as GPU) to efficiently address graph computation tasks,

such as BFS [24], SSSP [11], and subgraph isomorphism [32]. Tri-

angle counting on GPU has also been extensively studied in the

literature[13, 18, 20, 28]. Although GPU is massively parallel, the

GPU architecture also brings about several technical challenges in

designing graph algorithms. Firstly, warp is a basic running unit of

GPU, and threads inside run in SIMT (single instruction multiple

threads) manner. Therefore, workload imbalance, i.e., thread diver-

gence, will cause massive stalls of threads, thus leading to severe

performance decline. And the workload imbalance of graph algo-

rithms on GPU often stems from skewed vertex degree distribution

in many real-world graphs. Secondly, block is a programmer-level

unit and tasks in a block will be dispatched to only one SM (Stream

Multiprocesser), which has its own computational and memory

resources. To fully utilize both resources, we should group tasks

with different workload features (i.e., memory intensive or comput-

ing intensive) together and dispatch them to one SM. Otherwise,

assigning tasks with the same resource preferences to one SM will

lead to waste of the other resource.

In this paper, we focus on triangle counting problem. Considering

the two optimization goals—workload balance and resource bal-

ance, most existing works focus on proposing a new GPU triangle

counting algorithm to balance the workload and resource utiliza-

tion as much as possible. However, we aim to propose a unified

strategy to optimize multiple existing triangle counting algorithms

by preprocessing graph data. Our work is inspired by an interesting

observation: There are two common data preprocessing methods

in existing triangle counting algorithms: edge directing and vertex

ordering. For the same data graph and GPU triangle counting algo-

rithm, different edge direction methods or vertex ordering methods

result in different performances (see Table 2). Actually, these two

preprocessing steps significantly impact the workload balance and

resource balance. Therefore, we concentrate on data preprocessing

strategies that benefit a group of relevant GPU triangle counting

algorithms. To be more specific, we first abstract two common

computing patterns (intra-block synchronization and binary search

based list intersection) by analyzing existing GPU triangle counting

algorithms. Then we propose two quantitative analytic models over

those common computing patterns to reveal the effect of prepro-

cessing steps (edge directing and vertex ordering). Next, we define

the optimal preprecessing strategies from those models. We also

study the hardness of computing optimal data preprocessing solu-

tions. Due to the NP-hardness (proven in Theorems 4.1 and 5.1),

we design lightweight approximate algorithms in this work.

We first analyze the relations between the preprocessing meth-

ods and the optimization goals (workload balance and resource

balance) as follows:

Edge Directing. In triangle counting, an undirected graph
1
is

firstly transformed into a directed one to avoid redundant compu-

tation [18, 28]. Obviously, edge direction changes the out-degree

distribution. And the workload imbalance stems from the skewed

degree distribution. Therefore, proper edge direction will poten-

tially balance workloads. Two popular strategies are ID-based and

degree-based. The former defines a directed edge from small vertex

ID to large vertex ID, and the latter directs an edge from the small

degree vertex to the large degree vertex. Experimentally, the later

often leads to better performance, but it is a heuristic strategy. To

the best of our knowledge, no existing work tries to figure out if

there are better edge directing strategies or discuss this problem by

analytic models. We will study this problem in Section 4.

Vertex Ordering. In triangle counting, vertices with different ad-

jacency list lengths have different resource preferences. Given the

order of vertices, consecutive vertices are grouped and assigned to

the same block. Therefore, vertex ordering strategy determines the

task assignment, which further influences the balance of resource

usage. In other words, vertex ordering provides an opportunity

1
Triangle counting definition [8, 13, 15, 18, 20] ignores the edge direction, even the

underlying graph is directed.

Conference’17, July 2017, Washington, DC, USA Lin Hu, Lei Zou, and Yu Liu

to balance resource usage. Intuitively, grouping computing inten-

sive and memory intensive tasks together will avoid the waste of

resources. We will study this problem in Section 5.

To make our preprocessing methods have more generality, we

propose analytic models based on two widely used computing pat-

terns: intra-block Synchronization and binary search based list

intersection. The models summarize various implementations and

intuitively demonstrate how those two preprocessing methods im-

pact the optimization goals. Naturally, we define quantitative opti-

mal edge direction and vertex ordering solutions according to our

models, which distinguish our methods from any other heuristic

strategies, and then propose solutions to them. In conclusion, our

proposed models bridge specific implementations and quantitative

optimal solutions.

To summarize, we aim to find the optimal edge directing to

balance workloads and the optimal vertex ordering to maximize

resource utilization. Unfortunately, both problems are NP-hard

(Theorems 4.1 and 5.1). In practice, the data preprocessing time

should also be considered; data preprocessing provides an oppor-

tunity to improve the GPU kernel performance, but the overall

performance would decline if preprocessing is time-consuming.

Therefore, we propose lightweight approximate algorithms to find

good solutions for edge directing and vertex ordering. Extensive

experiments on both real-world and synthetic datasets confirm that

our 𝐴nalytic methods (called A-direction and A-order) significantly

accelerate GPU kernel running time, and total time (including our

data preprocessing step) is accelerated by up to 82%. Besides, the

generality of our method comes from the generality of two comput-

ing patterns (which will be analyzed in detail later) in GPU triangle

counting algorithms: once an algorithm, even not limited to triangle

counting, has either computing pattern, our method is suitable for

optimizing it without changing its implementation.

Generally, we have made the following contributions:

• We present two analytic models abstracted from common

computing patterns in several state-of-the-art triangle count-

ing implementations, considering GPU architecture features.

These two models intuitively demonstrate how edge direc-

tion and vertex ordering impact the optimization goals.

• To alleviate workload imbalance, we aim to find an optimal

edge directing scheme based on our analytic model. Due to

the NP-hardness of this problem, we propose a lightweight

approximate algorithm (A-direction) with performance guar-

antee.

• Considering workload diversity, we implement a better task

assignment approach (A-order) by reordering vertices to

balance resource requests and maximize the degree of par-

allelism. Specifically, we formalize vertex reordering as a

model optimization problem.

• We conduct extensive experiments to verify the effectiveness

of our analytic models and our data preprocessing methods.

The results confirm that our approach can speed up state-of-

the-art triangle counting algorithms significantly.

2 PRELIMINARIES
2.1 GPU Architecture
We will briefly introduce GPU architecture from both hardware

and software perspectives.

Software. CUDA (Compute Unified Device Architecture) is the

most popular GPU programming language. It uses 𝑏𝑙𝑜𝑐𝑘 as the

programmable unit for programmers, which hasmanywarps.𝑊𝑎𝑟𝑝

is a basic unit of thread execution and memory access. A warp

contains 32 threads, and they follow the lock-step rule strictly.

Thus branches inside of it will lead to some threads in idle. The

workload of different threads should be balanced because imbalance

workload among threads will lead to severe thread divergence.

Hardware. Global memory on GPU has the slowest access rate,

but can be accessed by all threads. GPU has many stream multi-

processors (SM), and each SM is an independent hardware unit,

which not only contains many cores, but also has local fast-access

memory, called shared memory, which is programmable but with

limited space. SM can be seen as a match of 𝑏𝑙𝑜𝑐𝑘 , because a block

will be assigned to only one SM in run-time. A reasonable block

task assignment is to group many tasks with different resource

preferences together, then thread schedule mechanism will make

full use of two kinds of resources in an SM for parallel processing.

Otherwise, if tasks with the same resource preference are assigned

to a block, many threads have to be suspended due to memory or

computing conflict, and the other resource will be idle and wasted.

That feature supports our reordering strategy from hardware level.

Global memory and shared memory access are both launched

by a warp. If all required data of the threads inside a warp can

be fetched within one memory transaction, we can achieve better

efficiency, and we call this pattern as coalesced memory access in
the following context.

2.2 Related Work
In this paper, we review related work in two categories: existing tri-

angle counting algorithms and analytic model for GPU computing.

2.2.1 Triangle Counting Algorithms. Here we will review GPU and

CPU triangle counting algorithms respectively.

GPU implementations. Workload balance is the key of GPU

algorithms, and we will classify algorithms according to their work-

load distribution manner. The basic parallelized method [28] uses a

thread to deal with an edge. Wang et al. implement the algorithm

[35] using Gunrock [36] library with the same granularity. To better

balance the workload of different threads, Green et al. present a

method [13, 15] that estimates workload of each edge in advance

and then assigns threads to edges accordingly. Bisson et al. [8] come

up with an implementation which uses a block to deal with a vertex.

This method uses bitmaps in shared memory or global memory for

fast lookup of a list. And in TriCore [20], each warp is dispatched

to deal with an edge, which makes full use of SIMT features. Hu et

al. [18] present a finer-grained workload distribution method, in

which a thread checks if a wedge “𝑢-𝑣-𝑤” forms a triangle.

CPU implementations. Algorithms of triangle counting on

CPU can be mainly divided into three categories [29]: node-iterator

[2], edge-iterator [7] and forward algorithm [29]. Node-iterator

algorithm iterates over all nodes and checks each pair of neighbors

Accelerating Triangle Counting on GPU Conference’17, July 2017, Washington, DC, USA

if they are connected by an edge; edge-iterator iterates over all

edges and intersects the adjacency lists of both incident nodes,

and forward algorithm is a refinement of edge-iterator. Besides,

there are some methods based on map-reduce [22] and matrix

multiplication [6, 38, 40]. Some algorithms are carried out on multi-

core platform [31] or distributed system [5, 14]. In comparison,

the idea of reducing overall workload such as forward algorithm

[29] is similar among CPU and GPU implementations. However,

in other aspects, methods on GPU are much different from those

on CPU because of SIMT execution, jointly memory access of a

warp and different threads communication mechanism. We have

to pay more attention to workload balance and coalesced memory

access. That is different from the CPU implementations, including

serial methods, multi-core methods and SIMD (Single Instruction

Multiple Data) parallelism [16].

List intersection in triangle counting Note that list intersec-

tion accounts for major time cost in triangle counting [16]. Gen-

erally, there are mainly two methods for list intersection: binary

search [13, 15, 18–20, 36] and sort-merge [13, 15, 28, 36]. Also, there

are other methods such as pivot-skip merge [12], bitmap-merge

[8] and liner regression approach [4]. As a general preprocessing

method to optimize the performance, we focus on the most com-

mon list intersection methods in GPU triangle counting algorithms.

Besides, binary search is proven better than merge-based list inter-

section because of better independence, less work complexity and

larger degree of parallelism [4, 18–20] in GPU triangle counting.

2.2.2 Analytic Model for GPU Computing. Existing analytic models

for GPU computing mainly focus on performance predictions. For

example, Hong et al. [17] propose a prediction model for algorithms

on GPU, which introduces two metrics for judging resource prefer-

ences of parallel programs, and gives estimations of the number of

memory requests. Amaris et al. [3] also propose an execution time

prediction model by considering computation, memory access and

cache usage. Ma et al. [25] design a performance analytic model

for memory-limited kernels, focusing on tuning various configu-

ration parameters. Yang et al. [39] work on matrix multiplication.

They build lookup tables between tile shape and performance, and

estimate the optimal workload size in each tile. In this paper, we

propose our analytic models to quantify the performance effects

concerning different preprocessing methods. To the best of our

knowledge, no existing work studies this problem.

2.3 Synchronization in Triangle Counting
Synchronization among threads is common on GPU. Threads often

share workspace in memory, thus synchronization is necessary for

consistent access to memory. Bisson’s work [8] and Hu’s implemen-

tation [18] are two representative works that adopt synchronization

among threads. The former is for consistent access to global mem-

ory, while the latter is for shared memory. Here we briefly introduce

them to abstract run-time model later.

In Bisson’s work [8], a block is responsible for the whole triangle

counting tasks of a vertex. In Figure 1, a block with only two threads

is working on vertex 9. Each thread is in charge of one vertex (vertex

4 or 5) in the adjacency list of 9 (denoted as 𝑙), and it intersects the

adjacency list of that vertex with 𝑙 . They use bitmaps for fast lookup

of elements in 𝑙 . Specifically, two threads firstly set their current

blocksize

sync

1
1 3

2 6

3
2 4 6

7

4
5
6
7
8
9

4

4 5 7 8

4
5

7
8

9

1 1
3

4 5

4

0 0 0 1 1 0 0 0 0 0

blocksize

Bitmap

Bitmap 0 0 0 1 1 0 0 1 1 0

adjacency lists

set bitmap

set bitmap

find match

find match

Figure 1: Running process of Bisson’s work

vertices to 1 in the bitmap of 𝑙 . Then follows a synchronization in

the block to make sure both threads finish setting the bitmap. After

that, each thread uses the bitmap to find matches for every element

in the adjacency list of its vertex. Threads inside the block will move

to next group of vertex 9’s neighbors and continue the procedure

until all vertices in 𝑙 are processed.

In Figure 1, neighbor lists of vertex 4 and 5 have different lengths,

while each neighbor list gets one thread to find matches of all

elements between two synchronization steps. Size of adjacency

lists may vary a lot, leading to workload imbalance among threads.

In Hu’s work [18], each thread checks if a wedge 𝑢-𝑣-𝑤 forms

a triangle by doing binary searches for 𝑤 in 𝑢’s adjacency list.

We use three rows in Figure 2 to represent the sets of 𝑢, 𝑣 , and𝑤 ,

respectively. Assuming there are four threads in total, we show how

this method works in Figure 2. Firstly, a piece of the second row

(𝑢’s adjacency lists) will be loaded into shared memory by a block

for faster access. Then the synchronization step is necessary after

loading. Next, binary searches will be carried out for the loaded

piece of neighbor lists by threads inside the block. The above process

forms a “copy-synchronize-search” pattern.

7654321 8 9

5658754 7 9 998879

5 7 9 9 8 9 9 9 7 8 9 8 9 8 9 99

col(u)

row(v)

virtual(w)

Found T T T TTT

copy

sync

search

Figure 2: Running process of Hu’s fine-grained method

In this work, threads are doing binary searches in lists with

different lengths between two synchronization steps. Variations in

the length of lists, which are significant in power-law graphs, cause

workload imbalance among threads in above two methods.

Table 1 lists frequently used notations in the remainder of the

paper.

3 ANALYTIC MODELS
In this section, two analytic models are abstracted based on two

common computing patterns, intra-block synchronization and bi-
nary search, then we bring up two cost functions to quantitatively

describe the influence of edge directing and vertex ordering.

Conference’17, July 2017, Washington, DC, USA Lin Hu, Lei Zou, and Yu Liu

Table 1: Frequently used notations
variable description
Graph attributes
𝑢, 𝑣, 𝑤 three vertices for a triangle

𝛿𝑢𝑣 variable denoting edge direction between u,v

𝑑 (𝑢) vertex u’s degree in undirected graphs

𝑑𝑜 (𝑢) vertex u’s outgoing degree in directed graphs

¯𝑑𝑜 average outgoing degree in directed graphs

(𝑢, 𝑣) undirected edge between u and v

𝑢 → 𝑣 directed edge from u to v

variables in edge direction
𝑣𝑐 vertex with degree larger than

¯𝑑𝑜
𝑣𝑛 vertex with degree smaller than

¯𝑑𝑜
𝑉𝑛 vertices set of 𝑣𝑛
𝑉𝑐 vertices set of 𝑣𝑐
𝜌 approximate ratio of our algorithm for edge direction

variables in graph reordering
𝑐 computing intensity of a vertex

𝑚 memory access intensity of a vertex

𝐹𝑐 , 𝐹𝑚 functions transforming 𝑑𝑜 (𝑣) to 𝑐 and𝑚, respectively

_ variable transform 𝑐 to equal𝑚
𝐵𝑊 shared memory bandwidth

𝑝𝑐 computing intensity pressure

𝑚𝑒𝑚_𝑠𝑢𝑝 sum of all vertices’ memory superiority in a bucket

3.1 Intra-block BSP Model
3.1.1 Model description. From Section 2.3 we know that synchro-

nization plays a key role in many implementations, which assures

consistent parallel access to global memory and shared memory

among threads. This pattern can be modeled as BSP (Bulk Synchro-

nous Parallel) within a block, in which memory setting, synchro-

nization and all threads executions form a superstep. We call such

process as intra-block BSP Model. It is shown in Figure 3, in which

we assume that there are only four threads for a block. Supersteps

are performed repeatedly to finish the whole task.

Barrier

task executionsetting global varsone superstep

thread 0

thread 1

thread 2

thread 3

Barrier

Figure 3: Intra-block BSP model
It is obvious that the running time of each superstep depends on

the thread with the largest workload, e.g., thread 2 in Figure 3. In

triangle counting, the workload is measured by each vertex’s adja-

cency list length (i.e., vertex out-degree). For example, in Bisson’s

work [8], threads of vertices with long adjacency lists have to check

the bitmap more times; while in Hu’s work [18], threads search-

ing in long adjacency lists have to suffer longer memory latency

and more binary search times. Moreover, real-world graphs often

employ the skewed vertex degree distribution [26], which leads to

severe workload imbalance. On the other hand, edge direction is

necessary for triangle counting to avoid redundancy computation.

This preprocessing provides an opportunity to change the vertex

out-degree distribution and our model’s performance.

3.1.2 Experimental rationality. We use Hu’s work [18] as an ex-

ample, and show the running time under different edge directing

methods in Table 2. In the last three columns of Table 2, given the

same triangle-counting algorithm [18], we show the kernel running

time of different edge direction strategies. Because of more balanced

length of adjacency lists, the popular degree-based edge direction

R-strategy D-order A-order Original order

D-strategy D-direction ID-based A-direction

com-lj 186 144 201 265 142

cit-Patent 151 95 130 640 102

soc-Live 326 176 246 312 181

kron-log21 9611 5020 8040 10982 5220

Table 2: Running time (msec) on four datasets under differ-
ent vertex Reorder strategies and edge Direction strategies

(simplified as D-direction), which directs edges from vertices of

small degree to those of large degree, significantly outperforms

ID-based strategy, which directs edges from vertices of small ID to

those of large ID. And our A-direction strategy (the last column in

Table 2) achieves further improvements to D-direction.

3.1.3 Analytic model. From the intra-block BSP model, we can

conclude that to balance theworkload of threads, we need to balance

the size of adjacent lists (i.e., vertex out-degree) as far as possible.

Given an undirected graph𝐺 , it is transformed into the directed one

G according to some edge directing scheme P. We define the cost

function Equation (1) to measure the workload balance, in which

𝑑𝑜 (𝑢) stands for the out-degree of vertex 𝑢 in the directed graph,

and
¯𝑑𝑜 means the average of out-degree in the directed graph.

C(P) =
∑

𝑢∈𝑉 (G)
|𝑑𝑜 (𝑢) − ¯𝑑𝑜 | (1)

Our goal is to find the best edge directing scheme P that mini-

mizes the cost function C(P), which indicates a more even degree

distribution. It then causes more balanced workload and better

running performance. Unfortunately, this optimization problem is

proven NP-hard (see Theorem 4.1). Therefore, a lightweight approx-

imate algorithm with performance guarantee (approximate ratio

under 1.8) is proposed. All these will be studied in Section 4.

3.2 Resource Balance Model
3.2.1 Binary search based list intersection. As mentioned earlier,

previous works [4, 18, 20] have pointed out that binary search has

better performance in GPU triangle counting. Thus, as a general

preprocessing method, we focus on the binary search, which is a

more popular manner of list intersection in state-of-the-art triangle

GPU triangle counting algorithms, including Gunrock [36], TriCore

[20], Hu’s implementation [18] and Fox’s work [13, 15].

Here we introduce two concepts: computing intensity 𝐹𝑐 and

memory access intensity 𝐹𝑚 . The former is defined by the number

of computation steps per second (i.e., compute throughput), and the

latter refers to the volume of accessed data per second (i.e., memory

bandwidth). Both concepts are defined in a fixed time window.

We find that binary search shows different resource preferences

distinguished by the length of target list, as shown in Figure 4.

In Figure 4 (a), we assume that a warp with four threads is access-

ing the same list 𝐿 for different search keys. If 𝐿 is short, all data of

the four threads can be loaded using a single memory transaction.

However, if 𝐿 is too long for one memory transaction, the four

threads tend to access scattered positions of the list, resulting in

multiple memory transactions. Memory access and computation

are carried out by turns, thus different memory access latency in

Figure 4 (a) leads to different time proportions of memory access

and computation in a fixed time window in Figure 4 (b): given a

Accelerating Triangle Counting on GPU Conference’17, July 2017, Washington, DC, USA

fixed time window, tasks on short lists have more computation

steps (larger 𝐹𝑐), while those on long lists have larger volume of

accessed data (larger 𝐹𝑚).According to the proportions of differ-

ent resource usage in a time window, we conclude that short lists

are computing intensive while long lists are memory intensive for

binary search. Binary search naturally has good memory access

patterns for multiple threads in first few searches, and the space

locality of short list helps to keep coalesced access patterns in later

searches.We also report experiment results of memory bandwidth

and compute throughput varying with adjacency list lengths in

Figure 7 (in Section 5.3), which support our above analysis.

(b)	different	resource	usage	in	a	time	window

thread 0

memory	access
compution
coalesced	memory	access

 short lists

long lists

Time Window

warp thread 1
thread 2
thread 3

thread 0warp thread 1
thread 2
thread 3

effective	data

(a)	different	memory	access	patterns
t1 t2 t3 t4transaction 1(t1)

short list long list

Figure 4: Memory access patterns on lists with different
length and concerned time windows

3.2.2 Model description. ExistingGPU triangle counting algorithms

always try to balance overall workloads, but they often ignore the

diversity of workloads. In fact, workloads should also be balanced

between computational cost and memory access cost.

block 0

block1

block2

idle computational resources

idle memory resources

memory intensive operations computing intensive operations

first vertex second vertex third vertex

first vertex second vertex third vertex

Figure 5: Resource balance model

Modern GPUs have mature mechanisms to schedule warps on

and off cores, aiming at making the best use of computational and

memory resources. Computing intensive warp can “steal” computa-

tional resource of the SMwhenmemory intensive warp is scheduled

off due to unfinished memory transactions. Therefore, tasks with

different resource preference in a time window could make up for

each other by hardware schedule, and a reasonable task assignment

should group tasks with different workload features (i.e., memory

intensive or computing intensive) together and dispatch them to

one block. Consider the example in Figure 5, more computational

resources are wasted in 𝑏𝑙𝑜𝑐𝑘 0 since the three vertices are all mem-

ory intensive tasks. 𝑏𝑙𝑜𝑐𝑘 2 in Figure 5 has an analogue problem. In

contrast, 𝑏𝑙𝑜𝑐𝑘 1 has balanced resource requests, since it combines

memory intensive tasks with computing intensive ones.

3.2.3 Experimental rationality. The following problem is how to

bring up a good block task assignment scheme with the above obser-

vation. Given the order of vertices, blocks usually fetch consecutive

vertices as their work sets. So a possible solution is to reorder the

vertices in a given graph to change the block task assignment.

Let us see the performance under different vertex reorder strate-

gies in the first three columns for Table 2. Degree-based order

(D-order) means reordering vertices in the degree descending (or

ascending) order. It has the worst performance, even significantly

slower than the original vertex ordering. In D-order, the vertices

with similar degrees are grouped together, which aggravate the

resource usage imbalance, since they have the same resource pref-

erences. On the contrary, our balanced A-order scheme leads to the

best performance.

3.2.4 Analytic model. As discussed above, the memory access cost

and computational cost are both related to the vertex out-degree

𝑑𝑜 (𝑣), thus, we use the functions 𝐹𝑚 (𝑑𝑜 (𝑣)) and 𝐹𝑐 (𝑑𝑜 (𝑣)) to denote
memory intensity𝑚 and computing intensity 𝑐 , respectively. Given

a vertex ordering R, every consecutive 𝑘 vertices are grouped into a

bucket 𝐵𝑖 . Suppose there are𝑏 buckets in total. All triangle counting

tasks with regard to a bucket are assigned to one block. To find the

optimal block task assignment to improve the resource usage, we

model it as the vertex ordering problem as follows:

For each bucket 𝐵𝑖 , the corresponding computational cost𝐶𝑖 and

memory access cost𝑀𝑖 are defined as:

𝐶𝑖 =
∑
𝑣∈𝐵𝑖

𝐹𝑐 (𝑑𝑜 (𝑣)), 𝑀𝑖 =
∑
𝑣∈𝐵𝑖

𝐹𝑚 (𝑑𝑜 (𝑣))
(2)

The optimization goal is to find a reordering scheme R such that:

𝑚𝑖𝑛R
𝑏∑
𝑖=1

|_𝐶𝑖 −𝑀𝑖 |

𝑠 .𝑡 . 𝐶𝑖 ≤ 𝐶𝑚𝑎𝑥 ,∀𝑖 ∈ {1, 𝑏}
𝑀𝑖 ≤ 𝑀𝑚𝑎𝑥 ,∀𝑖 ∈ {1, 𝑏}

(3)

For any bucket𝐵𝑖 , |_𝐶𝑖−𝑀𝑖 | denotes thewasted resource size, i.e.,
the idle resource in Figure 5. The _ is a parameter which transforms

computational cost to equal memory access cost. The setting of

computing intensity function 𝐹𝑐 , memory intensity function 𝐹𝑚 ,

and the ratio _ depends on the underlying GPU hardware.

Our analytic model’s goal is to find the optimal reordering

scheme R to minimize Equation (3). We will discuss the param-

eter setting, the hardness of this optimization problem and the

corresponding algorithm in Section 5.

3.3 Correlation of Two Models
Our two models have their respective tendency: intra-block BSP

model aims to achieve better workload balancewithin a block, while
vertex ordering aims to realize better resource utilization among
blocks. The hierarchical targets of the two strategies assure the

compatibility of them. We mainly use the first model to guide edge

direction, and the second one for vertex reordering. Since Formula

(3) only considers dispatching tasks among blocks (vertices in one

bucket are assigned to one block), we also reorder vertices in the

same bucket according to their out-degrees from the consideration

of workload balance within a block.

Conference’17, July 2017, Washington, DC, USA Lin Hu, Lei Zou, and Yu Liu

4 EDGE DIRECTION
In this section, we first study the hardness of the edge directing

problem and then propose our A-direction method, which achieves

a satisfying approximation ratio.

4.1 Hardness Analysis
Theorem 4.1. Given an undirected graph 𝐺 = (𝑉 , 𝐸), finding the

optimal edge directing scheme P to transfer𝐺 into the corresponding
directed graph G to minimize Equation (1) (in Section 3.1.3) is an
NP-hard problem.

Proof. Generally, we can reduce a 0-1 integer planning problem

to this optimal edge direction problem.

Given a set𝑉 , paired variable 𝛿𝑢𝑣 and 𝛿𝑣𝑢 denote the connection

between 𝑢 and 𝑣 , for any 𝑢, 𝑣 ∈ 𝑉 . 𝐶 is a constant. Considering the

following 0-1 integer liner programming problem:

𝑚𝑖𝑛
∑
𝑢∈𝑉
|
∑
𝑣∈𝑉

𝛿𝑢𝑣 −𝐶 |

𝑠 .𝑡 . 𝛿𝑢𝑣 ∈ {0, 1},∀𝑢, 𝑣 ∈ 𝑉 ,
𝛿𝑢𝑣 + 𝛿𝑣𝑤 + 𝛿𝑤𝑢 ≤ 2,∀𝑢, 𝑣,𝑤 ∈ 𝑉 ,
𝛿𝑢𝑣 + 𝛿𝑣𝑢 = 1,∀𝑢, 𝑣 ∈ 𝑉 .

(4)

We reduce it to an edge direction problem. 𝑉 is used as vertex

set of an undirected graph G, whose edge set 𝐸 consists of (𝑢, 𝑣) for
all 𝛿𝑢𝑣 ∈ Equation (4). We use 𝛿𝑢𝑣 = 1 (or 𝛿𝑣𝑢 = 1) to denote that the

undirected edge (u,v) is turned into directed edge 𝑢 → 𝑣 (or 𝑣 → 𝑢).

Obviously, an undirected edge can be turned into only one directed

edge, so we have that ∀(𝑢, 𝑣) ∈ 𝐸, 𝛿𝑢𝑣 + 𝛿𝑣𝑢 = 1. Furthermore,

to guarantee the correctness (i.e. each triangle is counted exactly

once), we also require that the transferred directed graph (G) does
not contain any 3-length directed loop

2
, which says 𝛿𝑢𝑣 + 𝛿𝑣𝑤 +

𝛿𝑤𝑢 ≤ 2, ∀𝑢, 𝑣,𝑤 ∈ 𝑉 .

If we set 𝐶 in Equation 4 as
¯𝑑𝑜 , Equation (4) is equivalent to

Equation (1), which is an optimal edge direction problem.

The equivalence between the 0-1 integer planning and finding

the optimal edge directing scheme P is straightforward. The former

is a classical NP-hard problem. Thus, the theorem holds.

□

4.2 Approximate Algorithm
Due to the NP-hardness, we propose A-direction strategy, a light-

weight approximation algorithm to achieve a good trade-off be-

tween efficiency and effectiveness.

Definition 4.1. Given an undirected graph 𝐺 = (𝑉 , 𝐸), for each
vertex 𝑢 ∈ 𝐺 , if 𝑑 (𝑢) ≥ ¯𝑑𝑜 =

|𝐸 |
|𝑉 | , we refer to 𝑢 as a core vertex;

otherwise, 𝑢 is a non-core vertex.

Generally, we use 𝑣𝑐 (resp. 𝑣𝑛) to represent a core (resp. non-

core) vertex. In particular, all core vertices and non-core vertices

are collected as a set 𝑉𝑐 and 𝑉𝑛 respectively. The following lemma

states that for a large fraction of the edges, their direction can be

determined without affecting the problem optimality under the

intra-block BSP model.

2
Otherwise, the 3-length directed loop will not be counted in almost all triangle

counting implementations

Lemma 4.1. Given an undirected graph 𝐺 = (𝑉 , 𝐸), after the
optimal edge directing scheme P𝑂𝑝𝑡 , 𝐺 is transformed into directed
graph G, the following claims hold:
• For any undirected edge 𝑒 = (𝑣𝑐 , 𝑣𝑛) ∈ 𝐸 ∧ 𝑣𝑐 ∈ 𝑉𝑐 ∧ 𝑣𝑛 ∈ 𝑉𝑛
(i.e, an edge links a core vertex and a non-core vertex), the edge
direction must be 𝑣𝑛 → 𝑣𝑐 in G.
• For any undirected edge 𝑒 = (𝑣𝑛, 𝑣 ′𝑛) ∈ 𝐸 ∧ 𝑣𝑛, 𝑣 ′𝑛 ∈ 𝑉𝑛 (i.e, an
edge links two non-core vertices), the edge direction between 𝑣𝑛
and 𝑣 ′𝑛 can be arbitrarily defined in G, which does not affect
the final cost 𝐶 (P𝑂𝑝𝑡).

Proof. Given a non-core vertex 𝑣𝑛 , the corresponding term in

Equation (1) is

|𝑑𝑜 (𝑣𝑛) − ¯𝑑𝑜 | (5)

because 𝑑𝑜 (𝑣𝑛) ≤ 𝑑 (𝑣𝑛) < ¯𝑑𝑜 , Equation (5) can be simplified as:

¯𝑑𝑜 − 𝑑𝑜 (𝑣𝑛) (6)

That’s the key of our edge directing strategy in the lemma. And

there are two kinds of edges concerning 𝑣𝑛 :

• edge (𝑣𝑛 ,𝑣
′
𝑛). Different direction of the edge makes no differ-

ence in that

(¯𝑑𝑜 − (𝑑𝑜 (𝑣𝑛) + 1)) + (¯𝑑𝑜 − 𝑑𝑜 (𝑣 ′𝑛))
= (¯𝑑𝑜 − 𝑑𝑜 (𝑣𝑛)) + (¯𝑑𝑜 − (𝑑𝑜 (𝑣 ′𝑛) + 1))

(7)

• edge (𝑣𝑛 ,𝑣𝑐). Assigning the edge as out-edge of 𝑣𝑛 doesn’t

go worse than the opposite choice because:

(¯𝑑𝑜 − (𝑑𝑜 (𝑣𝑛) + 1)) + | ¯𝑑𝑜 − 𝑑𝑜 (𝑣𝑐) |
= (¯𝑑𝑜 − 𝑑𝑜 (𝑣𝑛)) + | ¯𝑑𝑜 − 𝑑𝑜 (𝑣𝑐) | − 1

≤ (¯𝑑𝑜 − 𝑑𝑜 (𝑣𝑛)) + | ¯𝑑𝑜 − (𝑑𝑜 (𝑣𝑐) + 1) |
(8)

So that the directed edges generated by our lemma don’t go any

worse than any other options. □

Algorithm 1 Parallel A-direction Algorithm

Input: undirected graph G, degree 𝑑 of all vertices

Output: directed graph G
1: 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ← ¯𝑑𝑜
2: 𝐹𝑟𝑜𝑛𝑡𝑖𝑒𝑟 ← ∅, 𝑟𝑒𝑎𝑐ℎ𝑒𝑑𝑆𝑒𝑡 ← ∅
3: 𝑟𝑢𝑛𝑡𝑖𝑚𝑒𝐷𝑒𝑔𝑟𝑒𝑒 ← ∅, 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 ← ∅
4: while !𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠 𝑝𝑒𝑒𝑙𝑒𝑑 do
5: 𝐹𝑟𝑜𝑛𝑡𝑖𝑒𝑟 ← 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙_𝑐𝑜𝑙𝑙𝑒𝑐𝑡_𝑣𝑒𝑟𝑡𝑒𝑥 (𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)
6: if 𝐹𝑟𝑜𝑛𝑡𝑖𝑒𝑟 .𝑠𝑖𝑧𝑒 == 0 then
7: 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ← 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 + ¯𝑑𝑜

8: 𝑟𝑢𝑛𝑡𝑖𝑚𝑒𝐷𝑒𝑔𝑟𝑒𝑒, 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 ← 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙_𝑠𝑒𝑡 (𝐹𝑟𝑜𝑛𝑡𝑖𝑒𝑟)
9: 𝑟𝑒𝑎𝑐ℎ𝑒𝑑𝑆𝑒𝑡 ← 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙_𝑎𝑑𝑣𝑎𝑛𝑐𝑒 (𝐹𝑟𝑜𝑛𝑡𝑖𝑒𝑟)
10: 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙_𝑏𝑎𝑐𝑘_𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑎𝑙_𝑎𝑛𝑑_𝑢𝑝𝑑𝑎𝑡𝑒_𝑑𝑒𝑔(𝑟𝑒𝑎𝑐ℎ𝑒𝑑𝑆𝑒𝑡)
11: 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙_𝑒𝑑𝑔𝑒_𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛(𝑟𝑢𝑛𝑡𝑖𝑚𝑒𝐷𝑒𝑔𝑟𝑒𝑒, 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦)

Based on Lemma 4.1, we design a parallel peeling algorithm

on GPU (Algorithm 1). Intuitively, our method repeatedly peels

off vertices with degree less than an increasing threshold. The

𝑟𝑢𝑛𝑡𝑖𝑚𝑒𝐷𝑒𝑔𝑟𝑒𝑒 of a vertex denotes its remained neighbor size in

the running process, while 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 of a vertex denotes when the

vertex is peeled. Firstly, vertices with degrees less than 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

are collected and their information are recorded (line 5 and line 8). If

Accelerating Triangle Counting on GPU Conference’17, July 2017, Washington, DC, USA

the 𝐹𝑟𝑜𝑛𝑡𝑖𝑒𝑟 is empty, we increase 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 to further peel vertices

(line 6-7). Then we want to update the 𝑟𝑢𝑛𝑡𝑖𝑚𝑒𝐷𝑒𝑔𝑟𝑒𝑒 of vertices

adjacent to vertices in 𝐹𝑟𝑜𝑛𝑡𝑖𝑒𝑟 . However, updating from vertices

in 𝐹𝑟𝑜𝑛𝑡𝑖𝑒𝑟 results in massive atomic operations of GPU, which will

lead to severe performance decline. So we collect vertices which

are neighbors of vertices in 𝐹𝑟𝑜𝑛𝑡𝑖𝑒𝑟 (line 9), and perform update

of 𝑟𝑢𝑛𝑡𝑖𝑚𝑒𝐷𝑒𝑔𝑟𝑒𝑒 from them (line 10). This process is performed

repeatedly until the whole graph is processed. Finally, according to

𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 and 𝑟𝑢𝑛𝑡𝑖𝑚𝑒𝐷𝑒𝑔𝑟𝑒𝑒 , edges are directed preferentially from

earlier peeled vertices to later peeled vertices, then from vertices

with smaller 𝑟𝑢𝑛𝑡𝑖𝑚𝑒𝐷𝑒𝑔𝑟𝑒𝑒 to those with larger 𝑟𝑢𝑛𝑡𝑖𝑚𝑒𝐷𝑒𝑔𝑟𝑒𝑒 .

According to Lemma 4.1, it is easy to know we get optimal edge

direction when 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is
¯𝑑𝑜 . Thenwe increase the 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 , and

repeat the peeling procedure. Intuitively, this method effectively

reduces the number of vertices with large out-degrees. And in ex-

periments, we find that vertices of large out-degree in the processed

graph are mainly from the last few frontiers in our algorithm. We

slow the growth of 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 in the last few frontiers, hopefully to

reach a more balanced degree distribution of the remained vertices,

and that strategy works well in experiments.

Obviously, the algorithm with 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 greater than
¯𝑑𝑜 is an

approximate part; but we prove that the approximate ratio is small

(less than 1.8) as follows.

4.3 Approximation Ratio
Theorem 4.2. The edge directing scheme of Algorithm 1 (resp. the

one that optimizes Equation (1)) is denoted by P𝐴𝑙𝑔 (resp. P𝑂𝑝𝑡). Let
C(P) denote the cost of scheme P, and 𝑈𝐵() (resp. 𝐿𝐵()) its upper
(resp. lower) bound. The approximation ratio 𝜌 of Algorithm 1 w.r.t
the cost function is bounded by

𝜌 =
C(P𝐴𝑙𝑔)
C(P𝑂𝑝𝑡)

≤ 1 +
𝑈𝐵(C(P𝐴𝑙𝑔) − C(P𝑂𝑝𝑡))

𝐿𝐵(C(P𝑂𝑝𝑡))
, (9)

where

𝐿𝐵(C(P𝑂𝑝𝑡)) =

|𝐸 | − D(𝑉𝑁) −
D(𝑉𝑁)

2

, if
D(𝑉𝐶)

2

≤ ¯𝑑𝑜 |𝑉𝐶 |,
1

2

(D(𝑉𝐶) − 3D(𝑉𝑁)) + ¯𝑑𝑜 (|𝑉𝑁 | − |𝑉𝐶 |),

if
1

2

(D(𝑉𝐶) − D(𝑉𝑁)) ≥ ¯𝑑𝑜 |𝑉𝐶 |,
¯𝑑𝑜 |𝑉𝑁 | − D(𝑉𝑁), otherwise.

(10)

𝑈𝐵(C(P𝐴𝑙𝑔) − C(P𝑂𝑝𝑡)) = 𝑑𝑜

𝑑𝑝∑
𝑑= ¯𝑑𝑜+1

|𝑉𝑑 |,

𝑑𝑝 = argmin𝑑∗

𝑑∗∑
𝑑= ¯𝑑𝑜+1

D(𝑉𝑑) ≥
D(𝑉𝐶)

2

.

(11)

𝑉𝑁 = {𝑣 |𝑑 (𝑣) ≤ ¯𝑑𝑜 } denotes the set of non-core nodes, 𝑉𝐶 = 𝑉 \𝑉𝑛
denotes the set of core nodes, 𝑉𝑑 = {𝑣 |𝑑 (𝑣) = 𝑑}, and D(𝑆) =∑

𝑣∈𝑆 𝑑 (𝑣).

Proof. By the definition of approximation ratio, we have 𝜌 =
C(P𝐴𝑙𝑔)
C (P𝑂𝑝𝑡) = 1 + C(P𝐴𝑙𝑔)−C(P𝑂𝑝𝑡)

C (P𝑂𝑝𝑡) ≤ 1 + 𝑈𝐵 (C (P𝐴𝑙𝑔)−C(P𝑂𝑝𝑡))
𝐿𝐵 (C (P𝑂𝑝𝑡)) .

Given a graph with nodes 𝑣1, . . . , 𝑣𝑛 and the corresponding de-

grees 𝑑𝑣1
, . . . , 𝑑𝑣𝑛 , we consider the maximum possible 𝜌 for any

graph with the same multi-set of degrees.

We first consider the lower bound of C(P𝑂𝑝𝑡). From Equation (9),

we have C(P𝑂𝑝𝑡) =
∑

𝑣∈𝑉𝑁
|𝑑 (𝑣) − ¯𝑑𝑜 | +

∑
𝑣∈𝑉𝐶 |𝑑𝑜 (𝑣) − ¯𝑑𝑜 |. The

first term is at least

∑
𝑣∈𝑉𝑁

(¯𝑑𝑜 − 𝑑 (𝑣)). For the second one, we have∑
𝑣∈𝑉𝐶 |𝑑𝑜 (𝑣) − ¯𝑑𝑜 | ≥ |

∑
𝑣∈𝑉𝐶 𝑑 (𝑣)−|𝐸𝑁𝐶 |

2
− ¯𝑑𝑜 |𝑉𝐶 | |. By considering

three cases: (1)

∑
𝑣∈𝑉𝐶 𝑑 (𝑣)

2
< ¯𝑑𝑜 |𝑉𝐶 |; (2)

∑
𝑣∈𝑉𝐶 𝑑 (𝑣)−|𝐸𝑁𝐶 |

2
− ¯𝑑𝑜 |𝑉𝐶 | ≥

0; and (3) otherwise, Equation (10) follows.

For the upper bound of C(P𝐴𝑙𝑔), first note its non-optimality

only results from the edges between core nodes, while each edge

increases the upper bound by at most 2. To maximize the upper

bound, we adopt the following greedy strategy by directing all

incident edges of nodes in 𝑉 ¯𝑑𝑜+1 as in-edges, and then nodes in

𝑉 ¯𝑑𝑜+2 and so on. This derives the worst-case upper bound as in

Equation (11). □
In fact, Theorem 4.2 provides formulas of approximation ratio

𝜌 about degree distributions. And it does not depend on any spe-

cific generated models. To show that 𝜌 is bounded in practice, we

use a popular graph generation model with different densities and

real-world graphs to obtain the degree statistics, and further show

how 𝜌 changes with them. Since the degree distributions of most

real-world graphs follow power law, we use a power-law graph con-

figuration model—ACL model [1] to generate a sequence of graphs

varying the edge density. Then, we compute 𝜌 using Theorem 4.2

for these graphs and plot the relation between 𝜌 and
¯𝑑𝑜 in Figure 6.

It turns out that 𝜌 is less than 1.8 for graphs of arbitrary density.

100 101 102
1

1.2
1.4
1.6

d̄o

ρ

Figure 6: Approximate ratio under power law graphs
Table 3 shows the 𝜌 for several real-world graphs, which are all

smaller than 1.8. That further confirms the result quality of our

approximate algorithm.

Table 3: 𝜌 in several real-world graphs

datasets
¯𝑑𝑜 𝜌 datasets

¯𝑑𝑜 𝜌

it2004 27.9 1.43 com-lj 8.5 1.46

cit-Patent 2.8 1.63 kron-log21 1.0 1.16

5 GRAPH ORDERING
A block gets a group of continuous vertices as a work set, so we can

reorder vertices to assure resource preferences of all vertices in this

group make up for each other. Based on the resource balance model

in Section 3.2, we first prove the NP-hardness of the corresponding

optimization problem, then propose a solution named A-order to

achieve near-optimal performance at low cost.

5.1 Hardness Analysis
Theorem 5.1. Given a directed graph G obtained from some spe-

cific edge directing strategy, finding the optimal vertex ordering to
minimize Equation (3) is an NP-hard problem.

Conference’17, July 2017, Washington, DC, USA Lin Hu, Lei Zou, and Yu Liu

To prove the theorem, we consider a sub-problem of the problem

in Equation (3) by setting 𝑏 = 2 and _ = 1, and present a decision

version (denoted as 𝐷𝑃) of the sub-problem as follows. Theorem

5.1 holds if 𝐷𝑃 is NP-complete.

DP: Given two buckets 𝐵1, 𝐵2 and a vertex set V. Each vertex 𝑣𝑖
has computing intensity 𝑐𝑖 and memory intensity𝑚𝑖 . We want to

know that whether there is a schedule of vertex dispatch, satisfying

𝐶1 =𝑀1, 𝐶2 =𝑀2 and 𝐶1 ≤ 𝐶𝑚𝑎𝑥 , 𝐶2 ≤ 𝐶𝑚𝑎𝑥 .

Proof. It’s clear that𝐷𝑃 ∈NP, because a schedule can be verified
in polynomial time.

Then we will prove that the partition problem can be reduced to

𝐷𝑃 in polynomial time. Consider the following partition problem.

We have a set of 2𝑡 elements (𝑡 ∈ Z+), the sum of which is 2𝑆 , and

𝑆%𝑡2
= 0. The 𝑖𝑡ℎ elements of the set is 𝑎𝑖𝑡 + 1, 𝑎𝑖 ∈ Z+, and we

want the set to be evenly separated into two sets, the sum of which

is 𝑆 . In the corresponding 𝐷𝑃 problem, there are 2𝑡 vertices:𝑚𝑖 =

𝑎𝑖𝑡 +1, while 𝑐𝑖 = S/t and𝐶𝑚𝑎𝑥 = 𝑆 . This transformation is evidently

polynomial time.

Suppose that two subsets 𝑉1 and 𝑉2 satisfies the partition prob-

lem: the sums of elements in them are both 𝑆 , we can know that

the number of elements of both subsets are 𝑡 , otherwise the sums

can not be multiple of 𝑡 . Therefore if we assign related vertices of

𝑉1 to 𝐵1, 𝐶1 = 𝑆 = 𝑀1, and 𝐶2 = 𝑆 = 𝑀2. On the other hand, con-

sider a schedule satisfies the DP problem, saying that 𝐶𝑖 =𝑀𝑖 for

both buckets. Knowing that 𝐶𝑖 must be multiple of 𝑡 (because 𝑐𝑖
is multiple of 𝑡),𝑀𝑖 is multiple of 𝑡 , too. So the vertices number of

both buckets is 𝑡 . And consequently 𝐶1 = 𝐶2 = S =𝑀1 =𝑀2, so this

schedule is also the answer of partition problem.

Thenwe can conclude that the𝐷𝑃 is NP-complete, so the original

problem is NP-hard. □

5.2 Problem Solution
Because the problem is NP-hard, we propose a heuristic algorithm.

Note that the concrete form of the function 𝐹𝑐 , 𝐹𝑚 and the param-

eter _ are the prerequisites for the algorithm. We will discuss the

parameter determination later in Section 5.3.

Generally, the algorithm employs a greedy strategy. The pseu-

docode is demonstrated in Algorithm 2. We say a vertex is memory-

dominated (resp. computing-dominated) if binary search on its

adjacency list needs more memory (resp. computational) resources.

Generally speaking, if a vertex is memory-dominated, we put it

into the bucket with the least memory resources demand. Firstly,

all buckets are initialized with their𝑚𝑒𝑚_𝑠𝑢𝑝 set to 0 (line 1). For

each vertex 𝑣 , we refer to 𝐹𝑚 (𝑑𝑜 (𝑣)) − _𝐹𝑐 (𝑑𝑜 (𝑣)) as memory supe-

riority. We use variable𝑚𝑒𝑚_𝑠𝑢𝑝 to denote the sum of all vertices’

memory superiority in a bucket. Then all buckets are added into

a minimum priority queue according to 𝑚𝑒𝑚_𝑠𝑢𝑝 (line 2). Next,

all vertices are separated into two sets: memory-dominated ver-

tices and computing-dominated vertices (line 3-4). Each memory-

dominated vertex is put into the bucket at the top of the queue (line

6-7). The𝑚𝑒𝑚_𝑠𝑢𝑝 of the bucket is updated accordingly (line 8).

Then all buckets are made into a maximum priority queue accord-

ing to𝑚𝑒𝑚_𝑠𝑢𝑝 (line 10), and we process computing-dominated

vertices in a corresponding way (line 11-15). All above operations

aim at better resource usage, and then we sort vertices in every

bucket (line 16-17) to assure that adjacency threads deal with lists

with similar length. That’s from consideration of workload balance.

Finally we reorder the whole graph, ensuring that vertices in the

same bucket have consecutive ID (line 18-21).

Algorithm 2 A-order Algorithm

Input: graph G, 𝐹𝑐 , 𝐹𝑚 , _

Output: reordered graph G’

1: 𝐵 = 𝑖𝑛𝑖𝑡_𝑎𝑙𝑙_𝑏𝑢𝑐𝑘𝑒𝑡𝑠 ()
2: 𝐵.𝑚𝑎𝑘𝑒_𝑚𝑖𝑛_𝑞𝑢𝑒𝑢𝑒 ()
3: 𝑉𝑚𝑒𝑚 ←𝑚𝑒𝑚𝑜𝑟𝑦-𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠

4: 𝑉𝑐𝑜𝑚𝑝 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑖𝑛𝑔-𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠

5: for all 𝑣 ∈ 𝑉𝑚𝑒𝑚 do
6: 𝑏 ← 𝐵.𝑝𝑜𝑝_𝑞𝑢𝑒𝑢𝑒 ()
7: 𝑏.𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠.𝑝𝑢𝑠ℎ_𝑏𝑎𝑐𝑘 (𝑣)
8: 𝑏.𝑚𝑒𝑚_𝑠𝑢𝑝+ = (𝐹𝑚 (𝑑𝑜 (𝑣)) − _𝐹𝑐 (𝑑𝑜 (𝑣)))
9: 𝐵.𝑖𝑛𝑠𝑒𝑟𝑡 (𝑏)
10: 𝐵.𝑚𝑎𝑘𝑒_𝑚𝑎𝑥_𝑞𝑢𝑒𝑢𝑒 ()
11: for all 𝑣 ∈ 𝑉𝑐𝑜𝑚𝑝 do
12: 𝑏 ← 𝐵.𝑝𝑜𝑝_𝑞𝑢𝑒𝑢𝑒 ()
13: 𝑏.𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠.𝑝𝑢𝑠ℎ_𝑏𝑎𝑐𝑘 (𝑣)
14: 𝑏.𝑚𝑒𝑚_𝑠𝑢𝑝 + = (𝐹𝑚 (𝑑𝑜 (𝑣)) − _𝐹𝑐 (𝑑𝑜 (𝑣)))
15: 𝐵.𝑖𝑛𝑠𝑒𝑟𝑡 (𝑏)
16: for all 𝑏 ∈ 𝐵 do
17: 𝑠𝑜𝑟𝑡 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑖𝑛 𝑏 𝑏𝑦 𝑜𝑢𝑡 𝑑𝑒𝑔𝑟𝑒𝑒

18: 𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝐼𝑑𝑥 ← 0

19: for all 𝑏 ∈ 𝐵, 𝑣 ∈ 𝑏.𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 do
20: 𝑣 .𝑖𝑑 ← 𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝐼𝑑𝑥

21: 𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝐼𝑑𝑥 ← 𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝐼𝑑𝑥 + 1

Sorting vertices in a bucket can be replaced by grouping vertices

with similar out-degree with hash functions, then the complexity

of our algorithm is bounded by 𝑂 (|𝑉 |𝑙𝑜𝑔 |𝐵 |). Since |B|«|V|, the

algorithm achieves near-linear complexity.

5.3 Parameter Determination
To solve the optimization problem, we firstly need to figure out all

the variables: computing intensity 𝑐 (or 𝐹𝑐), memory intensity𝑚

(or 𝐹𝑚) and parameter _. Although varying for different triangle

counting algorithms, they can be estimated in a similar method. In

the following text, we will describe parameter determination by

taking Hu’s implementation [18] as an example.

Functions Fm and Fc Sharedmemory bandwidth𝐵𝑊 is a straight-

forward measurement of memory access intensity, so we directly

use it as our memory intensity. We can obtain the relation between

𝐵𝑊 and the adjacency list length by running 𝑛𝑣𝑝𝑟𝑜 𝑓 , as shown in

Figure 7. The compute throughput (denoted as CT), i.e., the compare

and arithmetic addition times in a fixed time window, can also be

measured by experiments, which is also shown in Figure 7. And we

use it as our computing intensity. In conclusion, we have

𝐹𝑚 = 𝐵𝑊 (𝑑𝑜 (𝑣)), 𝐹𝑐 = 𝐶𝑇 (𝑑𝑜 (𝑣)) (12)

And Figure 7 also verifies our statement that short lists are comput-

ing intensive while long lists are memory intensive, which provides

an opportunity to balance resource usage by task schedule.

Parameter _ It is a parameter that can transform 𝐹𝑐 to 𝐹𝑚 . It can

be regarded as the ratio of maximum memory ability to maximum

Accelerating Triangle Counting on GPU Conference’17, July 2017, Washington, DC, USA

100 101 102
100

200

300

400

adjacency list length

co
m
p
u
te

th
ro
u
g
h
p
u
t
(M

/
m
s)

compute throughput

200

400

600

800

1,000

m
em

o
ry

b
a
n
d
w
it
h
(G

B
/
s)

memory bandwidth

Figure 7: Memory bandwidth and compute throughput with
different adjacency list length
computing ability. But we cannot get the exactmaximum computing

ability concerning a specific computational task. Hence, we design

an experiment to estimate _ as follows.

Firstly, we will give a definition of 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑝𝑜𝑖𝑛𝑡 , at which mem-

ory and computational resources are both fully utilized. Assume

that we have two tasks,𝑇𝑎𝑠𝑘 1 and𝑇𝑎𝑠𝑘 2 in Figure 8, and the hard-

ware could serve one memory unit and one computation unit in one

period. 𝑇𝑎𝑠𝑘 1 needs four periods, but computational resources in

the last three periods are wasted. We increase computational needs

(i.e. give 𝑝𝑐 times extra computation workload) progressively of

𝑇𝑎𝑠𝑘1 to reach 𝑇𝑎𝑠𝑘 2, which also needs four periods to finish, but

both computational and memory resources are fully utilized. We

say𝑇𝑎𝑠𝑘 2 reaches the balance point. Because of spare computation

resources, the total time does not increase in this computation-

increasing process until reaching the balance point, where any

increase of computational or memory needs will immediately cost

more time. In experiments we keep increasing 𝑝𝑐 until total time

increases, which indicates reaching balance point. We use𝑚 and

𝑐 to denote memory needs and computational needs of 𝑇𝑎𝑠𝑘 1 re-

spectively, then 𝑐 × 𝑝𝑐 denotes the computational needs in 𝑇𝑎𝑠𝑘 2,

which is balance point. So we have the following equation :

𝑚 = _(𝑝𝑐 × 𝑐) (13)

one	memory	access	unit one	computation	unit

resource need
 for tasks 1

period 1 period 2

period 3 period 4

resource need
for tasks 2

period 1 period 2

period 3 period 4

use use

Figure 8: Resource usage of two different tasks
We carried out multiple experiments on several representative

datasets to get 𝑝𝑐 ,𝑚 and 𝑐 in different adjacency list lengths. Ac-

cording to our analysis, Equation (13) should be satisfied at balance

point. And the functional image of𝑚 related to 𝑐 × 𝑝𝑐 can be well

fitted by a direct proportional function, as shown in Figure 9. In

our experiment, the _ is 0.332. Note that we only demonstrate

the case of memory-dominated vertices, and it is vice versa for

computing-dominated vertices.

6 EXPERIMENTS
In this section, we evaluate the effect of our preprocessing methods.

6.1 Experimental Settings
Environments : We use CUDA 8.0.61 toolkit and GCC 4.8.5 to

compile all codes with -O3 option. All experiments are carried out

1,200 1,400 1,600 1,800 2,000 2,200 2,400 2,600 2,800 3,000

400

600

800

1,000

c× pc

m

Figure 9: Fitting function

on a Linux server with the following configurations: Intel Xeon

E5-2697 CPU, an 18-core processor; an NVIDIA Titan Xp, which

has 12GB global memory and 3840 cuda cores.

Datasets : Both real-world and synthetic datasets are used. We

obtain real-world datasets from Stanford Network Analysis Project

(SNAP)
3
, HPEC graph challenge

4
and WebGraph [10]

5
, while syn-

thetic datasets are obtained by Kronecker generator
6
and SNAP. We

also use graph upscaling technique [27] to generate larger graphs

from real-world graphs: we upscale 𝑐𝑜𝑚-𝑙 𝑗 and 𝑐𝑖𝑡-𝑃𝑎𝑡𝑒𝑛𝑡 with the

factor of 8. Table 4 shows statistics of all datasets we use, which

covers many types of graphs such as social network, protein graphs,

citation graphs, web graphs, BA graphs and ER graphs.

Comparative Methods : Since our method is a graph data pre-

processing approach that is orthogonal to existing GPU triangle

counting algorithms, to evaluate the effectiveness and usability

of our method, we consider the following state-of-the-art GPU

triangle counting algorithms.

(1) Gunrock [36]. It is a mature GPU graph processing library,

which has been included into NVIDIA official acceleration

library.

(2) TriCore [20]. This work uses a warp to deal with an edge,

which adapts to SIMT features in GPU.

(3) Fox’s work [13, 15]. These two papers use similar methods,

which win graph challenge 2018’s Innovation Awards and

Finalists respectively.

(4) Bisson’s work [8]. It matches computational resource with

workload, which has a great influence on later works.

(5) Hu’s work [18]. It proposes novel fine-grained workload

distribution manner that is suitable for GPU architecture.

We implement four of above methods by ourselves except Gun-

rock, and our implementations
7
achieve similar performance as

they reported in their original papers.

As baselines, we consider the degree-based (“D-direction” for

short) for edge directing and original vertex order (“Origin” for

short) for vertex ordering respectively. In the following experi-

ments, our analytic model-based edge directing and vertex ordering

strategies are denoted as “A-direction” and “A-order”, respectively.

We will evaluate the effectiveness of our data preprocessing ap-

proaches in above-mentioned algorithms. Note that our A-direction

strategy is based on the analysis of intra-block synchronize model.

In the above five algorithms, only Bisson’s and Hu’s work adopt the

explicit intra-block synchronization. Thus, we evaluate A-direction

3
http://snap.stanford.edu/data/

4
https://graphchallenge.mit.edu/data-sets

5
http://law.di.unimi.it/datasets.php

6
https://github.com/graph500/graph500

7
We release all experiment codes, including comparative methods, at

https://anonymous.4open.science/r/411937e1-e917-44e0-a6cb-5bf4bfb70369/

Conference’17, July 2017, Washington, DC, USA Lin Hu, Lei Zou, and Yu Liu

cit-Pat
ent(x10

1)

cit-Pat
ent(x8)

(x10
2)

com-lj(x10
2)

com-lj(x8)(
x10

2)
com-orkut(

x10
2)
V1r(x10

3)
twitter rv(x10

4)
BA-graph

(x10
2)

ER-graph
(x10

2)
it2004(

x10
3)
sk2005

(x10
3)

soc-Liv
e(x10

2)
kron log18(x

10
2)

kron log21(x
10

3)
10

0

10
1

10
2

ru
n
n
in
g
ti
m
e(
m
se
c)

ID-based kcore-direction D-direction A-direction

20%

40%

60%

23.1%

31.6% 29.6% 28.7% 28.5%
30.9%

16.4% 15.9%

24.8%
21.4% 22.6%

27.3%

12.4%

35.1%

46.3%

67.6%

61.3%
65.9%

46.5% 46.8%

34.3%

50.1%

64%

39.6%
37%

47.9%

37.9% 39.8%

speedup against D-direction (kernel time)

speedup against D-direction (total time)

Figure 10: Running time of different edge direction methods on Hu’s work9

in these two methods (Section 6.2). Except for Bisson’s work
8
, all

other four algorithms adopt the binary search strategy for list inter-

section, which is suitable to our “A-order” scheme that is based on

workload diversity analysis in binary search. Thus, we evaluate A-

order in these four algorithms (Section 6.3). Since Hu’s work adopts

both intra-block synchronize model and binary search based list

intersection, we measure the effectiveness of the two preprocessing

strategies (A-direction and A-order) together in Section 6.4.

Table 4: Datasets Infos

dataset nodes edges triangles types

cit-Patent 6M 17M 7,515,023 citation

cit-Patent(x8) 21M 128M 17,597,025 upscaled

kron-log18 25M 25M 281,814,846 synthetic

com-lj 4M 34M 177,820,130 social

com-lj(x8) 23M 274M 503,106,473 upscaled

soc-Live 5M 69M 285,730,264 social

BA-graph 1M 90M 24,675,343 synthetic

ER-graph 4M 100M 20,748 synthetic

com-orkut 3M 117M 627,584,181 social

kron-log21 201M 201M 1,765,053,740 synthetic

V1r 214M 465M 49 biology

twitter_rv 62M 1.5B 34,824,916,864 social

it2004 37M 1.1B 48,374,551,054 web

sk2005 47M 1.9B 84,907,041,475 web

6.2 Edge-directing Strategy
In this subsection, we compare our A-direction scheme with the

degree-based, ID-based and a kcore edge directing method [21].

The kcore direction is originally a peeling method about k-core

decomposition problem. This method gives an order among ver-

tices, which can be used for edge direction. It uses a flatten array

for frequently updates, and it’s efficient in CPU implementations.

Note that we adopt the baseline vertex ordering (i.e., Origin) for all

implementations.

Evaluation of A-direction on Hu’s algorithm. The running
times of four edge direction methods, i.e., ID-based, degree-based

(“D-direction”), kcore-direction [21] and our method (“A-direction”)

are demonstrated by the “bars” of Figure 10. Note that the run-

ning time includes two parts: the upper part of the bar denotes the

8
Bisson’s work uses bitmaps for list intersection

9
In this figure and other following figures like this one, dataset label𝑐𝑖𝑡 -𝑃𝑎𝑡𝑒𝑛𝑡 (×10

1)
means the running time of this dataset is the value shown in bar scaled up by 10

1 .

preprocessing time, and the bottom part denotes the GPU kernel

running time. It is easy to conclude that both A-direction and D-

direction are significantly faster than the ID-based scheme. The

kernel of kcore direction performs better than that of D-direction

on most datasets, while there are also datasets on which it performs

worse. That’s because the kcore direction focuses on the hierarchy

of k-core decomposition instead of total order of all vertices, re-

sulting in unstable performance. And the preprocessing for kcore

direction is very time-consuming. The algorithm using flatten array

[21] involves too many memory-write operations, making itself a

burden of overall performance. And the flatten array makes it hard

to parallelize this method. Therefore, we choose D-direction as the

baseline. To compare our method with D-direction, we also show

the speedup ratio of our method to D-direction in both GPU kernel

time and total time (including preprocessing time) by separate lines

in Figure 10. Our strategy outperforms D-direction on all datasets,

achieving 12.4% ∼ 35.1% improvement on kernel time and 34.3% ∼
67.6% improvement on total time.

cit-Pate
nt(x10

2)
com-lj(x10

3)
com-orkut(

x10
4)

BA-graph(
x10

3)
ER-graph(

x10
3)

soc-Liv
e(x10

3)
kron log16(x

10
3)

kron log18(x
10

4)
0

5

10

ru
n
n
in
g
ti
m
e(
m
se
c)

ID-based

kcore-direction

D-direction

A-direction

0%

10%

20%

30%

34.9%

30.5%

16.9%

21%
19.4%

27.5%

15.7% 15.7%

speedup against D-direction (total time)

speedup against D-direction (kernel time)

Figure 11: Running time of different edge directionmethods
on Bisson’s work

Evaluation of A-direction on Bisson’s algorithm.The exper-
iment results are shown in Figure 11. We also compare the A-

direction strategy with other three methods. In Bisson’s algorithm,

ID-based method works significantly worse than the degree-based

methods, while our method still has 15.7% ∼ 34.9% speedup than

D-direction. The conclusion of kcore direction is the same with that

on Hu’s implementation. Bisson’s algorithm cannot process large

graphs such as 𝑡𝑤𝑖𝑡𝑡𝑒𝑟_𝑟𝑣 and 𝑉 1𝑟 , because its bitmaps require a

lot of memory space. Figure 11 shows experimental results of all

datasets that this algorithm can process. Generally, graphs with

highly skewed degree distribution, such as most real-world graphs,

Accelerating Triangle Counting on GPU Conference’17, July 2017, Washington, DC, USA

Datasets

Running times (ms)

Origin D-based DFS BFS-R SlashBurn GRO A-order

kernel kernel kernel total kernel total kernel total kernel total kernel speedup total speedup

cit-Patent 130 151 122 786 120 2043 118 3234 123 10923 95 26.9% 115 11.5%

cit-Patent(x8) 510 526 483 8154 504 20544 489 138599 457 137827 340 33.3% 445 12.8%

com-lj 201 186 246 1211 236 1679 231 3877 264 59264 144 28.4% 156 22.4%

com-lj(x8) 1250 1269 1240 2226 1250 27710 1190 174380 1290 979290 890 28.8% 965 22.8%

com-orkut 776 729 770 3057 790 4093 760 4636 763 860763 674 13.1% 684 11.9%

V1r 3660 3900 1610 72030 2740 494440 - - 5330 312330 1880 48.6% 2496 31.8%

twitter_rv 19890 32900 17670 89670 18200 195200 - - - - 17410 12.5% 17739 10.8%

BA-graph 558 576 532 1868 530 4117 556 2895 528 1523528 480 14.0% 497.9 10.8%

ER-graph 464 465 455 3817 456 5165 471 3390 454 339454 420 9.5% 434.9 6.3%

it2004 6400 6399 6190 68490 6200 43800 6330 627330 - - 5600 12.5% 5709 10.8%

sk2005 12000 11250 10950 1011770 10280 60480 - - - - 9400 21.7% 9517 20.7%

soc-Live 246 326 151 1647 146 5011 158 1008 126 148126 176 28.5% 191 22.4%

kron_log18 372 452 372 1361 373 960 367 6788 369 424369 320 14.0% 330 11.3%

kron_log21 8040 9611 5250 16450 5240 13065 5100 126100 - - 5020 37.6% 5073 36.9%

Table 5: Different reorder strategies on Hu’s fine-grained implementation(“-” means the reordering time exceeds an hour.)

Datasets

Running times (ms)

Origin D-based DFS BFS-R SlashBurn GRO A-order

kernel kernel kernel total kernel total kernel total kernel total kernel speedup total speedup

cit-Patent 86 103 90 754 99 2022 95 3211 93 10893 62 27.9% 82 4.65%

cit-Patent(x8) 435 619 384 8055 373 20413 381 138451 382 137752 310 28.7% 415 4.6%

com-lj 150 271 142 1107 162 1611 170 3816 163 59163 124 17.3% 136 9.3%

com-lj(x8) 938 929 930 10792 887 27337 909 174099 1110 979110 780 16.8% 855 8.9%

com-orkut 630 2729 570 2297 600 3903 564 4440 620 860620 550 12.7% 560 11.1%

V1r 1480 1310 1370 71790 1390 493090 - - 1380 308380 770 50.0% 1386 6.35%

twitter_rv 27800 19090 24000 96000 21000 198000 - - - - 17800 36.0% 18129 34.8%

BA-graph 560 505 513 1849 525 4112 536 2875 514 1523514 480 14.3% 498 11.1%

ER-graph 390 363 413 3775 404 5113 443 3362 389 1523389 300 23.1% 314.9 19.3%

it2004 8350 * 9060 71360 8420 46020 10720 631720 - - 6260 25.0% 6369 23.7%

sk2005 17520 * 19060 1019880 18010 68210 - - - - 13690 21.9% 13870 21.2%

soc-Live 183 380 199 1695 198 5063 195 1045 209 148209 156 14.8% 171 6.6%

kron_log18 380 1515 330 1319 340 927 300 6721 330 424330 320 15.8% 330 13.2%

kron_log21 5100 37641 4060 15260 3991 11816 3653 124653 - - 4200 17.7% 4253 16.6%

Table 6: Different reorder strategies on TriCore implementation(“-” means the reordering time exceeds an hour, and “*”means
the running time of the kernel exceeds twenty minutes.)

benefit more from our preprocessing method. And we add an ER-

graph to show the effect of our method on non skewed-degree

graphs. The kernel performance of ER-graph has few improve-

ments, and we consider it as acceptable.

In conclusion, our edge directionmethod (“A-direction”) achieves

significant performance improvements on both kernel running time

and total time compared with the D-direction method, which is

widely used in state-of-the-art GPU triangle counting algoroithms.

6.3 Graph Ordering Strategy
The vertex ordering strategy aims to address the problem of work-

load diversity. To isolate the effect of our vertex-reordering strategy,

we adopt the D-direction for all the following experiments. We will

compare our analytic model-based vertex ordering (“A-order”) with

the original order and existing graph ordering methods, including

DFS [30], BFS-R [9], SlashBurn [23] and GRO [16].

Evaluation of A-order on Hu’s algorithm and TriCore.Ver-
tices are reorder units for both TriCore [20] and Hu’s work [18],

and they both adopt binary searches for list intersection. Thus, they

are both suitable for our analytic model in Section 3.2.

So far, we have three vertex reordering strategies: original vertex

order (Origin), degree-based (D-order) and our method (A-order).

Graph reordering is a well studied problem in the literature, thus

we also compare our strategy with the following methods: DFS

[30], BFS-R [9], SlashBurn [23] and GRO [16]. DFS reorders vertices

according to depth-first traversal; BFS-R performs BFS to find a

vertex with the largest depth, then performs BFS from it until half

of all vertices are visited. This method recursively partitions the

graph vertices to build a separator tree, according to which all nodes

are reordered; SlashBurn groups vertices in the same adjacency

list and gives them continuous order; GRO proposes the notion of

compactness scores to make neighbor vertices consecutive in ID,

and proposes a greedy algorithm to minimize it.

Tables 5 and 6 show the performance of different vertex order-

ings on Hu’s algorithm and TriCore. “kernel” in the table denotes

kernel time, “total” denotes the sum of kernel time and reordering

time. Here the “speedup” is obtained by comparing A-order with

original order on both kernel time and total time. Note that the

total time is the same with kernel time in “Origin”, since it does

not need extra vertex ordering. As we conclude, the D-order strat-

egy is generally worse than the original one because of resource

usage imbalance. All four state-of-the-art reordering strategies im-

prove the performance in most datatsets to some extend. However,

their preprocessing time far surpasses their kernel time, making

total time unacceptable. That’s why we need a lightweight reorder-

ing strategy. As we can see, our method achieves 9.5% ∼ 48.6%

Conference’17, July 2017, Washington, DC, USA Lin Hu, Lei Zou, and Yu Liu

cit-Pat
ent(x1

01)

cit-Pat
ent(x8

)(x10
2)

com-lj(x10
2)

com-lj(x8)
(x10

2)

com-orkut(
x10

2)
V1r(x10

3)
twitter rv(x10

4)
BA-graph

(x10
2)

ER-graph
(x10

2)
it2004(

x10
3)
sk2005

(x10
3)

soc-Liv
e(x10

2)

kron log18(x
10

2)

kron log21(x
10

3)

5

10

ru
n
n
in
g
ti
m
e(
m
se
c) baseline

A-direction
A-order
combined

0%

20%

40%

10.8%

3.8%

15.5%

7.9%
5.9%

39.1%

12%

3.4%

12%

5.2%

13.6% 13.3%

2.8%
5%

24%

6.6%

16.7%

7.2%

22.6%

18.1%
16.2%

5.6%

26.9%

14.8% 14.6%
10.8%

1.6% 1.1%

speedup against A-direction
speedup against A-order

Figure 12: Combining two models on Hu’s work

speedup of kernel time than original order, which is better than

all the other strategies, and 6.3% ∼ 36.9% speedup even including

preprocessing time. Table 6 shows experiment results of TriCore

with different reordering strategies. The conclusion of four state-

of-the-art reordering strategies is the same with Table 5, and our

method (“A-order”) achieves 12.7% ∼ 50.0% speed up of kernel time,

and 4.6% ∼ 34.8% speed up of total time.

Evaluation of A-order on Gunrock. Gunrock [36] uses both

binary search and sort-merge for list intersections. As analyzed in

Section 3.2, we can conclude that GPU binary search based list inter-

section has different resource preferences (computing intensive or

memory intensive) on short and long lists. In GPU triangle count-

ing algorithms, binary search is more efficient than sort-merge

[4, 18, 20] and thus more popular in existing algorithms. Since

Gunrock is a general GPU graph processing library, it provides

two kinds of list intersection algorithms (binary search and sort-

merge). The sort-merge implementation in Gunrock also employs

the same resource preferences with binary search because of co-

alesced memory access feature of warps. Gunrock crashes on big

datasets such as 𝑡𝑤𝑖𝑡𝑡𝑒𝑟_𝑟𝑣 and 𝑉 1𝑟 , thus, we report evaluation

results on all datasets that can be processed by it. Comparing with

the original order, we find that our A-order strategy achieves 4.1%

∼ 82.5% performance improvement in total time, and even better in

kernel time (see Figure 13). We have mentioned that the baseline,

i.e., original order, does not have preprocess time, so the overall

performance of several datasets (such as 𝑐𝑖𝑡-𝑃𝑎𝑡𝑒𝑛𝑡 and 𝑐𝑜𝑚-𝑙 𝑗) has

minor improvements because the ordering preprocessing is too

time-consuming compared with kernel time. And kernel promo-

tions on those datasets are satisfying. Obviously, the degree-based

order has the worst performance due to more resource conflicts.

We do not compare with other ordering strategies in Tables 5 and

6, since their preprocessing are too time-consuming, making them

impractical in triangle counting tasks.

cit-Pa
tent(x

10
1)

cit-Pa
tent(x

8)(x1
02)

com-lj(x1
02)

com-lj(x8
)(x10

3)

com-orku
t(x10

3)

BA-grap
h(x10

3)

ER-grap
h(x10

2)

soc-L
ive(x1

02)

kron
log18

(x10
3)

kron
log21

(x10
4)

0

2

4

6

8

ru
n
n
in
g
ti
m
e(
m
se
c)

D-based
Origin
A-order

0%

20%

40%

60%

80%

4.1%
8.7%

12.6%
7%

62.1%

68.8%

45%

19.9%

82.5%

67.2%

speedup against Origin (kernel time)

speedup against Origin (total time)

Figure 13: Vertex ordering results of Gunrock

Evaluation of A-order on Fox’s algorithm. Edge is the reorder

unit of Fox’s algorithm [13], because edges of a vertex are separated

according to their work complexity in this method. Blocks work on

edges instead of vertices, and “reordering edges” refers to changing

edge sets of blocks. The reordering progress is similar to vertex

reordering. Memory intensive and computing intensive operations

are defined analogous to Hu’s implementation [18], except that we

consider resource usage tensity of edges instead of vertices. Figure

14 shows results of our method and original edge distribution in

several datasets. Similarly, there are some datasets that this im-

plementation can not work on, and we give all datasets that this

method is capable of processing. Finally, we achieve 6.0% ∼ 45.2%
performance improvement in total time, and higher improvements

in kernel time.

cit-
Paten

t(x1
0
1)

cit-
Paten

t(x8
)(x1

0
2)

com
-lj(x

10
2)

com
-lj(x

8)(x
10

2)

com
-ork

ut(x
10

4)

V1r(x
10

1)

twitte
r rv(x

10
4)

BA-gra
ph(

x10
2)

ER-gra
ph(

x10
2)

it20
04(x

10
5)

sk2
005

(x1
0
3)

soc-
Live(

x10
2)

kro
n log1

8(x
10

2)

kro
n log2

1(x
10

3)

0

5

10

ru
n
n
in
g
ti
m
e
(m

se
c
)

Origin

A-order

10%

20%

30%

40%

19.1%

28.8%

16.7%

10.3%
7.9%

34.8%
33%

11.8%

18%

45.2%

12.1%

7.8%
6%

40.7%

speedup against Origin (kernel time)

speedup against Origin (total time)

Figure 14: Vertex ordering results of Fox’s work

6.4 Evaluating the Combined Approach
Since some algorithms include both intra-block synchronization

and binary search based list intersection, such as Hu’s work [18],

we combine both A-direction and A-order on it. And the evaluation

results are shown in Figure 12. The lines show performance im-

provement of the combined method to only adopting A-direction or

A-order. Generally, the combined approach can speed up the overall

running time by 10.7% on average compared with A-direction only,

and 13.3% on average compared with A-order. This further confirms

the effectiveness of our analytic model based preprocessing.

7 CONCLUSION
Triangle counting is a fundamental graph computational task due

to its wide applications. Meanwhile, GPU-based implementations

have been extensively studied in the literature. This paper does not

intend to propose a new algorithm. Instead, we study the workload

imbalance and diversity problems by abstracting common models

from state-of-the-art triangle counting algorithms. Based on our

proposed analytic models, we propose model-guided edge directing

Accelerating Triangle Counting on GPU Conference’17, July 2017, Washington, DC, USA

and vertex ordering strategies to preprocess the graph data. The

two strategies optimize the workload balance and further improve

the degree of parallelism. Without revising any existing algorithm,

we significantly improve the performance of these algorithms over

both large real-world and synthetic graph datasets.

ACKNOWLEDGMENTS
This work was supported by The National Key Research and Devel-

opment Program of China under grant 2018YFB1003504 and NSFC

under grant 61932001, 61961130390, U20A20174. This work was also

supported by Beijing Academy of Artificial Intelligence (BAAI). The

corresponding author of this paper is Lei Zou (zoulei@pku.edu.cn).

REFERENCES
[1] William Aiello, Fan Chung, and Linyuan Lu. 2000. A random graph model for

massive graphs. In Proceedings of the thirty-second annual ACM symposium on
Theory of computing. 171–180.

[2] Noga Alon, Raphael Yuster, and Uri Zwick. 1997. Finding and Counting Given

Length Cycles. Algorithmica 17, 3 (1997), 209–223. https://doi.org/10.1007/

BF02523189

[3] Marcos Amaris, Daniel Cordeiro, Alfredo Goldman, and Raphael Y de Camargo.

2015. A simple bsp-based model to predict execution time in gpu applications. In

2015 IEEE 22nd International Conference on High Performance Computing (HiPC).
IEEE, 285–294.

[4] Naiyong Ao, Fan Zhang, Di Wu, Douglas S Stones, Gang Wang, Xiaoguang Liu,

Jing Liu, and Sheng Lin. 2011. Efficient parallel lists intersection and index

compression algorithms using graphics processing units. Proceedings of the VLDB
Endowment 4, 8 (2011), 470–481.

[5] Shaikh Arifuzzaman, Maleq Khan, and Madhav V. Marathe. 2013. PATRIC: a

parallel algorithm for counting triangles in massive networks. In 22nd ACM
International Conference on Information and Knowledge Management, CIKM’13,
San Francisco, CA, USA, October 27 - November 1, 2013, Qi He, Arun Iyengar,

Wolfgang Nejdl, Jian Pei, and Rajeev Rastogi (Eds.). ACM, 529–538. https:

//doi.org/10.1145/2505515.2505545

[6] Ariful Azad, Aydin Buluç, and John R. Gilbert. 2015. Parallel Triangle Counting

and Enumeration Using Matrix Algebra. In 2015 IEEE International Parallel and
Distributed Processing Symposium Workshop, IPDPS 2015, Hyderabad, India, May
25-29, 2015. IEEE Computer Society, 804–811. https://doi.org/10.1109/IPDPSW.

2015.75

[7] Vladimir Batagelj and Andrej Mrvar. 2001. A subquadratic triad census algorithm

for large sparse networks with small maximum degree. Soc. Networks 23, 3 (2001),
237–243. https://doi.org/10.1016/S0378-8733(01)00035-1

[8] Mauro Bisson and Massimiliano Fatica. 2017. High Performance Exact Triangle

Counting on GPUs. IEEE Transactions on Parallel and Distributed Systems 28, 12
(2017), 3501–3510.

[9] Daniel K. Blandford, Guy E. Blelloch, and Ian A. Kash. 2003. Compact represen-

tations of separable graphs. In Proceedings of the Fourteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, January 12-14, 2003, Baltimore, Maryland,
USA. ACM/SIAM, 679–688. http://dl.acm.org/citation.cfm?id=644108.644219

[10] Paolo Boldi and Sebastiano Vigna. 2004. The WebGraph Framework I: Com-

pression Techniques. In Proc. of the Thirteenth International World Wide Web
Conference (WWW 2004). ACM Press, Manhattan, USA, 595–601.

[11] Federico Busato and Nicola Bombieri. 2015. An efficient implementation of the

Bellman-Ford algorithm for Kepler GPU architectures. IEEE Transactions on
Parallel and Distributed Systems 27, 8 (2015), 2222–2233.

[12] Yulin Che, Zhuohang Lai, Shixuan Sun, Yue Wang, and Qiong Luo. 2020. Accel-

erating Truss Decomposition on Heterogeneous Processors. Proc. VLDB Endow.
13, 10 (2020), 1751–1764. http://www.vldb.org/pvldb/vol13/p1751-che.pdf

[13] James Fox, Oded Green, Kasimir Gabert, Xiaojing An, and David A Bader. 2018.

Fast and Adaptive List Intersections on the GPU. In 2018 IEEE High Performance
extreme Computing Conference (HPEC). IEEE, 1–7.

[14] Ilias Giechaskiel, George Panagopoulos, and Eiko Yoneki. 2015. PDTL: Parallel

and Distributed Triangle Listing for Massive Graphs. In 44th International Con-
ference on Parallel Processing, ICPP 2015, Beijing, China, September 1-4, 2015. IEEE
Computer Society, 370–379. https://doi.org/10.1109/ICPP.2015.46

[15] Oded Green, James Fox, Alex Watkins, Alok Tripathy, Kasimir Gabert, Euna

Kim, Xiaojing An, Kumar Aatish, and David A Bader. 2018. Logarithmic Radix

Binning and Vectorized Triangle Counting. In 2018 IEEE High Performance extreme
Computing Conference (HPEC). IEEE, 1–7.

[16] Shuo Han, Lei Zou, and Jeffrey Xu Yu. 2018. Speeding Up Set Intersections in

Graph Algorithms using SIMD Instructions. In Proceedings of the 2018 Interna-
tional Conference on Management of Data. ACM, 1587–1602.

[17] SunpyoHong andHyesoon Kim. 2009. An analytical model for a GPU architecture

with memory-level and thread-level parallelism awareness. In ACM SIGARCH
Computer Architecture News, Vol. 37. ACM, 152–163.

[18] Lin Hu, Naiqing Guan, and Lei Zou. 2019. Triangle counting on GPU using

fine-grained task distribution. In 2019 IEEE 35th International Conference on Data
Engineering Workshops (ICDEW). IEEE, 225–232.

[19] Yang Hu, Pradeep Kumar, Guy Swope, and H Howie Huang. 2017. Trix: Triangle

counting at extreme scale. In 2017 IEEE High Performance Extreme Computing
Conference (HPEC). IEEE, 1–7.

[20] Yang Hu, Hang Liu, and H Howie Huang. 2018. Tricore: Parallel triangle counting

on gpus. In SC18: International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, 171–182.

[21] Wissam Khaouid, Marina Barsky, S. Venkatesh, and Alex Thomo. 2015. K-Core

Decomposition of Large Networks on a Single PC. Proc. VLDB Endow. 9, 1 (2015),
13–23. https://doi.org/10.14778/2850469.2850471

[22] Tamara G. Kolda, Ali Pinar, Todd D. Plantenga, C. Seshadhri, and Christine Task.

2014. Counting Triangles in Massive Graphs with MapReduce. SIAM J. Scientific
Computing 36, 5 (2014). https://doi.org/10.1137/13090729X

[23] Yongsub Lim, U Kang, and Christos Faloutsos. 2014. SlashBurn: Graph Compres-

sion and Mining beyond Caveman Communities. IEEE Trans. Knowl. Data Eng.
26, 12 (2014), 3077–3089. https://doi.org/10.1109/TKDE.2014.2320716

[24] Hang Liu, H Howie Huang, and Yang Hu. 2016. ibfs: Concurrent breadth-first

search on gpus. In Proceedings of the 2016 International Conference on Management
of Data. ACM, 403–416.

[25] Lin Ma and Roger D Chamberlain. 2012. A performance model for memory

bandwidth constrained applications on graphics engines. In 2012 IEEE 23rd Inter-
national Conference on Application-Specific Systems, Architectures and Processors.
IEEE, 24–31.

[26] Mark EJ Newman. 2005. Power laws, Pareto distributions and Zipf’s law. Con-
temporary physics 46, 5 (2005), 323–351.

[27] Himchan Park and Min-Soo Kim. 2018. EvoGraph: An Effective and Efficient

Graph Upscaling Method for Preserving Graph Properties. In Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, KDD 2018, London, UK, August 19-23, 2018, Yike Guo and Faisal Farooq

(Eds.). ACM, 2051–2059. https://doi.org/10.1145/3219819.3220123

[28] Adam Polak. 2016. Counting triangles in large graphs on GPU. In Parallel and
Distributed Processing Symposium Workshops, 2016 IEEE International. IEEE, 740–
746.

[29] Thomas Schank and Dorothea Wagner. 2005. Finding, Counting and Listing All

Triangles in Large Graphs, an Experimental Study. In Experimental and Efficient
Algorithms, 4th InternationalWorkshop, WEA 2005, Santorini Island, Greece, May
10-13, 2005, Proceedings (Lecture Notes in Computer Science), Sotiris E. Nikoletseas
(Ed.), Vol. 3503. Springer, 606–609. https://doi.org/10.1007/11427186_54

[30] Julian Shun. 2017. Shared-memory parallelism can be simple, fast, and scalable.
PUB7255 Association for Computing Machinery and Morgan & Claypool.

[31] Julian Shun and Kanat Tangwongsan. 2015. Multicore triangle computations with-

out tuning. In Data Engineering (ICDE), 2015 IEEE 31st International Conference
on. IEEE, 149–160.

[32] Ha-Nguyen Tran, Jung-jae Kim, and Bingsheng He. 2015. Fast subgraph matching

on large graphs using graphics processors. In International Conference on Database
Systems for Advanced Applications. Springer, 299–315.

[33] Charalampos E Tsourakakis, Petros Drineas, Eirinaios Michelakis, Ioannis Koutis,

and Christos Faloutsos. 2011. Spectral counting of triangles via element-wise

sparsification and triangle-based link recommendation. Social Network Analysis
and Mining 1, 2 (2011), 75–81.

[34] Jia Wang and James Cheng. 2012. Truss decomposition in massive networks.

arXiv preprint arXiv:1205.6693 (2012).
[35] Leyuan Wang, Yangzihao Wang, Carl Yang, and John D Owens. 2016. A compar-

ative study on exact triangle counting algorithms on the gpu. In Proceedings of
the ACM Workshop on High Performance Graph Processing. ACM, 1–8.

[36] Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy Riffel, and

John D Owens. 2016. Gunrock: A high-performance graph processing library on

the GPU. In ACM SIGPLAN Notices, Vol. 51. ACM, 11.

[37] Duncan J Watts and Steven H Strogatz. 1998. Collective dynamics of ‘small-

world’networks. nature 393, 6684 (1998), 440.
[38] Michael M. Wolf, Mehmet Deveci, Jonathan W. Berry, Simon D. Hammond, and

Sivasankaran Rajamanickam. 2017. Fast linear algebra-based triangle count-

ing with KokkosKernels. In 2017 IEEE High Performance Extreme Computing
Conference, HPEC 2017, Waltham, MA, USA, September 12-14, 2017. IEEE, 1–7.
https://doi.org/10.1109/HPEC.2017.8091043

[39] Xintian Yang, Srinivasan Parthasarathy, and Ponnuswamy Sadayappan. 2011.

Fast sparse matrix-vector multiplication on GPUs: implications for graph mining.

Proceedings of the VLDB Endowment 4, 4 (2011), 231–242.
[40] Abdurrahman Yasar, Sivasankaran Rajamanickam, Michael M. Wolf, Jonathan W.

Berry, and Ümit V. Çatalyürek. 2018. Fast Triangle Counting Using Cilk. In 2018
IEEE High Performance Extreme Computing Conference, HPEC 2018, Waltham,
MA, USA, September 25-27, 2018. IEEE, 1–7. https://doi.org/10.1109/HPEC.2018.

8547563

https://doi.org/10.1007/BF02523189
https://doi.org/10.1007/BF02523189
https://doi.org/10.1145/2505515.2505545
https://doi.org/10.1145/2505515.2505545
https://doi.org/10.1109/IPDPSW.2015.75
https://doi.org/10.1109/IPDPSW.2015.75
https://doi.org/10.1016/S0378-8733(01)00035-1
http://dl.acm.org/citation.cfm?id=644108.644219
http://www.vldb.org/pvldb/vol13/p1751-che.pdf
https://doi.org/10.1109/ICPP.2015.46
https://doi.org/10.14778/2850469.2850471
https://doi.org/10.1137/13090729X
https://doi.org/10.1109/TKDE.2014.2320716
https://doi.org/10.1145/3219819.3220123
https://doi.org/10.1007/11427186_54
https://doi.org/10.1109/HPEC.2017.8091043
https://doi.org/10.1109/HPEC.2018.8547563
https://doi.org/10.1109/HPEC.2018.8547563

	Abstract
	1 introduction
	2 preliminaries
	2.1 GPU Architecture
	2.2 Related Work
	2.3 blackSynchronization in Triangle Counting

	3 Analytic Models
	3.1 Intra-block BSP Model
	3.2 Resource Balance Model
	3.3 blackCorrelation of Two Models

	4 edge direction
	4.1 Hardness Analysis
	4.2 Approximate Algorithm
	4.3 Approximation Ratio

	5 graph ordering
	5.1 Hardness Analysis
	5.2 Problem Solution
	5.3 Parameter Determination

	6 experiments
	6.1 Experimental Settings
	6.2 Edge-directing Strategy
	6.3 Graph Ordering Strategy
	6.4 Evaluating the Combined Approach

	7 conclusion
	Acknowledgments
	References

