
Noah: Neural-optimized A* Search Algorithm for
Graph Edit Distance Computation

Lei Yang
Peking University
Beijing, China

yang lei@pku.edu.cn

Lei Zou
Peking University
Beijing, China

zoulei@pku.edu.cn

Abstract—Graph Edit Distance (GED) is a classical graph sim-
ilarity metric that can be tailored to a wide range of applications.
However, the exact GED computation is NP-complete, which
means it is only feasible for small graphs only. And therefore,
approximate GED computation methods are used in most real-
world applications. However, traditional practices and end-to-end
learning-based methods have their shortcomings when applied for
approximate GED computation. The former relies on experience
and usually performs not well. The latter is only capable of
computing similarity scores between graphs without an actual
edit path, which is crucial in specific problems (e.g., Graph
Alignment, Semantic Role Labeling). Meanwhile, it assumes that
one of the graphs is seen before, which is not in line with
the GED computation problem. This paper proposes a novel
approach Noah, which combines A* search algorithm and graph
neural networks to compute approximate GED in a more effective
and intelligent way. The combination is mainly reflected in two
aspects. First, we learn the estimated cost function h(·) by Graph
Path Networks. Pre-training GEDs and corresponding edit paths
are also incorporated for training the model, therefore helping
optimize the search direction of A* search algorithm. Second, we
learn an elastic beam size that can help reduce search size and
satisfy various user settings. Experimental results demonstrate
the practical effectiveness of our approach on several tasks and
suggest that our approach significantly outperforms the state-of-
the-art methods.

Index Terms—graph edit distance, A* search algorithm, neural
networks

I. INTRODUCTION

Recently, graphs are ubiquitous and have attracted increas-
ing research interest because many data in a wide range of
applications can be represented by graphs, such as chemical
compounds [1], social networks [2], road networks [3] and
semantic web [4]. One of the fundamental problems in such
graph-represented applications is graph similarity search (i.e.,
given a query graph q, finding a set of similar graphs g in a
graph database D, such that q is approximately matched with g
under some similarity metric). Two classical graph similarity
metrics are Graph Edit Distance (GED) [5] and Maximum
Common Subgraph (MCS) [6]. Note that the two metrics are
inter-related [7], and they are both NP-complete [8]. In this
paper, we focus on GED computation.

A. Existing solutions and motivations
The most widely used method for exact GED computation

is based on the A* search algorithm [9], which casts it

as a path-finding problem and focuses on how to expand
the existing search paths. In detail, the algorithm explores
the space of all possible mappings between two graphs by
means of an ordered tree. Such a search tree is constructed
dynamically by iteratively creating successor nodes linked by
edges to the currently considered node in the search tree.
The further expansion of the search path is determined by
a cost function f(·), which can be divided into two parts
(i.e., f(·) = g(·) + h(·), where g(·) is the observable cost
and h(·) is the estimated cost). Specifically, in each iteration,
the search path of minimum cost is selected from the heap
of all currently possible paths. In order to guarantee the final
result of A* search algorithm to be optimal, the estimated cost
h(·) should be lower than, or equal to, the real cost. Based on
this, early studies focus on the heuristic functions which can
better estimate h(·) [10]–[13], which is a major task in A*
search algorithm.

0 5 10 15 20 25 30 35
Iterations

0

50

100

O
p

ti
m

al
ed

it
p

at
h

’s
ra

n
k
in

g
in

th
e

h
ea

p Example1

Example2

Example3

Fig. 1. The influence of beam size for GED computation.

However, since the search space grows exponentially along
with more nodes, the exact GED cannot be reliably computed
within reasonable time between graphs with more than 16
nodes [14]. To avoid colossal computation costs and satisfy
high real-time requirements in many applications, two main
categories are proposed in early works. We briefly introduce
them and their defects. First, modifications are based on A*
search algorithm, such as A*-Beamsearch [15]. Specifically,
it limits the size of the heap of A* search algorithm to
obtain approximate GEDs in a short time. However, lower
bounds based on heuristic functions are not close enough to
the ground-truth value of h(·), and parameters of modifications
are almost fixed and based on experience. Figure 1 shows the
ranking of the optimal result in each iteration of the A* search
algorithm. It indicates that beam size based on experience
might bring extra search costs if set to 100 (e.g., example

1, 2) or miss the optimal result if set to 50 (e.g., example 3).
Second, end-to-end learning-based methods are applied for

graph similarity search [16], [17]. Specifically, they design
a network-based function that maps the graph pairs into
similarity scores, which turns the GED computation into
a learning problem. However, this kind of methods might
achieve incorrect approximate GED (i.e., the obtained GED
is smaller than the exact GED), and therefore could not
find an actual edit path from the source graph to the target
graph, which is crucial in specific problems such as Graph
Alignment [18], Semantic Role Labeling [19], etc. Meanwhile,
such methods focus on the evaluation of graph query task (i.e.,
For each graph in the testing set, we treat it as a query graph,
and let the model compute the similarity between the query
graph and every graph in the database), which might not fit
for GED computation very well. Because in most cases, the
two graphs in the graph pair are not seen before, rather than
one of them is in the database.

TABLE I
SUMMARY OF EXISTING SOLUTIONS AND NOAH.

Method Type Node size Acc Edit path
A* exact ≤16 - able

A*-Beam approximate tens medium able
End-to-end approximate ≈100 low disable

Noah approximate hundreds high able

B. Our approach
We propose a novel approach in this paper to compute

approximate GED and address additional tasks (e.g., graph
similarity search, graph classification) without the influence
of the above disadvantages. Our approach, called Noah (i.e.,
short for Neural-optimized A* search algorithm), optimized
A* search algorithm through graph neural networks in two
aspects. First, the estimated cost function h(·) learned by
graph neural networks helps A* search algorithm optimize
the search direction. Second, an elastic beam size can help
optimize search space and satisfy various user settings. Table I
summarizes the characteristics of existing solutions and our
approach.

We further propose an extension to GNNs, which we call
Graph Path Networks (GPNs) for the above neural opti-
mizations. Specifically, we incorporate pre-training GEDs and
attention-based edit paths between source graphs and target
graphs for training the model. Such pre-training information
not only enriches training data but also significantly improves
the performance of A* search algorithm. On the other hand, we
introduce graph alignment information (i.e., node substitution)
as the cross-graph information into the training process, which
effectively reduces the model size compared to early works. In
addition to the above design, we also encode user settings (e.g.,
permissible error and running time for GED computation) to
learn an elastic beam size for further optimization in A* search
algorithm. Through the above main design, Noah can optimize
A* search algorithm both in search direction and search space
to compute GED more effectively and intelligently. Note that
Noah can absolutely find an edit path from the source graph
to the target graph as A* search algorithm does.

Our contributions are summarized as follows:
• To the best of our knowledge, we are the first to use

neural networks for reinforcing A* search algorithm in
GED computation. Our approach, called Noah, optimizes
the search direction and search space by predicting the
estimated cost function and beam size, respectively.

• We further propose Graph Path Networks for the op-
timizations. Specifically, it incorporates attention-based
pre-training edit path information for training the model,
introduces graph alignment information as cross-graph
information into the training process, and encodes user
settings for learning an elastic beam size.

• We have evaluated our proposal by comparing it with
the state-of-the-art baselines on three real-world datasets
and a synthetic dataset. Experimental results suggest that
our approach significantly outperforms other methods in
GED computation metrics and graph similarity metrics
across a range of tasks.

The remainder of this paper is organized as follows. Section
2 introduces the preliminaries of our work and reviews A*
search algorithm for GED computation. Section 3 poses the
workflow of Noah, and Section 4 describes the detailed design
of GPN. We evaluate our proposal in Section 5 and discuss
related works in Section 6. At last, we conclude in Section 7.

II. PRELIMINARIES AND BACKGROUND

Graph edit distance (GED) defines the dissimilarity of two
graphs by the minimum amount of primitive operations needed
to transform one graph into the other one. In this section,
we first review the terminologies used in this paper, and then
review A* search algorithm.

A. Graph Edit Distance

Definition 1. Graph. A graph is denoted by a 6-tuple g =
(V,E, LV , LE ,ΣV ,ΣE), where V denotes a set of vertices,
E ⊆ V × V a set of (un)directed edges, ΣV and ΣE are the
label sets of V and E, respectively, and LV and LE are label
functions that assign labels to vertices and edges, respectively.

There are six primitive edit operations on graphs: in-
sert/delete a vertex with a label, substitute a/an vertex/edge
label, and insert/delete an edge between two vertices. And the
edit path is defined as follows.

Definition 2. Edit path. Given two graphs g1 and g2, there
exists a sequence of primitive edit operations to transform g1
to g2, such as, g1 = g01 → g11 → · · · → gk1 = g2.

We may have different operation sequences to transform g1
to g2, and each operation sequence can correspond to a node
substitution, which is useful information in Graph Alignment.

Definition 3. Node substitution. Given two graphs g1 and
g2, and their vertices V1 = {u1, · · · , u|(V1)|} and V2 =
{v1, · · · , v|(V2)|}. A node substitution is denoted by p = {ui →
vj , · · · , ui′ → ε, · · · , ε → vj′ , · · · }, where ui → vj denotes
the substitution of a vertex ui by a vertex vj , ui′ → ε denotes
the deletion of ui′ , and ε→ vj′ denotes the insertion of vj′ .

Fig. 2. An example of edit path and its corresponding node substitution.

Note that a node substitution only consists of edit operations
on vertices, while edit operations on edges can be implied by
edit operations on their adjacent vertices.

Definition 4. Edit path. Given two graphs g1 = (V1, E1, LV1
,

LE1
,ΣV1

,ΣE1
) and g2 = (V2, E2, LV2

, LE2
,ΣV2

,ΣE2
),

where V1 = {u1, · · · , u|(V1)|} and V2 = {v1, · · · , v|(V2)|}. An
edit path is denoted by p = {ui → vj , · · · , ui′ → ε, · · · , ε→
vj′ , · · · }, where ui → vj denotes the substitution of a vertex
ui by a vertex vj , ui′ → ε denotes the deletion of ui′ , and
ε→ vj′ denotes the insertion of vj′ .

Definition 5. Graph Edit Distance (GED). Given two graphs
g1 and g2, their GED is defined as the minimum number
of primitive operations to transform g1 to g2, denoted by
GED(g1, g2). Note that there might have several edit paths
to compute the GED.

We pose an example of an edit path and its corresponding
node substitution in Figure 2. It is also the minimum cost edit
path between G1 and G2, and GED(G1, G2) = 2.

B. Review of A* search algorithm

Since it is impossible and unnecessary to compute all
possible edit paths between two graphs (i.e., the source graph
g1 and the target graph g2), the GED can be solved by A*
search algorithm [9]. This algorithm explores the space of
all possible mappings between two graphs by means of an
ordered tree. Such a search tree is constructed dynamically
by iteratively creating successor nodes linked by edges to
the currently considered node in the search tree. In order to
determine the node which will be used for further expansion
in the next iteration, we need a cost function. Formally, for
a partial edit path p (i.e., a node in the search tree that can
trace back the root), g(p) represents the cost of such a partial
edit path accumulated so far, and h(p) represents the estimated
cost from the current node to a leaf node. Therefore, the sum
g(p) + h(p) can represent a complete solution that transform
g1 to g2. Obviously, the partial edit path p that minimizes
g(p) + h(p) is chosen for further expansion.

Algorithm 1 formally describes A* search algorithm for
GED. We assume the vertices of g1 are processed in the
order of {u1, · · · , u|(V1)|}. All possible edit operations are

Algorithm 1: A* algorithm for graph edit distance
Input: Two graphs

g1 = (V1, E1, LV1
, LE1

,ΣV1
,ΣE1

) and
g2 = (V2, E2, LV2

, LE2
,ΣV2

,ΣE2
), where

V1 = {u1, · · · , u|(V1)|} and
V2 = {v1, · · · , v|(V2)|}

Output: A minimum-cost edit path pmin from g1 to
g2

1 Initialize an empty set OPEN to store edit path ;
2 for each vertex ω ∈ V2 do
3 Insert the substitution {u1 → ω} into OPEN ;
4 Insert the deletion {u1 → ε} into OPEN ;
5 while OPEN 6= ∅ do
6 Remove pmin = argminp∈OPEN{g(p) + h(p)}

from OPEN;
7 if pmin is a complete edit path then
8 return pmin
9 else

10 Let pmin = {u1 → vi1 , · · · , uk → vik} ;
11 if k < |V1| then
12 for each ω ∈ V2\{vi1 , · · · , vik} do
13 Insert pmin ∪ {uk+1 → ω} into

OPEN ;
14 Insert pmin ∪ {uk+1 → ε} into OPEN ;
15 else
16 Insert pmin ∪

⋃
ω∈V2\{vi1 ,··· ,vik}

{ε→ ω}
into OPEN ;

17 return ∅

constructed simultaneously for each vertex, including the re-
moval of the vertex (line 14) and the substitution of the vertex
by any unprocessed vertex of g2 (line 13). If all vertices of g1
are processed, all unprocessed vertices of g2 can be inserted
into the edit path in a single iteration (line 16). The OPEN set
consists of all potential partial edit paths to be considered in
the next iteration. In each iteration, we only focus on the path
pmin which minimizing the cost function g(p)+h(p) (line 6).
If pmin is a complete path, it is guaranteed to be an optimal
one and is returned as the solution (line 8).

Further more, observable cost g(p) for current edit path p
can be computed in linear time by Algorithm 2. Specifically,
the observable cost g(p) is made up of three parts: vertex
relabeling (line 2-4), edge deletion or relabeling (line 5-7) and
edge insertion (line 8-10).

C. Estimated cost h(p)

Estimated cost h(p) is a significant task in A* search
algorithm, because if estimated cost h(p) is lower than, or
equal to, the real cost, an optimal path is guaranteed to be
found [9]. Based on this, early works focus on the heuristic
function to better estimate h(p), and several kinds of lower
bound are proposed. We introduce some typical ones as
follows.

Algorithm 2: Observable cost g(p)

Input: Two graphs
g1 = (V1, E1, LV1 , LE1 ,ΣV1 ,ΣE1) and
g2 = (V2, E2, LV2

, LE2
,ΣV2

,ΣE2
), an edit

path p = {u1 → vi1 , · · · , uk → vik}, and it
corresponding edit function Lp that assign
vertices of g1 to vertices of g2

Output: Observable cost g(p)
1 Initialize g(p)← 0 ;
/* Vertex relabeling */

2 for each vertex u ∈ V1 do
3 if LV1

(u) 6= LV2
(Lp(u)) then

4 g(p)← g(p) + 1 ;
/* Edge deletion or relabeling */

5 for each edge (u, u′) ∈ E1 do
6 if (Lp(u), Lp(u

′)) /∈ E2 or
LE1

(µ, µ′) 6= LE2
(Lp(u), Lp(u

′)) then
7 g(p)← g(p) + 1 ;
/* Edge Insertion */

8 for each edge (v, v′) ∈ E2 do
9 if (L−p (v), L−p (v′)) /∈ E1 then

10 g(p)← g(p) + 1 ;
11 return g(p)

1) Label Set-based Lower Bound δLS(·, ·): Let g1\p and
g2\p represent the remaining parts of g1 and g2, respectively.
The label set-based lower bound [20] is

δLS(g1\p, g2\p) = Φ(V1(g1\p), V2(g2\p))+
Φ(E1(g1\p), E2(g2\p))

(1)

where Φ(·, ·) denotes the edit distance between two multisets
and Φ(S1, S2) = max{|S1|, |S2|}− |S1∩S2| for multisets S1

or S2.
2) Star Match-based Lower Bound δSM (·, ·): The star

match-based lower bound is proposed in [21].

Definition 6. Star structure. A star structure is a 3-tuple s =
(ν, L, l), where ν denotes the root vertex, L denotes the set
of ν’s one-hop neighbors, and l denotes a labeling function.
Edges exist between ν and any vertex in L and no edge exists
among vertices in L.

A graph g can be mapped to a multiset of star structures,
and represented by this multiset as S(g). The edit distance
between two star structures can be computed as

λSM (s1, s2) = 1l(s1) 6=l(s2)+||L(s1)|−|L(s2)||+Φ(L(s1), L(s2))
(2)

where s1 and s2 are the star structures from g1\p and g2\p
respectively, 1φ is an indicator function that equals 1 if the
expression φ evaluates true and 0 otherwise. Then, the star
match-based lower bound is

δSM (g1\p, g2\p) =
minLp

∑
ν∈g1\p λ

SM (ν, Lp(ν))

max{4, [max{∆(g1\p),∆(g2\p)}+ 1]}
(3)

Fig. 3. Workflow of Noah.

where Lp denotes the set of all mappings from vertices of
g1\p to vertices of g2\p, and ∆(g1\p) and ∆(g2\p) denote
the maximum vertex degree in g1\p and g2\p respectively.
Note that Hungarian algorithm [22] is applied to obtain the
minimum cost for star structure mapping in O(n3) time, where
n is the vertex number in involved graphs.

3) Branch Match-based Lower Bound δBM (·, ·): The
branch match-based lower bound is proposed in [10].

Definition 7. Branch structure. A branch structure is a 2-
tuple b = (ν, le), where ν denotes the root vertex, and le
denotes the multiset of edge labels adjacent to ν.

The branch structure is similar to the star structure except
for excluding the one-hop neighbor nodes, so that the edit
distance between two branch structures can be computed as

λBM (b1, b2) = 1l(b1)6=l(b2) +
1

2
× Φ(le(b1), le(b2)) (4)

Then, the branch match-based lower bound is

δBM (g1\p, g2\p) = min
Lp

∑
ν∈g1\p

λBM (ν, Lp(ν)) (5)

where Lp denotes the set of all mappings from vertices of
g1\p to vertices of g2\p. Compared to star match-based lower
bound, branch match-based lower bound can be computed in
O(nlogn), where n is the vertex number in involved graphs.

III. OVERVIEW OF NOAH

In this paper, in order to optimize A* algorithm, we in-
troduce GNN (Graph Neural Networks) into two aspects of
A* search algorithm: estimating cost h(p) more accurately,
and learning an elastic beam size for different graph pairs
instead of manually setting based on experiences. Specifically,
we design a Neural-optimized A* search algorithm (called
Noah for short) in this section.

Figure 3 shows the workflow of our proposal, Noah, con-
sisting two major parts: Training and Testing. In the training
part, training data (i.e., a series of graph pairs with few nodes)
is computed by A* search algorithm to generate pre-training
information, which can be used for following training in Graph
Path Networks. In the testing part, testing data (i.e., a series
of graph pairs with many nodes) needs to be computed by
A*-Beamsearch. During the initialization of A*-Beamsearch,

Fig. 4. The overall architecture of Graph Path Networks. The colored areas
denote three different modules, in which orange and blue boxes represent
algorithms and NN layers, respectively.

an elastic beam size is provided by GPN with the input of the
graph pair and user settings. Such a combination optimizes
the search space by reducing useless computation of A*-
Beamsearch. Another combination is applied in each iteration
of A*-Beamsearch. We apply GPN to predict h(p) for each
edit path in the OPEN set. Such a combination furnishes A*
algorithm with a more accurate estimated cost than traditional
lower bounds, which can optimize the search direction by
reducing the iterations of A*-Beamsearch. Through the above
workflow, Noah is capable of computing GEDs approximately
for graph pairs in testing data.

Note that our training is conducted on small graphs (less
than 20 nodes), but we can apply the pre-training information
to compute GED between large graphs (up to hundreds of
nodes) in the testing phase (see Section V-B3 for details),
which confirms the excellent generalization ability.

IV. GRAPH PATH NETWORKS

In order to make Noah work for GED computation, Graph
Path Networks (GPN) is proposed. In this section, we present
GPN in detail, and the overall architecture of GPN is illustrated
in Figure 4.

A. Model overview

Our model is developed based on the general A* search
algorithm framework, and it has three main modules (i.e.,
pre-training module, graph embedding module, and learning
module). The pre-training module computes pre-training infor-
mation (i.e., exact GEDs and graph edit paths), and then gener-
ates (sub)graph pairs in the training set. The graph embedding
module is based on Graph Isomorphism Network (GIN) [23],
a popular graph neural network which can distinguish different
graph structures. It first transforms the node of each (sub)graph
into a vector, encoding the features and structural properties
around each node. In such node-level embeddings, (sub)graph
pairs share the same graph neural networks, and cross-graph
information is included in the encoded features. After that, it
introduces an attention mechanism to obtain the final graph-
level embeddings. The learning module is designed for beam
size and estimated cost h(·), which can be applied in A* search
algorithm. The following subsections detail the three modules.

B. Pre-training module

Pre-training methods such as BERT [24] and GPT [25]
have obtained success in the text domain these years. At
the same time, pre-training methods used for graph similarity

tasks also achieve better performance than baseline methods
without pre-training information [26]. Specifically, pre-training
information (i.e., ground-truth GEDs) is incorporated into a
supervised loss function

L = E(i,j)∼D(d̂ij − dij)2, (6)

= E(i,j)∼D(‖hGi − hGj‖22 − dij)2 (7)

where hGi
and hGj

are the embeddings of the graph pair (i, j),
and dij is their distance. The loss function is to minimize the
difference between the predicted and the ground-truth GEDs.

Although the above pre-training information can be useful
for some downstream tasks (e.g., graph classification, graph
similarity ranking), it is not good enough to guide path-finding
in A* search algorithm. First, the estimated cost h(·) in A*
search algorithm is the distance between two unprocessed
subgraphs, so that the prediction for h(·) would not be accurate
if we only use complete graphs for training. Second, the cost
function f(·) in A* is the sum of observable cost and estimated
cost, and therefore, a simple similarity ranking among all
candidate edit paths could not guide the path selection in A*
search algorithm. In that case, we introduce a better-suited
pre-training method for A* search algorithm framework.

1) Take edit paths into consideration.: In our pre-training
method, the pre-training information is more than the ground-
truth GEDs between training graph pairs. We compute the
ground-truth GEDs between training graph pairs and their
corresponding edit paths through A* search algorithm. Note
that the edit path is one of the optimal edit paths, and we
further decompose it into a series of partial edit paths and
partial edit costs. Specifically, the loss function has been
changed as follows:

L = E(i,j)∼D

∑|E|
θ=0(‖hθGi

− hθGj
‖22 − dθij)2

|E|
(8)

where E is the set of edit operations between graph pair
(i, j), hθGi

and hθGj
are the embeddings of unprocessed parts

of the graph pairs after the edit operation θ, and dθij is the
corresponding distance between the subgraph pair.

2) Enhanced loss function with attention mechanism.: We
assume each edit operation of the selected optimal edit path
contributes equally in A* search algorithm as Equation 8
indicates. However, some key edit operations in A* search
algorithm might influence the direction of path-finding, which
means increasing the weight of these more significant edit
operations can better optimize A* search algorithm. Based on
such observation, we apply an attention mechanism between
edit operations in an optimal edit path as

h̃θGi
=

θ∑
k=0

att(hθGi
,hkGi

) · hkGi
(9)

where h̃θGi
denotes the improved embedding of unprocessed

part of graph Gi after the edit operation θ and att(·, ·) is an
attention function as

att(hθGi
,hkGi

) =
αθ,k∑θ

k′=0 exp(αθ,k′)
, (10)

αθ,k = ωT1 · tanh(W1 · hkGi
+W2 · hθGi

) (11)

where ω1, W1 and W2 are the parameter vector or matrix to
learn during the training process.

With the above attention mechanism, we can discover more
significant edit operations in the optimal edit path and learn
a more appropriate model for predicting h(·). What is more,
since previous approaches can hardly solve exact(or approx-
imate) GED computation with plenty of nodes in the graph
pairs, learning more significant edit operations in the optimal
edit paths could help A* search algorithm make better choices
in path-finding. To some extent, the attention mechanism used
in pre-training information works like a kind of metric-based
meta-learning [27], because we try to find more significant edit
operations in the optimal edit paths which can be generalized
to large graphs in the testing data.

C. Graph Embedding module

The graph embedding module embeds each (sub)graph into
a vector for further measurement based on the selected similar-
ity metric (e.g., GED). We adopt Graph Isomorphism Network
(GIN), which has been proven theoretically an example among
maximally powerful GNNs [23], in the graph embedding
module. For convenience, we take a subgraph pair of (G1, G2)
as an example in this subsection.

First, the initial nodes can be embedded through a multi-
layer perceptron (MLP) if the input features are not one-hot
encodings:

h
(0)
i = MLP (0)(xi),∀i ∈ V1 (12)

Then, GIN updates node representations as

h
(k)
i = h

(k)
Θ

(1 + ε(k)) · h(k−1)
i +

∑
j∈N (i)

h
(k−1)
j

 (13)

where hi is the representation of node i, N (i) is the set
of neighbors of node i, h(k)Θ denotes a neural network (i.e.,
a multi-layer perceptron), and ε is a learnable parameter or a
fixed scalar.

Afterwards, cross-graph information is exploited into node
representations update. Cross-graph information is the differ-
ences between the nodes and their substitution nodes in the
other graphs, which is amplified through the iterations, making
our model more sensitive to these differences. Specifically,
the node representations update takes into account not only
the neighbors of the node but also the graph alignment
information. Such information is also generated from the pre-
training information of node substitutions. Since we know the
node can be matched to one or none (i.e., the vertex deletion)
node in the other graph of the graph pair, we can transform
the node substitution set into a node substitution matrix M ,
in which 1 means the nodes for the row and the column
are matched while 0 means not. Therefore, the cross-graph
information of node i in graph G1 can be expressed as

µ
(k)
i =

∑
l∈V2

1Mil
(h

(k−1)
i − h

(k−1)
l) (14)

where Mil is the value of the i-th row and the l-th column
in the node substitution matrix M , and 1φ is an indicator
function that equals 1 if the expression φ evaluates true and 0

otherwise. Therefore, the node representations are updated as
follows

h
(k)
i = h

(k)
Θ

(1 + ε(k)) · h(k−1)
i +

∑
j∈N (i)

h
(k−1)
j + µ

(k)
i

(15)

Note that the cross-graph information can also be added into
node representation without the node substitution matrix [17].
In that case, 1Mil

is replaced by an attention function (e.g.,
att(hiG1

,hlG2
) in Equation 11). However, such cross-graph

information induces much computation during training. So that
making good use of graph alignment information (i.e., node
substitution) can train the model in a more lightweight way.

Finally, we generate graph-level embedding through a
weighted sum of node-level embeddings rather than an un-
weighted average or sum of node-level embeddings because
more important nodes should receive more weights. We should
also notice that most GNNs can only embed connected graphs
into vectors, while the majority of subgraphs of the graph
pairs are unconnected so that we introduce a hyper-node that
connects all nodes and has the same label for every subgraph.
And therefore, after the iterations of GNN, the hyper-node
can provide the global structural and feature information of
the subgraph. Meanwhile, nodes similar to the hyper-node are
more critical than those dissimilar. Based on such observation,
the graph-level embedding is computed by

hG1
=
∑
i∈V1

σ(Sh(hTi ,hhyper)) · hi (16)

where Sh(·, ·) is a vector space similarity metric, like
Euclidean or cosine similarity, σ(·) is a sigmoid function (i.e.,
σ(x) = 1

1+exp(−x)) that ensures the similarity metrics in the
range (0, 1), and hi and hhyper is the node embeddings for
node i and the hyper-node in the subgraph G1, respectively.

D. Learning module

Through the procedure in the graph embedding module, we
obtain the graph-level embeddings for each (sub)graph pair.
The learning module aims to utilize these graph embeddings
and then help A* search algorithm achieve the ability to predict
multiple objectives (i.e., beam size and estimated cost h(·)).

1) Predicting the elastic beam size with MLP: We use a
multi-layer perceptron to define the cost function for predicting
the beam size. Since the A* search algorithm takes thousands
of iterations for GED computation, it is inappropriate to
predict a beam size for each iteration because it costs too
much, and we could not discover the subgraphs belonging
to the optimal edit paths. Therefore, only graph embeddings
for the complete graphs h

(0)
G1

and h
(0)
G2

are included in the
inputs. Meanwhile, an embedding vector vu for encoding user
settings (e.g., permissible error and running time for GED
computation) is also included in the inputs. Formally, we have
the following component to infer an elastic beam size based
on the user requirements.

Bs = MLP1(h
(0)
G1
,h

(0)
G2
,vu) (17)

2) Improved prediction for h(·): A naive approach to
predict the estimated cost h(·) is a standard similarity metric
(e.g., Euclidean similarity or Hamming distance [17]) or a
multi-layer perceptron as we do in predicting the beam size.
However, the prediction for h(·) is much more significant
for A* search algorithm than the beam size because it can
effectively optimize the search direction and reduce the search
space. It is also noted that such simple usage of data represen-
tations often lead to insufficient or weak interaction between
the graph pair [28]. Therefore, we use Neural Tensor Networks
(NTN) to further model the interaction between two graph
embeddings:

S(hG1 ,hG2) = f(hTG1
W [1:K]

3 hG2 + V

[
hG1

hG2

]
+ b) (18)

where W [1:K]
3 is a set of (i.e., K refers to the iterations of

graph embedding) learned weight tensor, [·] is the concatena-
tion operation, V is a weight vector, b is a bias vector, and f(·)
is an activation function. Such interaction S(hG1

,hG2
) is used

to replace the simple similarity metric in Equation 8. Note that
normalization is also applied through the higher bound based
on the number of nodes and edges for better training.

V. EXPERIMENTS

A. Experimental Setup

1) Testbed: The single machine we use consists of two
12-core Intel Xeon Gold 6126 CPUs (48 hardware threads
in total), a 400 GB Samsung DDR4-2666 DRAM, and four
Nvidia Tesla P100 GPUs. All algorithms and evaluations
are implemented by Python, and the model is written in
PyTorch and its extension deep learning library, PyTorch
Geometric [29].

2) Datasets: We use three real-world and one synthetic
dataset for evaluation. We introduce them briefly first and then
conclude their properties in Table II.

AIDS. The AIDS dataset consists of graphs represent-
ing molecular compounds from the AIDS Antiviral Screen
Database of Active Compounds. The molecules are converted
into graphs in a straightforward manner by representing atoms
as nodes and the covalent bonds as edges. The AIDS dataset
has been used by many prior works of graph similarity search
or graph classification [16], [30]–[32].

GREC. The GREC dataset consists of graphs representing
symbols from architectural and electronic drawings [33]. End-
ing points, corners, intersections and circles are represented by
nodes, and the nodes are connected by undirected edges. We
choose the GREC dataset because it has much symmetry and
isomorphism, bringing a challenge to GED computation.

IMDB. The IMDB dataset consists of ego-graphs repre-
senting movies of different genres from IMDB [34]. For each
graph, nodes represent actors/actresses, and there is an edge
between them if they appear in the same movie. It represents
datasets generated from social networks in specific domains,
and it also contains many large graphs.

Synthetic. The synthetic dataset is generated by sampling
binomial graphs with n nodes and edge probability p, and

then create positive paired graphs by randomly substituting
kp edges from initial graphs with new edges, and negative
paired graphs by substituting kn edges from initial graphs,
where kp < kn.

TABLE II
DETAILED INFORMATION OF DIFFERENT DATASETS

Dataset Type Graphs Pairs Nodes Partition1

AIDS 700 490K [2, 10] 60% : 20% : 20%
GREC 1100 1.21M [4, 24] 60% : 20% : 20%
IMDB 1500 2.25M [7, 89] 60% : 20% : 20%

Synthetic 30000 10K2 {20, 100} 60% : 20% : 20%
1 The partition of datasets is expressed as training set : validation set : testing set.
2 The synthetic dataset has 10K triples (i.e., initial graphs, positive paired graphs

and negative paired graphs).
3) Baselines: Since our approach is a combination of tradi-

tional GED computation algorithm (i.e., A* search algorithm)
and neural networks, we compare our approach with them.

First, the traditional approximate GED computation al-
gorithms include A*-Beamsearch [15], Hungarian [35], and
VJ [36]. Therefore, we use the best result of the above three
algorithms as the baseline of traditional approaches. Note that
the lower bound we use in A*-Beamsearch is the label set-
based lower bound.

Second, recently, two notable end-to-end learning-based
models (i.e., SimGNN [16] and GMN [17]) have achieved
impressive results on graph similarity search. Hence, we view
both of them as the baseline of learning-based approaches.

4) Metrics: The performance of different approaches is
evaluated by using two kinds of metrics: (1) GED compu-
tation; (2) similarity ranking.

The following metrics are used for GED computation:
Accuracy. It measures the accuracy that the computed GEDs
compared to the ground-truth GEDs. Feasibility. It measures
the ratio that the computed GEDs are feasible (i.e., the
computed GEDs are equal to or more than the ground-truth
GEDs). Mean Absolute Error (MAE). It measures the average
absolute difference between the computed GEDs and the
ground-truth GEDs, which indicates the computation ability.
Mean Squared Error(MSE). It measures the average squared
difference between the computed GEDs and the ground-truth
GEDs, which indicates the computation stability.

The metrics used for similarity ranking are Spearman’s
Rank Correlation Coefficient (ρ) [37], Kendall’s Rank Cor-
relation Coefficient (τ) [38], and Precision at k (p@k). The
first two metrics measure the matching ratio between the
computed ranking results and the real ranking results. The
last one measures the matching ratio between the computed
top k results and the ground-truth top k results, which focuses
on the top k results rather than the global ranking results.
Specifically, k we use in the evaluation are 10 and 20.

5) Hyperparameters setting: For model architecture, we set
the number of GIN layers to 3, which would cause the final
representation of a node to contain information from its 3rd
order neighbors. Meanwhile, we use a ReLU nonlinearity on
the hidden layers between GIN layers. The output dimensions
for the 1st, 2nd, and 3rd GIN layers are 128, 64, and 32,
respectively. The initial ε is 0, and follow-up ones are learned.
Since we have introduced cross-graph information from node

TABLE III
PERFORMANCE COMPARISON FOR PREDICTION ABILITY BETWEEN NOAH AND BASELINES ON THREE DATASETS.

Datasets Methods
Metrics Accuracy Feasibility MAE MSE ρ τ p@10 p@20

AIDS

Traditional1 0.303 1.000 1.600 4.922 0.747 0.573 0.804 0.801
SimGNN 0.201 0.367 1.647 4.720 0.605 0.454 0.788 0.761

GMN 0.249 0.549 1.294 3.090 0.686 0.519 0.776 0.731
Noah 0.313 1.000 1.542 4.675 0.734 0.560 0.809 0.812

GREC

Traditional 0.223 1.000 1.880 6.919 0.791 0.658 0.516 0.517
SimGNN 0.154 0.496 2.131 7.758 0.745 0.564 0.148 0.255

GMN 0.155 0.708 2.096 7.548 0.706 0.533 0.193 0.295
Noah 0.275 1.000 1.790 5.845 0.807 0.671 0.562 0.552

IMDB
SimGNN 0.116 0.525 32.489 8839 0.761 0.623 0.347 0.470

GMN 0.167 0.472 39.064 11433 0.807 0.669 0.090 0.130
Noah 0.484 1.000 3.755 55.636 0.810 0.716 0.354 0.405

1 The traditional baseline is the best result of A*-Beamsearch, Hungarian and VJ.

embeddings to graph embeddings, we set the iteration number
K in the NTN layer to 8. The MLPs we use for the learning
module are all 2-layers. For training, the number of iterations
is set to 5000, and the initial learning rate is 0.001.

B. Tasks, Results and Analysis

In this subsection, we set a series of tasks among different
datasets to compare our approach with baselines in several
aspects. To briefly summarize, the following three tasks indi-
cate the prediction ability, learning ability, and generalization
ability, respectively.

1) Graph Edit Distance Computation and its downstream
tasks: MAE and MSE are the basic metrics to examine how
good a method can compute GEDs. Meanwhile, GED is also
be used by its downstream tasks, such as graph isomorphism
check [39], graph similarity search [16], graph classifica-
tion [15] and entity alignment [40]. Therefore, we need other
metrics to examine the prediction ability for those downstream
tasks. Specifically, checking graph isomorphism (i.e., graph
edit distance of 0) requires the accuracy of the prediction
results; graph classification task requires the similarity ranking
of p@k (to know the tested graphs belong to which known
categories); and entity alignment task requires the prediction
results feasible (i.e., if the computed GEDs are less than the
ground-truth GEDs, it is impossible to exist corresponding edit
operations for alignment).

In the training and evaluation process, the training graph
pairs are created by training set and validation set, while the
testing graph pairs are created by training set, validation set,
and testing set. Specifically, training graph pairs = (training set
+ validation set) × (training set + validation set), and testing
graph pairs = (training set + validation set) × testing set. The
process is in conformance with experiments in early works for
similarity search, which can also be viewed as a real-world
scenario of graph query [16].

Table III shows the performance for prediction ability
on three real-world datasets. Among all four methods, our
method, Noah, obtains the best or second performance in all
metrics across three datasets. It suggests that our method is
not only effective for GED computation metrics but also for
graph similarity metrics. It is worth mentioning that traditional
methods achieve the best graph similarity metrics on the AIDS
dataset, and GMN achieves the best GED computation metrics

on the AIDS dataset. We conjecture that graphs in the AIDS
dataset have few nodes and simple structural information. We
notice that Noah performs much better than other methods
in graph similarity metrics on GREC dataset because of
symmetry and isomorphism that might not be learned well
by end-to-end learning-based methods. We also notice that
the gap between GED computation metrics of Noah and
other methods becomes much more prominent on the IMDB
dataset. Two reasons contribute to such a case. First, graphs
in the IMDB dataset are hugely different from each other,
causing end-to-end learning-based methods (i.e., SimGNN and
GMN) unable to compute GED as traditional methods and
combinatorial methods. Second, based on our observation,
among three traditional methods, Hungarian and VJ algorithms
perform well on the IMDB dataset, while A*-Beamsearch
performs well on the other two real-world datasets.

2) Learning how to compute Graph Edit Distance: Note
that the graph query task (i.e., For each graph in the testing
set, we treat it as a query graph, and let the model compute
the similarity between the query graph and every graph in the
database) used in Task 1 might be suitable for tasks related to
graph similarity search, but not in line with GED computation.
Because such a scenario assumes that one graph in the graph
pair is what we have seen before, while the reality is that
neither of the graphs in the graph pair has been seen. For
GED computation, we should pay more attention to the cross-
graph information that can be used to learn how to compute
GED rather than global information used for graph similarity
search.

Therefore, we set the evaluation for this task by only using
testing set (i.e., testing graph pairs = testing set × testing set).
In Table IV, Noah performs stably in different testing graph
pairs (i.e., comparison between Task 1 and Task 2), while
SimGNN and GMN perform much worse than they perform
in Table III. Such results demonstrate that Noah can learn
from graphs it has met before and learn how to compute GED
between two unseen graphs.

TABLE IV
RESULTS OF TESTING PAIRS FOR LEARNING ABILITY ON AIDS.

Method Acc Fea MAE MSE ρ τ p@10 p@20
SimGNN 0.217 0.506 2.280 13.189 0.192 0.139 0.147 0.204

GMN 0.194 0.492 2.358 13.671 0.152 0.110 0.122 0.153
Noah 0.319 1.000 1.501 4.483 0.748 0.578 0.748 0.758

3) Train on small graphs, generalize to large graphs:
Except for the above prediction ability and learning ability,

the generalization ability is also required because one of the
advantages for learning-based methods is they can figure out
the problem of scalability that traditional algorithms could
not cope well with [16], [17]. And therefore, we evaluate the
generalization ability by training on small graphs and then
testing on large graphs.

However, there is a fundamental problem for generating
the testing dataset. As we said above, no currently available
algorithms can reliably compute the exact GED for large
graphs (i.e., graphs with more than 16 nodes). Meanwhile,
the IMDB dataset (i.e., applying the best results of three
traditional algorithms as the ground-truth GEDs) introduces
noise that might influence the prediction accuracy for all
kinds of learning-based methods. For Noah, the influence of
such noise is even more, because Noah is designed to learn
the search path of A* search algorithm rather than the node
substitution of Hungarian or VJ algorithm.

In consideration of the above, we carefully design the
synthetic dataset and the task for generalization evaluation.
Specifically, as we mentioned in Section V-A, we set the
generated graphs with 20 nodes and 100 nodes for training and
testing set, respectively, and the edge probability of 0.2. As
to graph pairs, we create positive paired graphs and negative
paired graphs for each graph in the dataset rather than create
graph pairs between all different graphs (i.e., as what we
do in three real-world datasets). The positive paired graphs
are created by randomly substitute kp edges from the initial
graphs. Because we assume the cost of an edge substitution
is 2 in Algorithm 2 (i.e., an edge substitution operation can
be divided into an edge deletion and an edge insertion), the
real GED between the initial graph and the positive paired
graph is 2kp. Note that the actual GED between them can be
smaller than 2kp due to symmetry and isomorphism. However,
the probability of such cases is typically low for large graphs,
and for small graphs, we can check such cases by using GED
computation methods. The situation is the same for negative
paired graphs. Through this design, the ground-truth GEDs for
large graphs are also accurate, and the metric for similarity
turns to be pairwise similarity (i.e., the accuracy for finding
the positive ones). Specifically, kp and kn are ranging from 1
to 5, while we guarantee kp < kn.

TABLE V
RESULTS OF SYNTHETIC DATASET.

Method Acc Fea MAE MSE Triplet acc
SimGNN 0.081 0.215 1.130 1.887 0.515

GMN 0.051 0.177 2.579 9.743 0.813
Noah 0.914 1.000 0.447 0.831 0.992

Table V shows the experimental results of generalization
ability between Noah and end-to-end learning-based methods
on the Synthetic dataset. Note that the GED computation
metrics are used as above, while the similarity metric we
used in this experiment is Triplet accuracy because of the
way we generate the synthetic dataset. Triplet accuracy can
be computed as

AccTriplet =

∑
1GEDpos<GEDneg

NTriplets
(19)

where 1φ is an indicator function that equals 1 if the
expression φ evaluates true and 0 otherwise, and NTriplets
is the total number of triplets. It measures the accuracy for
distinguishing positive (or negative) graphs from the testing
triplets. The results show that our approach outperforms the
others significantly on all five metrics, which indicates that our
approach has excellent generalization ability. Benefit from the
optimized triplet losses [17], GMN performs much better than
SimGNN on the Triplet accuracy metric though it has poorer
GED computation performance.

C. Detailed Analysis on Noah

1) Effectiveness of Graph Path Networks: In order to eval-
uate the effectiveness of GPN, we should design a subgraph
testing because the input of the estimated cost h(p) is two
subgraphs rather than two complete graphs. We generate the
subgraph dataset through the edit paths computed by A* search
algorithm, and then use it for evaluation.

First, we compare GPN with three lower bounds (i.e., label
set-based, star match-based, and branch match-based) that
we introduce in Section II-C, and the comparison metric we
use is MAE. Figure 5 shows that Noah outperforms them
significantly on all three datasets, which demonstrates the
effectiveness of GPN for h(·) prediction. Note that among
three lower bounds, branch match-based lower bound outper-
forms the other two when meeting small graphs (i.e., AIDS
dataset), while label set-based lower bound outperforms the
other two significantly when meeting large graphs (i.e., GREC
and IMDB datasets), so that we choose label set-based lower
bound as the default lower bound in A*-Beamsearch.

AIDS GREC IMDB
0

10

20

30

40

m
ae

LS

SM

BM

GPN

Fig. 5. Comparison between different lower bounds on three datasets.

Then, following the thought of combining neural networks
with A* search algorithm, we compare the GED computation
metrics among SimGNN, GMN, and GPN on the AIDS
dataset. The results in Table VI show that GPN performs
better than the others in accuracy, MAE, and MSE. We do
not compare feasibility because it is unnecessary for subgraph
testing.

TABLE VI
RESULTS OF SUBGRAPH TESTING ON AIDS.
Method Accuracy MAE MSE

SimGNN 0.174 1.954 6.457
GMN 0.194 1.739 5.202
GPN 0.198 1.557 3.760

2) Efficiency of estimated cost prediction: Afterwards, we
evaluate the efficiency of h(·) prediction by comparing the
number of iterations of A* search algorithm between Noah
and A*-Beamsearch. The results in Figure 6 show that Noah
can significantly reduce the number of iterations in all three

real-world datasets. Noted that it reduces more iterations in
more massive graphs, and the reduced ratios of three datasets
are 22.4%, 34.4%, and 44.5%, respectively.

AIDS GREC IMDB
0

200

400

600

N
u

m
b

er
of

it
er

at
io

n
s

A*-Beamsearch

Noah

Fig. 6. Iterations of A* search algorithm comparison.

Furthermore, reducing the number of iterations of A* search
algorithm is not enough to prove the efficiency because one
inference of our model takes about 100× than function-based
lower bounds (i.e., several milliseconds compared to tens of
microseconds). Therefore, we expand the beam size of A*-
Beamsearch to 10× bigger than our approach to promise they
are compared equally (i.e., they have 20 seconds for search)
and then compare their performance on the IMDB dataset. The
results in Table VII show that Noah can still perform better
than traditional lower bounds on nearly every metric except
for p@10, even they have the same time for search in A*
search algorithm.

TABLE VII
RESULTS OF EQUAL COMPARISON ON IMDB.

Method Acc Fea MAE MSE ρ τ p@10 p@20
A*-Beam 0.276 1.000 4.943 263.331 0.773 0.685 0.360 0.373

Noah 0.484 1.000 3.755 55.636 0.810 0.716 0.354 0.405

D. Case Studies and Insights

In this subsection, we first visualize some experimental
results as case studies. Then, from these visualizations, we
analyze how Noah could obtain such effective performance
in GED computation. At last, we propose some insights on
combinatorial methods like Noah and our future works.

(a) AIDS (b) IMDB
Fig. 7. Case studies on AIDS and IMDB.

Figure 7(a) and Figure 7(b) visualize the edit path of sample
graph pairs on AIDS dataset and IMDB dataset, respectively.
In the left subfigure, A*-Beamsearch (i.e., green dotted lines)
pairs the vertex of label ”C” in the source graph with the vertex
of label ”C” in the target graph, while Noah pairs the vertex of
label ”C” in the source graph with the vertex of label ”N” in
the target graph. Through different mappings of vertices, Noah
only needs two edit operations (i.e., two vertex substitutions),
while A*-Beamsearch needs three edit operations (i.e., an edge
deletion, an edge insertion, and a vertex relabeling). In the

right subfigure, since graphs in IMDB dataset are all ego-
networks, Noah can identify egos (i.e., big and red nodes)
and then pair them in the edit path, which might significantly
reduce edit operations in the edit path. The results indicate
that Noah can focus more on the graph structure information
than traditional lower bounds in A* search algorithm.

Figure 8 visualize another case study on the GREC dataset,
which compare graph similarity through GED with end-to-
end learning-based methods (i.e., SimGNN and GMN). The
graphs in the first column are the source graphs, and those in
the other four columns are the target graph. The results suggest
that Noah could recognize more symmetry and isomorphism
components, which are common in the GREC dataset, than
end-to-end learning-based methods.

Fig. 8. A case study on GREC dataset.

Insights. Through a series of experiments and case studies,
we summarize the following advantages of combinatorial
methods like Noah. First, compared with traditional heuristic
search algorithms, it does not require manual settings (i.e.,
beam size based on experience, heuristic h(·) functions), but
automatically learns from data. Second, end-to-end learning-
based methods belong to transductive learning, which has
poor generalization ability, while the combinatorial methods
can generalize across different sizes of graphs and different
tasks. Meanwhile, it obtains not only GED scores (or similarity
scores) learned by graph neural networks, but also edit path
which is necessary for downstream tasks. Third, the combi-
natorial strategy can better absorb the strengths of the two
components, which results in accurate prediction capability,
especially for complex graph structure information.

Future works. Noah is not perfect and has the following
two main limitations. First, though its performance on several
datasets proves its efficiency, it is still a heavy computation
method if compared to end-to-end learning-based methods.
Therefore, there is still a need to make it light-weight, such
as pruning neural networks, further improving the prediction
accuracy, and only inference for “key” iterations. Second,
our method exploits GIN with its expressive power for graph
isomorphism testing, and therefore inherits its limitations. One
possible limitation is that whenever two nodes share the same
neighborhood, our approach may fail to converge to one of
the possible solutions so that we might still propose a kind of
GNN layer specifically suitable for GED computation.

VI. RELATED WORKS

We summarize the research directions related to our work.
Graph Edit Distance Computation. Except for exact GED

computation and approximate GED computation methods we
have introduced in Section I, there is also another kind of
method for approximate GED computation, such as Hungar-
ian [35] and VJ [36]. This kind of method is based on an
(optimal) fast bipartite optimization procedure mapping nodes
and their local structure of one graph to nodes and their local
structure of another graph. Hungarian and VJ make use of
Munkres’ algorithm and Volgenant and Jonker algorithm for
finding an optimal match between the sets of local structure,
respectively. Originally, these algorithms have been proposed
to solve the assignment problem in polynomial time, which
can be generalized to compute approximate GEDs.

Deep Learning for Graph Similarity Search. Recent years
have witnessed the success of deep learning in modeling
complex data structures (i.e., graph) and relationships. In
specific, GCN (Graph Convolutional Networks) [41], [42] and
GraphSAGE [43] are proposed to learn node representations
and then provide node-level embedding for graphs. Further-
more, aggregation based methods such as simple average or
weighted average [44] and attention mechanism [45], [46] are
exploited to generate graph-level embedding. For specific use
in graph similarity search, SimGNN [16] and GMN [17] both
introduce cross-graph information into their models. These
studies mainly abstract graph information to features that deep
learning models can learn, and then solve practical problems,
such as node or graph classification, rather than our current
task (i.e., GED computation).

Machine Learning for Complicated Algorithms and
Heuristics. More recently, learning-based approaches have
been proved to have the potential to yield complicated al-
gorithms and heuristics by learning from massive data be-
cause they can effectively detect useful patterns and leverage
modeling capacity, which may escape algorithm designers.
Specifically, learning-based approaches have been introduced
in classic NP-hard problems, such as Satisfiability, Traveling
Salesman, Maximum Cut, Minimum Vertex Cover [47]–[50].
Also, strategies learned by reinforcement learning in the game
GO [51] and Atari games [52] have been proved effective than
ever before. Furthermore, combinatorial optimization with
machine learning and traditional search algorithms takes the
advantages of both. It outperforms recent deep learning works
on some specific problems, such as Maximal Independent
Set [53] and Personalized Route Recommendation [54].

VII. CONCLUSION

In this paper, we propose a novel approach called Noah,
which combines A* search algorithm and Graph Path Net-
works (GPN) we proposed for Graph Edit Distance com-
putation. First, we learn the estimated cost function h(·)
by GPN. Attention-based pre-training information and cross-
graph information are incorporated for training the model,
and therefore optimize the search direction of A* algorithm.
Second, we learn an elastic beam size that can help reduce

search size and satisfy various user settings. Experimental re-
sults suggest that our approach significantly outperforms other
methods in graph similarity metrics and GED computation
metrics across a range of tasks.

REFERENCES

[1] D. Bonchev, Chemical graph theory: introduction and fundamentals.
CRC Press, 1991, vol. 1.

[2] D. J. Watts, P. S. Dodds, and M. E. Newman, “Identity and search in
social networks,” science, vol. 296, no. 5571, pp. 1302–1305, 2002.

[3] J. Beasley and N. Christofides, “Vehicle routing with a sparse feasibility
graph,” European Journal of Operational Research, vol. 98, no. 3, pp.
499–511, 1997.

[4] L. Zou, J. Mo, L. Chen, M. T. Özsu, and D. Zhao, “gstore: answer-
ing sparql queries via subgraph matching,” Proceedings of the VLDB
Endowment, vol. 4, no. 8, pp. 482–493, 2011.

[5] H. Bunke, “What is the distance between graphs,” Bulletin of the EATCS
20, pp. 35–39, 1983.

[6] H. Bunke and K. Shearer, “A graph distance metric based on the maximal
common subgraph,” Pattern recognition letters, vol. 19, no. 3-4, pp.
255–259, 1998.

[7] H. Bunke, “On a relation between graph edit distance and maximum
common subgraph,” Pattern Recognition Letters, vol. 18, no. 8, pp. 689–
694, 1997.

[8] Z. Zeng, A. K. Tung, J. Wang, J. Feng, and L. Zhou, “Comparing
stars: On approximating graph edit distance,” Proceedings of the VLDB
Endowment, vol. 2, no. 1, pp. 25–36, 2009.

[9] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE Trans. Syst. Sci. Cybern.,
vol. 4, no. 2, pp. 100–107, 1968.

[10] W. Zheng, L. Zou, X. Lian, D. Wang, and D. Zhao, “Efficient graph
similarity search over large graph databases,” IEEE Transactions on
Knowledge and Data Engineering, vol. 27, no. 4, pp. 964–978, 2014.

[11] L. Chang, X. Feng, X. Lin, L. Qin, and W. Zhang, “Efficient graph
edit distance computation and verification via anchor-aware lower bound
estimation,” arXiv preprint arXiv:1709.06810, 2017.

[12] D. B. Blumenthal and J. Gamper, “Exact computation of graph edit
distance for uniform and non-uniform metric edit costs,” in International
Workshop on Graph-Based Representations in Pattern Recognition.
Springer, 2017, pp. 211–221.

[13] K. Riesen, S. Emmenegger, and H. Bunke, “A novel software toolkit for
graph edit distance computation,” in International Workshop on Graph-
Based Representations in Pattern Recognition. Springer, 2013, pp.
142–151.

[14] D. B. Blumenthal and J. Gamper, “On the exact computation of the
graph edit distance,” Pattern Recognition Letters, 2018.

[15] M. Neuhaus, K. Riesen, and H. Bunke, “Fast suboptimal algorithms for
the computation of graph edit distance,” in Joint IAPR International
Workshops on Statistical Techniques in Pattern Recognition (SPR) and
Structural and Syntactic Pattern Recognition (SSPR). Springer, 2006,
pp. 163–172.

[16] Y. Bai, H. Ding, S. Bian, T. Chen, Y. Sun, and W. Wang, “Simgnn:
A neural network approach to fast graph similarity computation,” in
Proceedings of the Twelfth ACM International Conference on Web
Search and Data Mining, 2019, pp. 384–392.

[17] Y. Li, C. Gu, T. Dullien, O. Vinyals, and P. Kohli, “Graph matching
networks for learning the similarity of graph structured objects,” arXiv
preprint arXiv:1904.12787, 2019.

[18] D. Koutra, H. Tong, and D. Lubensky, “Big-align: Fast bipartite graph
alignment,” in 2013 IEEE International Conference on Data Mining
(ICDM), 2013.

[19] H. Fürstenau and M. Lapata, “Graph alignment for semi-supervised
semantic role labeling,” in Proceedings of the 2009 Conference on
Empirical Methods in Natural Language Processing, EMNLP 2009, 6-7
August 2009, Singapore, A meeting of SIGDAT, a Special Interest Group
of the ACL, 2009.

[20] D. B. Blumenthal and J. Gamper, “Exact computation of graph edit
distance for uniform and non-uniform metric edit costs,” in Graph-Based
Representations in Pattern Recognition - 11th IAPR-TC-15 International
Workshop, GbRPR 2017, Anacapri, Italy, May 16-18, 2017, Proceedings,
ser. Lecture Notes in Computer Science, P. Foggia, C. Liu, and M. Vento,
Eds., vol. 10310, 2017, pp. 211–221.

[21] Z. Zeng, A. K. H. Tung, J. Wang, J. Feng, and L. Zhou, “Comparing
stars: On approximating graph edit distance,” Proc. VLDB Endow.,
vol. 2, no. 1, pp. 25–36, 2009.

[22] H. W. Kuhn, “The hungarian method for the assignment problem,” Naval
Research Logs, vol. 2, no. 1, pp. 83–98, 1955.

[23] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are
graph neural networks?” in 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019.

[24] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training
of deep bidirectional transformers for language understanding,” in
Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7,
2019, Volume 1 (Long and Short Papers), J. Burstein, C. Doran, and
T. Solorio, Eds. Association for Computational Linguistics, 2019, pp.
4171–4186.

[25] R. Alec, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving
language understanding by generative pre-training,” 2018.

[26] Y. Bai, H. Ding, Y. Qiao, A. Marinovic, K. Gu, T. Chen, Y. Sun, and
W. Wang, “Unsupervised inductive graph-level representation learning
via graph-graph proximity,” in Proceedings of the Twenty-Eighth Inter-
national Joint Conference on Artificial Intelligence, IJCAI 2019, Macao,
China, August 10-16, 2019, S. Kraus, Ed. ijcai.org, 2019, pp. 1988–
1994.

[27] O. Vinyals, C. Blundell, T. Lillicrap, K. Kavukcuoglu, and D. Wierstra,
“Matching networks for one shot learning,” in Advances in Neural
Information Processing Systems 29: Annual Conference on Neural
Information Processing Systems 2016, December 5-10, 2016, Barcelona,
Spain, D. D. Lee, M. Sugiyama, U. von Luxburg, I. Guyon, and
R. Garnett, Eds., 2016, pp. 3630–3638.

[28] R. Socher, D. Chen, C. D. Manning, and A. Y. Ng, “Reasoning with
neural tensor networks for knowledge base completion,” in Advances in
Neural Information Processing Systems 26: 27th Annual Conference on
Neural Information Processing Systems 2013. Proceedings of a meeting
held December 5-8, 2013, Lake Tahoe, Nevada, United States, C. J. C.
Burges, L. Bottou, Z. Ghahramani, and K. Q. Weinberger, Eds., 2013,
pp. 926–934.

[29] M. Fey and J. E. Lenssen, “Fast graph representation learning with
PyTorch Geometric,” in ICLR Workshop on Representation Learning
on Graphs and Manifolds, 2019.

[30] M. Neuhaus and H. Bunke, Bridging the Gap Between Graph Edit
Distance and Kernel Machines. World Scientific, 2007.

[31] S. V. N. Vishwanathan, N. N. Schraudolph, R. Kondor, and K. M.
Borgwardt, “Graph kernels,” J. Mach. Learn. Res., vol. 11, pp. 1201–
1242, 2010.

[32] K. Riesen and H. Bunke, “IAM graph database repository for graph
based pattern recognition and machine learning,” in Structural, Syntactic,
and Statistical Pattern Recognition, Joint IAPR International Workshop,
SSPR & SPR 2008, Orlando, USA, December 4-6, 2008. Proceedings,
ser. Lecture Notes in Computer Science, N. da Vitoria Lobo, T. Kasparis,
F. Roli, J. T. Kwok, M. Georgiopoulos, G. C. Anagnostopoulos, and
M. Loog, Eds., vol. 5342. Springer, 2008, pp. 287–297.

[33] P. Dosch and E. Valveny, “Report on the second symbol recognition
contest,” in Graphics Recognition. Ten years review and future perspec-
tives. Proc. 6th Int. Workshop on Graphics Recognition (GREC’05), ser.
LNCS 3926, L. Wenyin and J. Lladós, Eds. Springer, 2005, pp. 381–
397.

[34] P. Yanardag and S. V. N. Vishwanathan, “Deep graph kernels,” in
Proceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Sydney, NSW, Australia, August
10-13, 2015, L. Cao, C. Zhang, T. Joachims, G. I. Webb, D. D.
Margineantu, and G. Williams, Eds. ACM, 2015, pp. 1365–1374.

[35] K. Riesen and H. Bunke, “Approximate graph edit distance computation
by means of bipartite graph matching,” Image and Vision computing,
vol. 27, no. 7, pp. 950–959, 2009.

[36] S. Fankhauser, K. Riesen, and H. Bunke, “Speeding up graph edit
distance computation through fast bipartite matching,” in International
Workshop on Graph-Based Representations in Pattern Recognition.
Springer, 2011, pp. 102–111.

[37] C. Spearman, “The proof and measurement of association between two
things.” American Journal of Psychology, vol. 15, no. 1, pp. 72–101,
1904.

[38] M. G. Kendall, “A new measure of rank correlation,” Biometrika, vol. 30,
no. 1-2, pp. 81–93, 1938.

[39] N. Shervashidze, P. Schweitzer, E. J. van Leeuwen, K. Mehlhorn, and
K. M. Borgwardt, “Weisfeiler-lehman graph kernels,” J. Mach. Learn.
Res., vol. 12, pp. 2539–2561, 2011.

[40] M. Fey, J. E. Lenssen, C. Morris, J. Masci, and N. M. Kriege, “Deep
graph matching consensus,” in 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net, 2020.

[41] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural
networks on graphs with fast localized spectral filtering,” in Advances
in Neural Information Processing Systems 29, D. D. Lee, M. Sugiyama,
U. V. Luxburg, I. Guyon, and R. Garnett, Eds., 2016, pp. 3844–3852.

[42] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Con-
ference Track Proceedings, 2017.

[43] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Advances in Neural Information Processing
Systems 30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, Eds., 2017, pp. 1024–1034.

[44] D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel,
A. Aspuru-Guzik, and R. P. Adams, “Convolutional networks on graphs
for learning molecular fingerprints,” in Advances in Neural Informa-
tion Processing Systems 28, C. Cortes, N. D. Lawrence, D. D. Lee,
M. Sugiyama, and R. Garnett, Eds., 2015, pp. 2224–2232.

[45] K. K. Thekumparampil, C. Wang, S. Oh, and L.-J. Li, “Attention-based
graph neural network for semi-supervised learning,” 2018.

[46] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, “Graph attention networks,” 2017.

[47] I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio, “Neural combi-
natorial optimization with reinforcement learning,” in 5th International
Conference on Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Workshop Track Proceedings. OpenReview.net,
2017.

[48] O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks,” in Advances
in Neural Information Processing Systems 28: Annual Conference on
Neural Information Processing Systems 2015, December 7-12, 2015,
Montreal, Quebec, Canada, C. Cortes, N. D. Lawrence, D. D. Lee,
M. Sugiyama, and R. Garnett, Eds., 2015, pp. 2692–2700.

[49] E. B. Khalil, H. Dai, Y. Zhang, B. Dilkina, and L. Song, “Learning
combinatorial optimization algorithms over graphs,” in Advances in
Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, 4-9 December 2017, Long
Beach, CA, USA, I. Guyon, U. von Luxburg, S. Bengio, H. M. Wallach,
R. Fergus, S. V. N. Vishwanathan, and R. Garnett, Eds., 2017, pp. 6348–
6358.

[50] D. Selsam, M. Lamm, B. Bünz, P. Liang, L. de Moura, and D. L. Dill,
“Learning a SAT solver from single-bit supervision,” in 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA,
USA, May 6-9, 2019. OpenReview.net, 2019.

[51] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanc-
tot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever,
T. P. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis,
“Mastering the game of go with deep neural networks and tree search,”
Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[52] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. A. Riedmiller, A. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533,
2015.

[53] Z. Li, Q. Chen, and V. Koltun, “Combinatorial optimization with graph
convolutional networks and guided tree search,” in Advances in Neural
Information Processing Systems 31: Annual Conference on Neural
Information Processing Systems 2018, NeurIPS 2018, 3-8 December
2018, Montréal, Canada, S. Bengio, H. M. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, Eds., 2018, pp. 537–
546.

[54] J. Wang, N. Wu, W. X. Zhao, F. Peng, and X. Lin, “Empowering a*
search algorithms with neural networks for personalized route recom-
mendation,” in Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, KDD 2019,
Anchorage, AK, USA, August 4-8, 2019, A. Teredesai, V. Kumar, Y. Li,
R. Rosales, E. Terzi, and G. Karypis, Eds. ACM, 2019, pp. 539–547.

