
MSQ-Index: A Succinct Index for
Fast Graph Similarity Search

Xiaoyang Chen , Hongwei Huo , Senior Member, IEEE, Jun Huan, Senior Member, IEEE,

Jeffrey Scott Vitter, Fellow, IEEE, Weiguo Zheng , and Lei Zou

Abstract—Graph similarity search under the graph edit distance constraint has received considerable attention in many applications,

such as bioinformatics, data mining, pattern recognition and social networks. Existing methods for this problem have limited scalability

because of the huge amount of memory they consume when handling very large graph databases with tens of millions of graphs. In this

article, we present a succinct index that incorporates succinct data structures and hybrid encoding to achieve improved query time

performance with minimal space usage. Specifically, the space usage of our index requires only 5–15 percent of the previous state-of-

the-art indexing size while at the same time achieving several times acceleration in query time on the tested data. We also improve the

query performance by augmenting the global filter with range searching, which allows us to perform similarity search in a reduced

region. In addition, we propose two effective lower bounds together with a boosting technique to obtain the smallest possible candidate

set. Extensive experiments demonstrate that our proposed approach is superior both in space and filtering to the state-of-the-art

approaches. To the best of our knowledge, our index is the first in-memory index for this problem that successfully scales to cope with

the large dataset of 25 million chemical structure graphs from the PubChem dataset. The source code is available online.

Index Terms—Graph indexing, similarity search, filter boosting, succinct index, hybrid encoding

Ç

1 INTRODUCTION

GRAPHS are widely used to model complicated data
objects in many disciplines, such as bioinformatics [24],

social networks [25], software and data engineering [35].
Effective analysis and management of graph data become
increasingly important. Many graph-based queries have
been investigated, which can be roughly divided into two
broad categories: graph exact search [2], [34] and graph sim-
ilarity search [19], [28], [39]. Compared with exact search,
similarity search can provide a robust solution that permits
error-tolerant and supports for searching not precisely
defined patterns.

Similarity computation between two labeled graphs is a
core operation of graph similarity search. There are at least
four similarity metrics being well investigated: graph edit
distance [12], [32], [36], [39], maximal common subgraph
distance [4], [10], graph alignment [1], [33], and graph ker-
nel function [29], [31]. In this paper, we focus on the graph

edit distance (GED) because it is applicable to virtually all
types of data graphs and can also capture structural differ-
ences. GED has been widely used in various applications,
including pattern recognition [9], graph classification [23]
and chemistry analysis [22].

The graph edit distance between two graphs h and g,
denoted by gedðh; gÞ, is the minimum length of an edit path
between h and g, where an edit path is a sequence of edit
operations that transforms one graph to another. Typical
edit operations [18] are inserting and deleting a vertex or an
edge, and relabeling a vertex or an edge.

Based on the metric, GED, we study the following graph
similarity search problem: Given a graph database G, a
query graph h and a threshold t, this problem aims to find
all graphs g in G such that gedðh; gÞ � t. Unfortunately, com-
puting GED is known to be an NP-hard problem [36]. Thus,
the basic solution for this problem that computes GED for
all pairs of h and data graphs g 2 G may be lead to unsatis-
factory computational efficiency.

Most of existing methods [6], [32], [37], [38], [39] adopt
the filtering-and-verification framework to speed up graph
similarity search. In the filtering phase, GED lower bounds
are employed to prune as many false-positive graphs
from G; this phase can be efficiently accomplished with
specified index structures. The remaining unpruned graphs
constitute a candidate set, C, and are validated with expen-
sive GED computations in the verification phase.

1.1 Limitations

Lots of graph similarity search methods have been pro-
posed [32], [36], [37], [38], [39] and gained promising results.

� X. Chen and H. Huo are with Xidian University, Xi’an 710071, Shaanxi,
China. E-mail: xychen1991@stu.xidian.edu.cn, hwhuo@mail.xidian.edu.cn.

� J. Huan is with the Baidu Research, Baidu Technology Park, No. 10 Xibei-
wang East Road, Haidian District, Beijing 100094, China.
E-mail: huanjun@baidu.com.

� J. S. Vitter is with the University ofMississippi, University, MS 38677-1848
USA. E-mail: jsv@OleMiss.edu.

� W. Zheng is with the School of Data Science, Fudan University, Shanghai
200433, China. E-mail: zhengweiguo@fudan.edu.cn.

� L. Zou is with Peking University, Beijing 100080, China.
E-mail: zoulei@pku.edu.cn.

Manuscript received 18 July 2018; revised 10 Oct. 2019; accepted 11 Nov.
2019. Date of publication 20 Nov. 2019; date of current version 29 Apr. 2021.
(Corresponding author: Hongwei Huo.)
Recommended for acceptance by Y. Zhang.
Digital Object Identifier no. 10.1109/TKDE.2019.2954527

2654 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 6, JUNE 2021

1041-4347 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0003-1858-2400
https://orcid.org/0000-0003-1858-2400
https://orcid.org/0000-0003-1858-2400
https://orcid.org/0000-0003-1858-2400
https://orcid.org/0000-0003-1858-2400
https://orcid.org/0000-0002-5436-1851
https://orcid.org/0000-0002-5436-1851
https://orcid.org/0000-0002-5436-1851
https://orcid.org/0000-0002-5436-1851
https://orcid.org/0000-0002-5436-1851
https://orcid.org/0000-0003-1200-7368
https://orcid.org/0000-0003-1200-7368
https://orcid.org/0000-0003-1200-7368
https://orcid.org/0000-0003-1200-7368
https://orcid.org/0000-0003-1200-7368
https://orcid.org/0000-0002-8586-4400
https://orcid.org/0000-0002-8586-4400
https://orcid.org/0000-0002-8586-4400
https://orcid.org/0000-0002-8586-4400
https://orcid.org/0000-0002-8586-4400
mailto:xychen1991@stu.xidian.edu.cn
mailto:hwhuo@mail.xidian.edu.cn
mailto:huanjun@baidu.com
mailto:jsv@OleMiss.edu
mailto:zhengweiguo@fudan.edu.cn
mailto:zoulei@pku.edu.cn

However, these methods still suffer from huge storage and
expensive query cost when dealing with large transaction
graph databases [4].

Some methods have to build an index structure to effi-
ciently prune graphs in the filtering phase. For instance,
GSimJoin [37] built an inverted index for all path-based
q-grams, and Mixed [39] proposed an index structure, u-tree,
storing all branch and disjoint substructures. These index
structures usually store each entry in an int type. This may
yield an unaffordable storage cost for large graph databases.

On the other hand, somemayproduce expensive query cost
owing to loose GED lower bounds and inefficient filtering. For
the former, they would produce a large candidate set, leading
to unacceptable verification cost. For the later, they filter data
graphs from the whole database while usually only a small
proportion of data graphs are similar to the query graph.

1.2 Contributions

To solve the above issues, we propose a space-efficient
index structure, called MSQ-Index, by incorporating suc-
cinct data structures and hybrid encoding. MSQ-Index con-
sists of multiple succinct q-gram trees, where each tree is
compressed through a hybrid encoding schema. Mean-
while, several auxiliary succinct data structures with a little
storage cost are proposed to ensure that each compressed
entry can be accessed in constant time.

MSQ-Index can also provide efficient query processing,
which benefits from the following two aspects: (1) two GED
lower bounds together with a boosting technique are pro-
posed to obtain the smallest possible candidate set; (2) a pre-
processing method is provided to help MSQ-Index perform
similarity search only on a small percentage of data graphs
in the database.

In summary, our contributions are summarized below.

� We propose a succinct index structure, called succinct
q-gram tree, which combines succinct data structures
and hybrid encoding to achieve efficient similarity
search with minimal space usage. Each entry in this
tree is compressed and needs only several bits to
store, which takes much fewer bits than that used to
store an int type in existing indexing methods.

� We propose two effective GED lower bounds,
called degree-based q-gram counting lower bound
and degree-sequence lower bound, to prune data
graphs. Moreover, we provide a boosting technique
to improve these lower bounds.

� We propose a preprocessing method, which helps us
perform similarity search only on a small percentage
of data graphs in the database.

� We have conducted extensive experiments on both
small and large datasets to evaluate the index size,
construction time, filtering ability, and response
time. The results confirm the effectiveness and effi-
ciency of our proposed method and show that it can
scale well to cope with the large dataset consisting
of 25 million chemical compounds from the Pub-
Chem dataset.

� The source code is available online [5].
The rest of this paper is organized as follows: In Section 2,

we investigate research works related to this paper. In

Section 3, we introduce the problem definition and the filter-
ing principle. In Section 4, we present our indexing method
MSQ-Index. In Section 5, we give the theoretical analysis of
MSQ-Index. In Section 6, we report the experimental results.
Finally, we make concluding remarks in Section 7.

2 RELATED WORK

Recently, the graph similarity search problem has received
considerable attentions, and existing methods to this prob-
lem can be found in the literatures [6], [11], [12], [21], [30],
[32], [36], [37], [38], [39].

Filters. Inspired by the q-gram concept in string similarity
queries, Wang et al. first proposed a tree-based q-gram count-
ing filter in k-AT [32], where a tree-based q-gram is defined as
a k-adjacent subtree consisting of a vertex and paths whose
length is less than k starting from this vertex. While, Zhao
et al. considered a simple path as a path-based q-gram in
GSimJoin [37]. The principle of the q-gram counting filter is
stated as follows: If gedðh; gÞ � t, then the number of common
q-grams between two graphs h and g satisfies jQðhÞ \QðgÞj �
maxfjQðhÞj �DsðhÞ � t; jQðgÞj� DsðgÞ � tg, where Qð�Þ is the
q-grammultiset andDsð�Þ is themaximumnumber of q-grams
that can be affected by an edit operation. Clearly, the q-gram
counting filter can be efficiently finished in OðmaxfjQðhÞj;
jQðgÞjgÞ time. Nevertheless, this counting filter may suffer
from poor filtering abilitywhenDsðhÞ andDsðgÞ are large.

Another class of filter is the mapping distance-based fil-
ter, which derives GED lower bound by computing the
mapping distance between two graphs. In C-Star [36], Zeng
et al. decomposed a graph into star structures (i.e., 1-adja-
cent subtrees) and then computed the mapping distance of
star structures of h and g through the bipartite matching.
While, Zheng et al. employed the branch structures (i.e.,
star structures without end vertices) inMixed [39]. The Hun-
garian algorithm [20] is employed to compute the bipartite
matching, whose time complexity is OðjV j3Þ, where
jV j ¼ maxfjVhj; jVgjg. This class of filter may be inefficient
when it is performed pairwise computations between h and
all data graphs g in the database [30].

The substructures in the aforementioned filters are fixed-
size, whereas Zhao et al. introduced a partition-based filter
in Pars [38], which divided each data graph g into t þ 1
non-overlapping substructures and pruned g if there exists
no substructure that is subgraph isomorphic to h. Later,
Liang et al. proposed a parameterized, partition-based
lower bound that can be instantiated into a series of tight
lower bounds in ML-Index [21]. Whether it is Pars or
ML-Index, it needs to perform subgraph isomorphism test
during similarity search. However, subgraph isomorphism
test is an NP-hard problem [34] and may consume a large
amount of time. Therefore, both Pars and ML-Index may
suffer from inefficient filtering for large graph databases.

It is worth to mention that the above filters show differ-
ent performance on different datasets and one can hardly
prove the merits of them in theory [11].

Indexing Techniques. Several indexing techniques have
been proposed to speed up the computation of the above fil-
ters through maximizing computation sharing. In k-AT,
GSimJoin, and Pars, they employed an inverted index to
store the tree-based q-grams, path-based q-grams, and

CHEN ET AL.: MSQ-INDEX: A SUCCINCT INDEX FOR FAST GRAPH SIMILARITY SEARCH 2655

disjoint substructures, respectively. For Mixed, it used an R-
tree [14] like index structure u-tree to store all branch and
disjoint substructures. SEGOS [30] introduced a two-level
index structure to speed up C-Star. In ML-Index, they
designed a multi-layered index structure, where each layer
employed an inverted index to store the partitioned sub-
structures. The above index structures all employ an int
type to store each entry. This may yield their index sizes too
large to fit into the main memory when dealing with large
graph databases.

GED Computation. A widely used method to compute
GED is based on the A

?
algorithm [15], [27]. Zhao et al. [37],

[38] designed several heuristic functions to improve A
?
.

Recently, Gouda et al. proposed a novel edge-basedmapping
method for exact GED computation, called CSI GED [12],
based on common substructure isomorphism. CSI GED
employs the backtracking search combined with three spe-
cific heuristics, gaining an excellent performance. Later,
Chen et al. [7] introduced a beam-stack search based method
for GED computation.

3 PROBLEM DEFINITION AND FILTERING PRINCIPLE

In this section, we first provide formal definitions of graph
edit distance and graph similarity search in Section 3.1 and
then introduce the filtering principle in Section 3.2. Table 1
lists some notations used in the paper.

3.1 Problem Definition

For ease of presentation, we only focus on simple, undi-
rected graphs without multi-edges or self-loops. Let S be a
set of discrete-valued labels. We define a labeled graph as a
triplet g ¼ ðVg;Eg; lgÞ, where Vg is the set of vertices,
Eg � Vg � Vg is the set of edges, lg : Vg [Eg ! S is the label-
ing function that assigns a label to a vertex or an edge. For
a vertex u, we use lgðuÞ to denote its label. Similarly,
lgðeðu; vÞÞ is the label of edge eðu; vÞ. SVg ¼ flgðuÞ : u 2 Vgg
and SEg ¼ flgðeðu; vÞÞ : eðu; vÞ 2 Egg are the label multisets
of Vg and Eg, respectively. The graph size refers to jVgj in
this paper.

Definition 1 (Subgraph Isomorphism [34]). Given graphs
g and h, g is subgraph isomorphic to h, denoted by g � h, if
there exists an injective function f : Vg ! Vh, such that (1)
8v 2 Vg, fðvÞ 2 Vh and lgðvÞ ¼ lhðfðvÞÞ; (2) 8eðu; vÞ 2 Eg,
eðfðuÞ; fðvÞÞ 2 Eh and lgðeðu; vÞÞ ¼ lhðeðfðuÞ; fðvÞÞÞ. If
g � h and h � g, then g is graph isomorphic to h (or vice
versa), denoted by g ffi h.

Six edit operations [3] can be used to transform one
graph to another, including inserting/deleting a vertex or
an edge, and substituting the label of a vertex or an edge.
An edit path P ¼ hp1; p2; . . . ; pki is a sequence of edit opera-
tions that transforms graph h to graph g (or vice versa),

denoted as h ¼ h0 p1! . . .
pk!hk ffi g, where edit operation pi is

applied to graph hi�1 to obtain the graph hi, for 1 � i � k.
We define the number of edit operations in P as the length
of the edit path and call P optimal only when it has the mini-
mum length among all possible edit paths.

Definition 2 (Graph Edit Distance). Given two graphs h
and g, the graph edit distance between them, denoted by
gedðh; gÞ, is the length of an optimal edit path between them, or
the minimum number of edit operations needed to transform
one graph to another.

Problem Statement. Given a graph database G ¼ fg1; g2;
. . . ; gjGjg, a query graph h and a threshold t, the problem is
to find all data graphs g in G such that gedðh; gÞ � t.

Example 1. Fig. 1 shows a query graph h and three data
graphs g1, g2 and g3. We can compute gedðh; g1Þ ¼ 5,
gedðh; g2Þ ¼ 4, and gedðh; g3Þ ¼ 3. If t ¼ 3, then g3 is the
required graph.

3.2 Filtering Principle

In this section, we first propose two effective GED lower
bounds and then provide a technique to boost them.

3.2.1 Q-Gram Counting Lower Bounds

Definition 3 (Degree-based q-gram). Let Dv ¼ ðlgðvÞ;
NðvÞ; dðvÞÞ be the degree structure (also called branch struc-
ture [39]) of a vertex v, where lgðvÞ is the label of v, NðvÞ is the
multiset of edge labels for those edges adjacent to v, and dðvÞ
is the degree of v. The degree-based q-gram of v is defined as
Dv, and the degree-based q-gram multiset of g is DðgÞ ¼
fDv : v 2 Vgg.

As discussed in [39], a vertex edit operation (i.e., inserting,
deleting or substituting a vertex) affects one degree-based
q-gram, and an edge edit operation (i.e., inserting, deleting
or substituting an edge) affects two degree-based q-grams.
Based on the principle of q-gram counting filter [32], [37],
we then establish the following degree-based q-gram count-
ing lower bound.

Theorem 1 (Degree-based q-gram counting lower
bound). Given two graphs h and g, then we have gedðh; gÞ �

TABLE 1
Notations

Symbol Description

j � j size of a set, or an array.
G graph database
t threshold of graph edit distance
g (or h) data (or query) graph
gedðh; gÞ graph edit distance between h and g
DðgÞ ðor LðgÞÞ degree-based (or label-based) q-gram multiset
sg degree-sequence of g
d the boosting parameter
�Dðh; gÞ degree-based q-gram counting lower bound
�Lðh; gÞ label-based q-gram counting lower bound
�Sðh; gÞ degree-sequence lower bound
�Di ðh; gÞ the ith boosted lower bound of �Dðh; gÞ
�Li ðh; gÞ the ith boosted lower bound of �Lðh; gÞ
�Si ðh; gÞ the ith boosted lower bound of �Sðh; gÞ
A the whole region formed by G
Qh the query region formed by h

Fig. 1. Query graph h and data graphs g1, g2, and g3.

2656 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 6, JUNE 2021

�Dðh; gÞ, where �Dðh; gÞ ¼ maxfjVhj; jVgjg� 1
2 ðjSVh \ SVg jþ

jDðhÞ \DðgÞjÞ.

Proof. See Appendix A in supplementary materials, which
can be found on the Computer Society Digital Library at
http://doi.ieeecomputersociety.org/10.1109/TKDE.2019.
2954527. tu

On the other hand, considering the label of a vertex or an
edge as a label-based q-gram, we then obtain the label-based
q-gram counting lower bound: gedðh; gÞ � �Lðh; gÞ, where
�Lðh; gÞ ¼ maxfjVhj; jVgjg þmaxfjEhj; jEgjg � jLðhÞ \ LðgÞj,
LðhÞ ¼ SVh [SEh

, and LðgÞ ¼ SVg [SEg . This lower bound
is a rewritten form of the label counting filter [37].

Fig. 2 shows the degree-based and label-based q-gram
multisets of graphs shown in Fig. 1, where the vertex degree
in each degree-based q-gram is omitted. The number on the
left of each q-gram is the times of this q-gram occurring in
the graph.

Example 2. Let t ¼ 2. Considering the graphs shown in
Fig. 1, we compute �Dðh; g2Þ ¼ 2:5 and �Lðh; g2Þ ¼ 2.
Clearly, �Dðh; g2Þ > t, thus we can filter g2 out. Simi-
larly, we obtain �Dðh; g1Þ ¼ 2 and �Lðh; g1Þ ¼ 3, thus we
also can filter g1 out since �Lðh; g1Þ > t. However, for g3
we have �Dðh; g3Þ ¼ 2 � t and �Lðh; g3Þ ¼ 1 � t, which
means that g3 passes these two q-gram counting lower
bounds.

3.2.2 Degree-Sequence Lower Bound

In this section, we propose a degree-sequence lower bound,
which is capable of filtering g3 out. The idea behind is that
if h is isomorphic to g, then they must have the same degree
sequence; thus, the distance between the degree sequences
of h and g is a lower bound of gedðh; gÞ.

Definition 4 (Degree Sequence). The degree sequence of
graph g, denoted by sg, is defined as a monotonic non-increas-
ing sequence consisting of the degree of vertices of g.

Definition 5 (Degree-Sequence Distance). Given two
degree sequences sh and sg, the distance between them

is defined as disðsh; sgÞ ¼ d12
P

sg½i
> sh½i
ðsg½i
 � sh½i
Þeþ
d12
P

sg½i
�sh½i
ðsh½i
 � sg½i
Þe.

The distance disðsh; sgÞ is the lower bound of the sum of
the number of edge insertion and deletion operations in an
optimal edit path between h and g. We multiply by 1

2 in
disðsh; sgÞ since one edge insertion/deletion operation
changes degrees of two vertices. Combining with the lower
bound of vertex edit operations, we then establish the fol-
lowing degree-sequence lower bound.

Theorem 2 (Degree-sequence Lower Bound). Given two
graphs h and g, then we have gedðh; gÞ � �Sðh; gÞ, where

�Sðh; gÞ ¼ maxfjVhj; jVgjg � jSVh \ SVg j þ disðs0h; s0gÞ, s0h ¼
½sh½1
; . . .; sh½jVhj
; 01; . . .; 0jV j�jVhj
 and s0g ¼ ½sg½1
; . . . ; sg

½jVgj
; 01; . . .; 0jV j�jVgj
.

Proof. See Appendix B in supplementary materials,
available online. tu

Example 3. For graphs h and g3 shown in Fig. 1, we have
sh ¼ ½2 2 2 2
 and sg3 ¼ ½3 2 2 1
, and then compute
disðs0h; s0gÞ ¼ d12 ð3� 2Þe þ d12 ð2� 1Þe ¼ 2. Finally,we obtain

�Sðh; gÞ ¼ 3 > t ¼ 2, and thus can filter g3 out.

3.2.3 Boosting

In this section, we provide a technique to boost these three
lower bounds �Dðh; gÞ, �Lðh; gÞ, and �Sðh; gÞ above. Without
loss of generality, we assume that jVhj � jVgj and use �ð; Þ to
denote any one of these three lower bounds (i.e.,
� 2 f�D; �L; �Sg) to explain the boosting technique.

Let P be the optimal edit path that transforms h to g. It is
trivial that D vertex deletions exist in P , where D ¼
jVhj � jVgj. Accordingly, there is a sequence of graphs
h ¼ h0 ! h1 ! � � � ! hD ! � � � ! hk ffi g, where hi � hi�1 is
an induced subgraph of hi�1 and obtained by deleting a vertex
in hi�1 and edges adjacent to this vertex, for 1 � i � D;
clearly, hi contains jVhj � i vertices.

Algorithm 1. filterGraph(h; g; t; d)

1 k maxf0;minfd; jVhj � jVgjgg;
2 pruned flase;
3 for i 0 to k do
4 compute �Di ðh; gÞ and �Li ðh; gÞ ;
5 if �Di ðh; gÞ > t or �Li ðh; gÞ > t then
6 pruned true ;
7 else
8 compute �Si ðh; gÞ;
9 if �Si ðh; gÞ > t then
10 pruned true ;
11 if pruned ¼ true then
12 return true ;
13 return false ;

LetCðh; iÞ be the set of h’s induced subgraphs containing
jVhj � i vertices, for 1 � i � D. We have hi 2 Cðh; iÞ. Let
�iðh; gÞ ¼ mino2Cðh;iÞfgedðh; oÞ þ �ðo; gÞg. Then �iðh; gÞ is a
lower bound of gedðh; gÞ, which boosts the original lower
bound �ðh; gÞ.

Theorem 3. Given two graphs g and h, then we have
�ðh; gÞ ¼ �0ðh; gÞ � �1ðh; gÞ � � � � � �Dðh; gÞ � gedðh; gÞ, where
� 2 f�D; �L; �Sg, D ¼ jVhj � jVgj, and �iðh; gÞ ¼ mino2Cðh;iÞ
fgedðh; oÞ þ �ðo; gÞg.

Proof. see Appendix C in supplementary materials,
available online. tu

Theorem 3 states that we can obtain a sequence of boost-
ing lower bounds. Hereafter, we use �Di ðh; gÞ, �Li ðh; gÞ and
�Si ðh; gÞ to denote the ith boosted lower bounds when taking
�ð; Þ as �Dð; Þ, �Lð; Þ and �Sð; Þ, respectively.

Example 4. For the graphs h and g1 shown in Fig. 1, we
compute �Dðh; g1Þ ¼ 2, �Lðh; g1Þ ¼ 3 and �Sðh; g1Þ ¼ 3.

Fig. 2. Degree-based(left) and label-based(right) q-gram multisets.

CHEN ET AL.: MSQ-INDEX: A SUCCINCT INDEX FOR FAST GRAPH SIMILARITY SEARCH 2657

http://doi.ieeecomputersociety.org/10.1109/TKDE.2019.2954527
http://doi.ieeecomputersociety.org/10.1109/TKDE.2019.2954527

Using the boosting technique, we compute that the first
boosted lower bounds are �D1 ðh; g1Þ ¼ 4:5, �L1 ðh; g1Þ ¼ 5
and �S

1 ðh; g1Þ ¼ 5. Clearly, all of the boosted lower bounds
are tighter than the original ones.

Based on Theorem 3, we propose the filtering method
filterGraph in Algorithm 1 to determine whether pruning a
data graph g, where d � t is a user-given boosting parame-
ter, k (line 1) is the maximum layer that the boosted lower
bounds can be applied.

Complexity Analysis. For an induced subgraph o 2 Cðh; iÞ,
for 0 � i � k, we can compute �Dðo; gÞ, �Lðo; gÞ, and �Sðo; gÞ
in OðjVojÞ, OðjVoj þ jEojÞ, and OðjVojlog jVojÞ time, respec-

tively. Since Cðh; iÞ contains i
jVhj

� �
� jVhji induced sub-

graphs, we can compute �Di ðh; gÞ, �Li ðh; gÞ, and �Si ðh; gÞ in
OðjVhjiþ1Þ, OððjVhj þ jEhjÞjVhjiÞ, and OðjVhjiþ1 log jVhjÞ time,
respectively. Thus, the time complexity of Algorithm 1 is

Oð
Pk

i¼0 jVhjið2jVhj þ jEhj þ jVhj log jVhjÞÞ ¼ OðjVhjdþ2Þ, for

jEhj � jVhj2 and k � d.

4 MSQ-INDEX

In this section, we propose a succinct index structure, called
MSQ-Index (Multiple Succinct Q-Gram Tree Index), which
supports for fast similarity search on a large database G.
MSQ-Index consists of the following three steps:

1) Preprocessing. For each graph g in G, we map it to a ver-
tex-edge-based 2D point, ðjVgj; jEgjÞ. Clearly, these
points can form a rectangle region.Meanwhile, we con-
vert the number counting filter [36] to a query rectan-
gle. By dividing thewhole region into non-overlapping
subregions, we can perform similarity search in a
reduced query region rather than thewhole region.

2) Succinct index construction.Webuild a q-gram tree over
each subregion in which leaf nodes store q-gram infor-
mation of data graphs and internal nodes summary its
child nodes, and then compress each q-gram tree to
minimize the space usage. Meanwhile, we create aux-
iliary succinct data structures to support fast query.

3) Query processing. We perform similarity search over
succinct q-gram trees built only in the reduced query
region. The remaining unpruned graphs constitute a
candidate set C andwe can employ existing GED com-
putationmethods [7], [12], [27] to verify graphs in C.

4.1 Preprocessing

Existing indexing methods such as [30], [32], [37], [38], [39]
perform similarity search on the whole database G.

However, this may be inefficient since typically only a small
part of data graphs in G are similar to a given query
graph h. Here we propose a preprocessing method, which
helps us search only on some data graphs.

Transformation. For each data graph g, we map it to a ver-
tex-edge-based 2D point, ðjVgj; jEgjÞ, where the x-coordinate
and y-coordinate denote the number of vertices and edges
in g, respectively. Then, we obtain a set of points fðjVgj; jEgjÞ
: g 2 Gg, and these points can form a rectangle region
A ¼ ½xmin; xmax
 � ½ymin; ymax
, where xmin=ymin and xmax=ymax

are the smallest and largest numbers of vertices/edges in G,
respectively.

Division. Given a division point ðx0; y0Þ and a
length ‘ > 0, we divide A into non-overlapping subregions
as follows: First, we compute an initial square subregion
A0;0 formed by the point set fðx; yÞ : jx� x0j þ jy� y0j � ‘g.
Then, we make extensions along the surrounding of A0;0 to
obtain subregions Ai;j of the same size as A0;0, where i and j
denote the relative offsets of the extensional subregion w.r.t.
A0;0 in lines y ¼ x and y ¼ �x, respectively. Finally, we
repeat the above extension process until all points in A
are exhausted.

Reduced Query Region. Once we have partitioned A into
non-overlapping subregions such that A ¼

S
i;jAi;j and

Ai;j \ Ai0;j0 ¼ ; for all i 6¼ i0 and j 6¼ j0, we can reduce the
query region from the whole region A to a reduced
regionQh below.

Definition 6 (Query Rectangle and Region). Given a
query graph h and a threshold t, the query rectangle Ah is
defined as the rectangle formed by the point set fðx; yÞ :
jx� jVhjj þ jy� jEhjj � tg. The query region Qh is the union
of all subregions intersecting with Ah, that is, Qh ¼

S
i;j Ai;j,

s.t. Ai;j \ Ah 6¼ ;.

For a data graph g, if gedðh; gÞ � t, then we have jjVgj�
jVhjj þ jjEgj � jEhjj � t [36]; consequently, ðjVgj; jEgjÞ 2 Ah.
Since Ah � Qh, we have ðjVgj; jEgjÞ 2 Qh. Therefore, search-
ing only in Qh will not produce false positives. In the exam-
ple of Fig. 3, Qh ¼ fA0;0;A1;0;A0;�1;A1;�1g is the region in
which we need to perform similarity search.

Given a point ðx; yÞ, its coordinates in lines y ¼ x and
y ¼ �x are 1ffiffi

2
p ðxþ y; y� xÞ. Thus, the relative offsets of

point ðx; yÞ w.r.t. the division point ðx0; y0Þ are dx ¼ 1ffiffi
2
p ððxþ

yÞ � ðx0 þ y0ÞÞ in line y ¼ x and dy ¼ 1ffiffi
2
p ððy� xÞ � ðy0 � x0ÞÞ

in line y ¼ �x, respectively. As the side length of a subre-
gion is

ffiffiffi
2
p

‘, the point ðx; yÞ belongs to the subregion Ai;j sat-

isfying i ¼ b dxffiffi
2
p

‘
c and j ¼ b dyffiffi

2
p

‘
c. By Definition 6, we know that

subregions in Qh are adjacent and can use the following for-
mula to computeQh.

Qh ¼
[

i;j
Ai;j for all i1 � i � i2 and j1 � j � j2; (1)

where i1 ¼ bðjEhj � t þ jVhj � ðx0 þ y0ÞÞ=2‘c and j1 ¼ bðjEhj
�t � jVhj � ðy0 � x0ÞÞ=2‘c are the relative positions of the
subregion in the lower left corner of Qh w.r.t. A0;0 in lines
y ¼ x and y ¼ �x, respectively, i2 ¼ bðjEhj þ t þ jVhj � ðx0 þ
y0ÞÞ=2‘c and j2 ¼ bðjEhj þ t � jVhj � ðy0 � x0ÞÞ=2‘c are the
relative positions of the subregion in the top right corner of
Qh w.r.t. A0;0 in lines y ¼ x and y ¼ �x, respectively. Since
bz1=‘c � bz2=‘c � ðz1 � z2Þ=‘þ 1, for any z1 and z2, we

Fig. 3. Illustration ofAh,Qh andA.

2658 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 6, JUNE 2021

obtain i2 � i1 � t=‘þ 1 and j2 � j1 � t=‘þ 1. So we com-
puteQh in Oððt=‘þ 2Þ2Þ time, which is almost constant.

In practice, we compute modes of data distributions of
ðjVgj; �Þ and ð�; jEgjÞ, respectively, and then take them as the
division point (x0; y0). For the subregion length ‘, we will
discuss it in the experiment.

4.2 Succinct Index Construction

In this section, we introduce a succinct q-gram tree index,
which incorporates succinct data structures and hybrid
encoding to achieve improved query time performance
with minimal space.

4.2.1 Tree Structure

Let UD and UL be the sets of all distinct degree-based and
label-based q-grams occurring in G, respectively, where
UD½i
 and UL½i
 are the ith most frequently occurring
degree-based and label-based q-grams, respectively. Then,
we define the q-gram profile of a graph as follows:

Definition 7 (q-gram Profile). The q-gram profile of a graph g
is defined as a four-tuple LD ¼ ðFD; FL; nv; neÞ, where nv

and ne are the numbers of vertices and edges in g, respectively,
FD and FL are two arrays to store the degree-based and label-
based q-gram multisets DðgÞ and LðgÞ, respectively, such that
FD½i
 and FL½i
 are the numbers of occurrences of UD½i

inDðgÞ and UL½i
 in LðgÞ, respectively.

Definition 8. Given two q-gram profiles LD and LD0, the union
operator ”t” between them is defined as: LD t LD0 ¼ ðFD �
F 0D; FL � F 0L;minfnv; n

0
vg;minfne; n

0
egÞ, where

ðFD � F 0DÞ½i

¼
maxfFD½i
; F 0D½i
g if i < minfjFDj; jF 0Djg;
FD½i
 if jF 0Dj � i < jFDj;
F 0D½i
 otherwise:

8<
: ;

and similar definition for FL � F 0L.

Based on Definition 8, we can generalize the union opera-
tor ”t” of two q-gram profiles to that of multiple q-gram
profiles.

Definition 9 (q-gram Tree). A q-gram tree is a balanced tree
such that each leaf node stores a q-gram profile of a data graph
and each internal node is the union of its child nodes.

Imagining the q-gram profile as the minimum bounding
rectangle used to represent an object in R-tree [14], we can
construct the q-gram tree like the way of building the

R-tree. Fig. 4 gives an example of a q-gram tree built on
graphs g1, g2 and g3 shown in Fig. 1.

4.2.2 Succinct Representation

Considering a q-gram tree, FD and FL in each node take up
most of the space. In order to reduce the occupied space, we
compress FD and FL while maintaining the query efficiency.
Next, we regard X as D or L to explain the proposed
method.

For a q-gram tree, we traverse it in a depth-first order to
obtain a sequence of nodes w1; . . .; wN , where wi is the ith
node in this traversal and N is the number of nodes in the
tree. Let wi:FX be the array FX in the node wi. Then we con-
catenate all wi:FX to obtain IX as follows:

IX ¼ w1:FX � w2:FX � � � � � wN :FX;

where ”�” is a concatenation operator. For instance,
for the q-gram tree shown in Fig. 4, we can
obtain ID ¼ ½3 2 1 1 1 1 1|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

w1:FD

3 2 1 0 0 0 1|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
w2:FD

0 2 1|ffl{zffl}
g1:FD

3 0 0 0 0 0 1|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
g2:FD0 1 0 1 1 1|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

g3:FD

.

Instead of directly using an int type to store each entry in
IX, we compress IX based on the following observations.

Observation 1. There are many zeros in IX.

For instance, we empirically tested the q-gram tree built
on 5 million graphs from the PubChem dataset and showed
the top 90 percent of entries of ID and IL in Fig. 5. From this
figure, we know that more than 50 and 20 percent of the
entries in ID and IL are zeros, respectively.

We use a bit array BX and an array VX to represent IX to
reduce the space. Specifically, if IX½j
 ¼ 0 then we set
BX½j
 ¼ 0; otherwise, BX½j
 ¼ 1. Meanwhile, we set VX½j
 to
the jth nonzero entry in IX. For example, for the above
array ID, we use BD ¼[1 1 1 1 1 1 1 1 1 1 0 0 0 1 0 1 1 1 0 0 0 0
0 1 0 1 0 1 1 1] and V D ¼[3 2 1 1 1 1 1 3 2 1 1 2 1 3 1 1 1 1 1] to
represent it.

Observation 2. The small entries occupy a large proportion
of IX.

We also find that there are lots of small entries in IX (e.g.,
more than 90 percent of entries are smaller than 20 in
Fig. 5). Thus an efficient encoding strategy for small entries
is key to further reduce the space.

We use the following strategy to encode small nonzero
entries stored in VX : First, we divide V X into fixed-length
blocks of size b. Then, we encode each block by choosing
one from two encoding methods so that the encoded bit
sequence, SX, has the minimum space. One encoding method
is the fixed-length encoding, which uses blog bmaxc þ 1 bits

Fig. 4. Example of a q-gram tree.

Fig. 5. Distribution of entries in ID (left) and IL (right).

CHEN ET AL.: MSQ-INDEX: A SUCCINCT INDEX FOR FAST GRAPH SIMILARITY SEARCH 2659

to encode each entry in a block, where bmax is the maximum
value in this block. The other method uses Elias g-encod-
ing [8] to encode each entry in a block.

Also, we build several auxiliary structures to support for
accessing each entry in IX:

� SBX is used to store the start position of the encod-
ing of each block in SX;

� flagX is used to mark the encoding method used for
each block: if the kth block is a g-encoding block,
then flagX½k
 ¼ 0; otherwise, it is a fixed-length
encoding block, and flagX½k
 ¼ 1.

� wordsX is used to indicate the number of bits required
for each entry in a fixed-length encoding block.

The process of compressing IX is illustrated in Fig. 6.
In addition, in each node, we retain the numbers of verti-

ces and edges (i.e., nv and ne) and add the left and right
boundaries (i.e., lX and rX) that FX is located in IX . Replac-
ing X ¼ D and X ¼ L, we can obtain the succinct represen-
tation of a q-gram tree, which is also called succinct q-gram
tree. Fig. 7 shows the succinct representation of the q-gram
tree shown in Fig. 4.

4.2.3 Accessing

In this section, we discuss how to access an entry in a suc-
cinct q-gram tree, which is the basic operation when search-
ing on this tree.

Given a node wi, the jth entry in wi:FX is wi:FX½j
 ¼ IX½k
,
where k ¼ wi:lX þ j is the position that wi:FX½j
 is located in
IX . We know that IX is represented byBX and VX (see Fig. 6),
and can use them to access IX½k
 as follows:

IX½k
 ¼
0 if BX½k
 ¼ 0;

VX½rank1ðBX; kÞ
 otherwise:

�
(2)

where rank1ð�; kÞ returns the number of 1’s in the first k bits.
If BX½k
 ¼ 0, then IX½k
 ¼ 0; otherwise, we use the rank

operation rank1ðBX; kÞ to determine the position that IX½k

is stored in VX and then obtain IX½k
 ¼ VX½rank1ðBX; kÞ
.

However, we cannot directly access an entry in VX since VX

is encoded by four structures, SX , SBX , flagX andwordsX (see
Fig. 6). In order to retrieve an entry VX½z
, we perform the
decoding operation decompress on SX and then obtain

VX½z
 ¼ decompressðSX; flagX½bz=bc
; SBX½bz=bc
;
wordsX½rank1ðflagX; bz=bcÞ
; ðz mod bÞ þ 1Þ;

(3)

where b is the block size. The decoding operation
decompress contains the following two steps:

1) We query flagX½bz=bc
 and SBX½bz=bc
 to determine
the encoding method used and decoding position for
the bz=bcth block towhich VX½z
 belongs, respectively;

2) If flagX½bz=bc
 ¼ 0, then the bz=bcth block is a g-
encoding block, and we decode SX for ðz mod bÞ þ 1
times starting from the SBX½bz=bc
th bit. The last
decoding value is VX½z
. If flagX½bz=bc
 ¼ 1, then the
bz=bcth block is a fixed-length encoding block. We
use wordsX½rank1ðflagX; bz=bcÞ
 to determine the
number of bits used to encode each entry in this
block, and then directly decode the ððz mod bÞ þ 1Þth
fixed-length encoded entry as VX½z
.

We can finish the decoding operation decompress in con-
stant time using a lookup table [16]. Also, we can compute
rank1ð; Þ in constant time with a rank dictionary [13], [17].
Thus, we obtain IX½k
 from Formula (2) in constant time.

Example 5. We show how to access g2:FD½0
 shown in Fig. 4
by using the succinct representation shown in Fig. 7,
where b ¼ 4. Clearly, g2:FD½0
 ¼ ID½g2:lD þ 0
 ¼ ID½17
.
According to Formula (2), ID½17
 ¼ VD½rank1ðBD; 17Þ
 ¼
VD½13
. Then, we compute VD½13
 through Formula (3) as
follows: (1) We determine the encoding method by flagD
½b13=bc
 ¼ flagD½3
 ¼ 0 and the decoding position by
SBD½b13=bc
 ¼ SBD½3
 ¼ 22; (2) As flagD½3
 ¼ 0, VD½13
 is
in a g-encoding block. Starting form the 22th bit of SD, we
decode two times and the second decoding value is
VD½13
 ¼ 3. So, we obtain g2:FD½0
 ¼ 3.

4.3 Query Processing

Our query process consists of two phases: the computation
of the reduced query region Qh from Formula (1), described

Fig. 6. Process of compressing IX , whereX ¼ D orX ¼ L:

Fig. 7. Succinct representation of a q-gram tree.

2660 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 6, JUNE 2021

in Section 4.1, and similarity search on the succinct q-gram
trees built inQh.

4.3.1 Query on the Succinct Q-Gram Tree

Consider a node w in the succinct q-gram tree. Let CDðw; hÞ
and CLðw; hÞ be the number of common degree-based and
label-based q-grams between w and h, respectively. We
have CXðw; hÞ ¼

P
i minfw:FX½i
; h:FX½i
g, where X is D or

L. Then we establish Theorem 4 to safely prune w.

Theorem 4. If CLðw; hÞ < maxfw:nv; jVhjg þmaxfw:ne;
jEhjg � t or CDðw; hÞ < maxfw:nv; jVhjg � 2t, then we can
safely prune all the w’s child nodes.

Proof. See Appendix D in supplementary materials,
available online. tu

Query Algorithm. We give the query method on a succinct
q-gram tree in Algorithm 2, where root is the root node and
d is the boosting parameter.

Algorithm 2. searchSQTree(root; h; t; d)

1 C ;;
2 searchTreeðroot; h; t; d; CÞ;
3 return C;
procedure searchTree(h; w; t; d; C)

1 compute CDðw; hÞ and CLðw; hÞ;
2 if CDðw; hÞ � maxfnv; jVhjg � 2t or CLðw; hÞ � maxfw:nv;
jVhjg þmaxfw:ne; jEhjg � t then

3 if w is an internal node then
4 for each w’s child node wj do
5 searchTreeðwj; h; t; d; CÞ;
6 else
7 flag filterGraph(h; w; t; d);
8 if flag is false then
9 C C [fwg;

The search process on a succinct q-gram tree is similar to
that on an R-tree. Starting from the root node, root, we tra-
verse this tree. For a node w, we compute CDðw; hÞ and
CLðw; hÞ and then determine whether pruning w according
to Theorem 4. If CDðw; hÞ < maxfw:nv; jVhjg � 2t or
CLðw; hÞ < maxfw:nv; jVhjg þmaxfw:ne; jEhjg � t, then we
safely prune w; otherwise, we access each subtree of w.

Furthermore, when reaching a leaf node w, namely w is
a data graph and has not been pruned, we check whether
it passes the filtering method filterGraph introduced in
Section 3.2. Notice that we have not stored the degree
sequence sw in the succinct q-gram tree; when calling
filterGraph, we need to calculate sw through w:FD’s nonzero
entries that contain the vertex degree information.

Complexity Analysis. Let V be the set of nodes visited in
the search. For a node w 2 V, we can compute CDðw; hÞ in
linear time of the number of nonzero entries in w:FD and
h:FD. Since h:FD contains at most jVhj degree-based
q-grams, we can compute CDðw; hÞ in OðjVhjÞ time. Simi-
larly, we can compute CLðw; hÞ in OðjVhj þ jEhjÞ time. Thus,
these jVj nodes takes OðjVjðjVhj þ jEhjÞÞ time. Let L V be
the set of leaf nodes unpruned in the search. For a leaf node
in L, we execute filterGraph to determine whether filtering it
out, which consumes OðjVhjdþ2Þ time. Thus, these jLj
leaf nodes takes OðjLjjVhjdþ2Þ time. So, the time complexity

of Algorithm 2 is OðjVjðjVhj þ jEhjÞ þ jLjjVhjdþ2Þ ¼ OðjVhj2
ðjVj þ jLjjVhjdÞÞ, for jEhj � jVhj2.

4.3.2 Whole Query Algorithm

Algorithm 3 gives the whole query method over
MSQ-Index, where ðx0; y0Þ is the division point, ‘ is the sub-
region length, d is the boosting parameter, and rooti;j is the
root node of the succinct q-gram tree built in the
subregionAi;j.

Algorithm 3. search(h; t; d; x0; y0; ‘)

1 C ;; ans ; ;
2 Qh

S
i;j Ai;j for all i1 � i � i2 and j1 � j � j2 ;

3 for each Ai;j � Qh do
4 Ci;j searchSQTree(rooti;j; h; t; d);
5 C C [Ci;j;
6 for each g 2 C do
7 if gedðh; gÞ � t then
8 ans ans [fgg ;
9 return ans ;

In Algorithm 3, we first compute the query region Qh

from Formula (1). Then, we call searchSQTree to perform
similarity search on the succinct q-gram trees built in
the subregions contained in Qh. Finally, the remaining
unpruned graphs constitute a candidate set C and we
employ existing GED computation methods [12], [27] to ver-
ify the graphs in C.

5 COST ESTIMATION

In this section, we analyze the performance of MSQ-Index.
As we know MSQ-Index consists of multiple succinct
q-gram trees, for simplicity we analyze the cost of using a
succinct q-gram tree built on G since this cost has the same
order of magnitude of that using multiple succinct q-gram
trees built on G’s subsets.

5.1 Storage Cost Estimation

The succinct q-gram tree built on G can be decomposed into
three parts (a), (b) and (c), as follows:

a) left and right boundaries (i.e., lD/lL and rD/rL),
#vertices and #edges (i.e., nv and ne) and child-
pointers in all nodes;

b) structures BD, SD, SBD, flagD, and wordsD used to
compress ID;

c) structures BL, SL, SBL, flagL, and wordsL used to
compress IL.

For parts (a), (b) and (c), we denote their occupied space
by Sa, Sb, and Sc, respectively. An example of these three
parts is illustrated in Fig. 7.

For a node in the tree, we use blog jBDjc þ 1 bits to store
lD and rD, respectively, and blog jBLjc þ 1 bits to store lL
and rL, respectively, since lD � rD � jBDj and lL � rL �
jBLj. We also use blog vmc þ 1 and blog emc þ 1 bits to
store nv and ne, respectively, where vm ¼ maxg2GfjVgjg and
em ¼maxg2GfjEgjg.

Let d be the average fan-out of each node in the
tree. The total number of nodes, N , is bounded by

CHEN ET AL.: MSQ-INDEX: A SUCCINCT INDEX FOR FAST GRAPH SIMILARITY SEARCH 2661

N ¼
Plog djGj

h¼0
jGj
dh
� djGj

d�1. Thus, we can use blog djGj
d�1c þ 1 bits to

store each child-pointer. So the space Sa is bounded by

Sa ¼ Nð2ðblog jBDjc þ 1Þ þ 2ðblog jBLjc þ 1Þ þ blog vmc þ 1

þ blog emc þ 1þ log
djGj
d� 1

� �
þ 1Þ

� djGj
d� 1

2 log ðjBDjjBLjÞ þ log ðvmemÞ þ log
djGj
d� 1

þ 7

	

� 2jGjð2 log ðjBDjjBLjÞ þ 2 log Im þ log ð2jGjÞ þ 7Þ
� 4jGjðlog ðImjBDjjBLjjGjÞ þ 4Þ
¼ OðjGj log ðImjBDjjBLjjGjÞÞ;

where Im ¼ maxfvm; emg. The second inequality is due to
the fact that d � 2.

Regarding X as D or L, we then consider the space
required by SX , BX, SBX, flagX, and wordsX.

First, we analyze the space needed by the encoded bit
sequence SX . Let E

g and Ef be the collections of Elias g-
encoding and fixed-length encoding blocks, respectively,
and jgðbiÞj and jfðbiÞj be the number of bits required to
encode the ith block bi using g-encoding and fixed-
length encoding, respectively. By our hybrid encoding
scheme, the number of bits needed by SX is bounded by

XjVX j=b
i¼1

minfjgðbiÞj; jfðbiÞjg

¼
X
i2Eg

jgðbiÞj þ
X
i2Ef

jfðbiÞj �
X
i2Eg

jfðbiÞj þ
X
i2Ef

jfðbiÞj

�
X

i2Eg[Ef

bðblog bmXc þ 1Þ � jVXj
b

bðblog bmXc þ 1Þ

� jVXjlog bmX þ jVXj;

where b is the block size and bmX is the maximum value in
VX. The first inequality is due to the fact that jgðbiÞj � jfðbiÞj
when i 2 Eg . The second inequality is due to the fact that
the number of bits required to encode bi through fixed-
length encoding is bounded by bðblogV m

X c þ 1Þ. The third

inequality is due to the fact that jEg j þ jEf j ¼ jVXj=b.
Second, we analyze the space required by the structures

BX , SBX, flagX , and wordsX .
For BX , it contains jBXj bits. Besides, we build the rank

dictionary over it, which needs oðjBXjÞ bits [17]. Thus, BX

totally requires jBXj þ oðjBXjÞ bits.
For SBX , it requires jVX jb ðlog ðjVXjlog bmX þ jVXjÞ þ 1Þ bits

in the worst case because each entry in SBX needs at most

blog ðjVXjlog bmX þ jVXjÞc þ 1 bits and there are jVXj=b blocks.
For flagX, it requires jVXj=bþ oðjVXj=bÞ bits, because each

block takes up one bit and there are jVXj=b blocks, and the
rank dictionary built over flagX needs oðjVXj=bÞ bits.

For wordsX, it requires
jVX j
b ðblog bmXc þ 1Þ bits since each

entry requires blog bmXc þ 1 bits and there are at most jVXj=b
entries.

Putting all the space required for BX, SBX, flagX , and
wordsX together, we then obtain

jBXj þ oðjBXjÞ þ
jVXj
b

log ðjVXjlog bmX þ jVXjÞ

þ jVXj
b

log bmX þ 3
jVXj
b
þ o

jVXj
b

	

¼ jBXj þ oðjBXjÞ þ oðjVXjÞ ¼ jBXj þ oðjBXjÞ ;

for b ¼ log 2jVXj. The second equality is due to the fact that
jVXj � jBXj. Thus, the total space of SX , BX, SBX, flagX,
and wordsX is at most jVXjðlog bmX þ 1Þ þ jBXj þ oðjBXjÞ bits.

Considering a degree-based q-gram, it occurs at most jVgj
times in a data graph g, thus we have bmD � vm. Similarly,
bmL � maxfvm; emg. Replacing X with D and substituting
bmD � vm, we obtain that

Sb � jVDjðlog vm þ 1Þ þ jBDj þ oðjBDjÞ

� jBDjðlog Im þ 2Þ þ oðjBDjÞ ¼ OðjBDjlog ImÞ;

where the second inequality holds because vm � Im ¼
maxfvm; emg and jVDj � jBDj. Similarly, Replacing X with L
and substituting bmL � maxfvm; emg, we obtain that

Sc � jVLjðlogmaxfvm; emg þ 1Þ þ jBLj þ oðjBLjÞ

� jBLjðlog Im þ 2Þ þ oðjBLjÞ ¼ OðjBLjlog ImÞ:

By summing the space required by Sa, Sb, and Sc, and
ignoring the lower-order terms, we obtain the space bound
on the succinct q-gram tree: OðjGjlog ðImjBDjjBLjjGjÞþ
ðjBDj þ jBLjÞlog ImÞ bits.

Note. As we know, Im ¼ maxfvm; emg is the maximum
number of vertices or edges in G, which is usually a small
value. Therefore, the space in bits required by the succinct
q-gram tree is dominated by the addition of the
“linearithmic” function of the database size jGj and the lin-
ear function of jBDj þ jBLj.

5.2 Query Cost Estimation

Algorithm 3 gives the query method over MSQ-Index,
where the query process contains the following three parts:
(i) computing the query region Qh from Formula (1) (line 2);
(ii) searching on the succinct q-gram trees built in Qh to
obtain a candidate set C (lines 3–5); (iii) verifying graphs
in C (lines 6–8). Let T 1, T 2, and T 3 be the cost incurred by
these three parts above, respectively. Then the total query
cost T can be formulated as

T ¼ T 1 þ T 2 þ T 3 ¼ T Q þ T V ;

where T Q ¼ T 1 þ T 2 is the filtering cost, T V ¼ T 3 ¼
jCj � T GED is the verifying cost, and T GED is the average
GED computation time.

For (i), the cost of computing Qh from Formula (1) is
T 1 ¼ Oððt=‘þ 2Þ2Þ, which is almost constant and can be
negligible.

For (ii), for simplicity we analyze the cost of using a suc-
cinct q-gram tree built in the whole region. As discussed in
Section 4.3.1, the cost is T 2 ¼ OðjVhj2ðjVj þ jLjjVhjdÞÞ, where
V is the set of nodes visited and L is the set of leaf nodes
unpruned.

2662 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 6, JUNE 2021

Therefore, the filtering cost is T Q ¼ T 1 þ T 2 ¼ OðjVhj2
ðjVj þ jLjjVhjdÞÞ. Putting the verifying cost T V together, we
obtain T ¼ T Q þ T V ¼ OðjVhj2ðjVj þ jLjjVhjdÞÞ þ jCj � T GED.
Clearly, T is mainly determined by jCj; jLj and jVj. Next, we
discuss how to estimate them.

Estimating jCj and jLj. Let XCðh; gÞ be the GED lower

bound such that XCðh; gÞ ¼ maxf�Dk ðh; gÞ; �Lk ðh; gÞ; �Sk ðh; gÞg,
where k ¼ maxf0;minfjVhj � jVgj; dgg, and �Dk ðh; gÞ, �Lk ðh; gÞ
and �Sk ðh; gÞ are introduced in Section 3.2.3. A data graph g
cannot be filtered out by the filtering method filterGraph(i.e.,
Algorithm 1) when XCðh; gÞ � t. Thus, the candidate set is
C ¼ fg 2 G : XCðh; gÞ � tg.

Let t be a random variable. Considering XCð; Þ as a dis-
tance metric, we define a cumulative probability distribu-

tion of t as FCðtÞ ¼ Pr½XCðg; g0Þ � t
 ¼ #NumCðtÞ
jGj�ðjGj�1Þ , where

#NumCðtÞ is the number of data graph pairs ðg; g0Þ such
that XCðg; g0Þ � t, for any g; g0 2 G and g 6¼ g0. We can reason-
ably assume that data graphs similar to h always exist in G,
and then use FCðtÞ to approximate the probability that a
data graph g belongs to C. Consequently, we can use
jGj � FCðtÞ to estimate jCj.

From our empirical observation, FC exhibits a typical
“S”-shaped curve. The possible reason is that XCð; Þ distance
distribution of data graphs in the database G is not uniform.
(see our empirical test, Appendix E1 in supplementary
materials, available online). We can employ a sigmoid-like
function to estimate FC as follows:

FCðtÞ ¼
1

1þ a � c�t ;

where a; c > 0 are two parameters. When t !1, FCðtÞ ¼ 1
coincides with the fact that C contains all data graphs in this
case. Also, we can rewrite the above formula as lnð 1

FCðtÞ
� 1Þ

¼ ln aþ t � ð� ln cÞ. By using the least-squares method, we

can estimate a and c.
Let XLðh; gÞ be the GED lower bound such that XLðh; gÞ

¼ maxf�Lðh; gÞ; �D0 ðh; gÞg, where �D0 ðh; gÞ ¼ 1
2 ðmaxfjVhj;

jVgjg � jDðhÞ \DðgÞjÞ � �Dðh; gÞ. According to Theorem 4, a
leaf node g cannot be pruned when XLðh; gÞ � t. Thus, the
set of unpruned leaf nodes in the search is L ¼ fg 2 G :
XLðh; gÞ � tg. Similarly, we can also consider XLð; Þ as a dis-
tance metric to estimate jLj like the way of estimating jCj
above.

Estimating jVj. Let d be the average fan-out of each node
in the tree. The number of nodes in the ith level is di, for
0 � i � t, where t ¼ log djGj is the height of this tree. Assum-
ing that visited nodes in each level are evenly distributed.
Let PrðiÞ be the probability of visiting a node in the ith level.
Then the number of nodes visited in the ith level is di � PrðiÞ,
and thus we have jVj ¼

Pt
i¼0 d

i � PrðiÞ.

For a leaf node g, the probability of g belonging to L is jLjjGj.

For an internal node w in the ith level, it contains dt�i

descendant leaf nodes; as long as one of these descendant
leaf nodes belongs to L, wwill be visited. Thus, the possibil-

ity of visiting w is 1� ð1� jLjjGjÞ
dt�i . Since visited nodes in

each level are evenly distributed, we obtain PrðiÞ ¼ 1�
ð1� jLjjGjÞ

dt�i . So, we can estimate jVj as

jVj ¼
Xt

i¼0 d
i � 1� 1� jLjjGj

	
dt�i
 !

:

Empirical Test.We consider the AIDS dataset as the tested
dataset and randomly select 104 graphs from this dataset to
make up the query graphs. Fig. 8 shows the real and esti-
mated values of jCj, jLj and jVj on the average, respectively.
From Fig. 8, we know that

1) the estimated value of jCj (or jLj or jVj) is closed to
the real value.

2) when t is small (e.g., t � 9), both the estimated and
real values of jCj (or jLj or jVj) are small.

In practice, we consider t as a small value because users
are typically more inclined to search for similar graphs to a
given query graph. Thus, the query cost of MSQ-Index is
acceptable, and thereby, MSQ-Index can efficiently finish
the similarity search.

6 EXPERIMENTS AND DISCUSSIONS

6.1 Datasets and Settings

Datasets.We choose several real and synthetic datasets from
different domains in the experiment, described as follows:

1) AIDS1 is an antivirus screen compound dataset from
the Development and Therapeutics Program in NCI/
NIH,which contains 42,687 chemical compounds.

2) COIL [26] consists of 7,200 images of different
objects, where each image is converted into a region
adjacency graph. Vertices represent different
regions, and we randomly assign four labels to
them. Edges represent the adjacency of regions and
are labeled with the length (in pixels) of the common
border of two adjacent regions.

3) NASA2 is an XML dataset that contains 36,790 data
graphs, where each graph stores the metadata of an
astronomical. We randomly assign 10 vertex labels
to each graph according to the way described in [38].

4) PubChem3 is an NIH funded project to record exper-
imental data of chemical that interactions with bio-
logical systems. We randomly select 25,000,000
chemical compounds to make up the large dataset,
Pub-25M, used in the experiment.

5) Synthetic. The synthetic dataset is generated by the
synthetic graph data generator GraphGen4, which
allows us to specify various parameters, including
the dataset size, the average graph density

Fig. 8. Estimation of jCj, jLj and jVj on AIDS dataset.

1. http://dtp.nci.nih.gov/docs/aids/aids data.html
2. http://www.cs.washington.edu/research/xmldatasets/
3. http://pubchem.ncbi.nlm.nih.gov/
4. http://www.cse.ust.hk/graphgen/

CHEN ET AL.: MSQ-INDEX: A SUCCINCT INDEX FOR FAST GRAPH SIMILARITY SEARCH 2663

http://dtp.nci.nih.gov/docs/aids/aids data.html
http://www.cs.washington.edu/research/xmldatasets/
http://pubchem.ncbi.nlm.nih.gov/
http://www.cse.ust.hk/graphgen/

r ¼ 2jEj
jV jðjV j�1Þ, the number of edges, and the number of

vertex and edge labels. We first generate several syn-
thetic datasets and then merge them to obtain a large
dataset, Sync-5M, which contains 5,000,000 graphs.

For each dataset, we randomly select 100 graphs from it
to make up the query graphs. Table 2 summarizes some
general characteristics of the above five datasets.

Compared Methods. We perform comprehensive experi-
mental studies for MSQ-Index by comparing it with the
state-of-the-art indexing methods, GSimJoin [37], Pars [38],
and Mixed [39]. For Pars, we implemented it with a random
partition method because the authors did not share their
implementations.

For each compared method, we employ the GED compu-
tation method, CSI GED [12], as the GED verifier except for
GSimJoin that has implemented A

?
as its verifier in the exe-

cutable binary file.
Evaluation Metrics. In the experimental studies, we con-

sider the following three metrics: (1) Index construction cost,
including the index size and construction time; (2) Candidate
set size, which is the number of data graphs that have not
been filtered out; (3) Response time, which is the sum of the
filtering time and verification time. The results obtained in
(2) and (3) are the average candidate set size and the average
response time for the 100 query graphs, respectively.

We have conducted all experiments on a HP Z800 PCwith
a 2.67 GHz CPU and 24 GB main memory, running Ubuntu
12.04 operating system. We implemented MSQ-Index in
C++, with –O3 to compile and run. For MSQ-Index, we set
the boosting parameter d ¼ 2, subregion length ‘ ¼ 2 and
block size b ¼ 16, respectively, as the default parameters. For
the other tested methods, we adopt their default parameters.

6.2 EvaluatingMSQ-Index

As described earlier in this paper, several techniques are pro-
posed in MSQ-Index, including: (1) the succinct representa-
tion of a q-gram tree (Section 4.2), which is used to decrease
the index size; (2) two lower bounds together with a boosting
technique (Section 3.2), which aims to obtain a candidate
set as small as possible; (3) the preprocessing method (Sec-
tion 4.1), which ensures that similarity search is preformed in

a reduced query region. Thus, it is necessary to study the con-
tributions of these techniques toMSQ-Index.

Evaluating Succinct Representation.In this part, we evalu-
ate the effectiveness of our succinct representation.

First, we evaluate the effectiveness of the method of com-
pressing ID and IL. The compressing process contains the
following two steps (see Fig. 6): (1) using BX and VX to rep-
resent IX ; (2) employing SX, SBX , flagX , and wordsX to
encode VX , whereX isD or L.

In Fig. 9, we report the space of each step. In the first step,
we can reduce ID’s space by more than 50 percent; this
reduction is due to the fact that ID contains lots of zeros. In
the second step, we can further reduce ID’s space by more
than 80 percent. This is because that each encoded entry
takes about 4–6 bits (see the experiment on encoding,
Appendix E2, in supplementary materials, available online),
which takes much fewer bits than that used to store an int
type (i.e., typical 32 bits). As a result, using BD, SD, SBD,
flagD, and wordsD to compress ID, we can reduce the space
by more than 90 percent. For IL, we have a similar result.

Second, we report the space of a q-gram tree and its suc-
cinct representation in Table 3. For a q-gram tree (see Fig. 4),
we decompose its space into three partsMa,Mb, andMc,
where Ma is the space of nv, ne and child-pointers of all
nodes, and Mb and Mc are the space of FD and FL of all
nodes, respectively. Correspondingly, we obtain three parts
Sa, Sb, and Sc in the succinct representation (see Fig. 7).

From Table 3, we know thatMb andMc take up most of
the space of a q-gram tree. By compressing them, we reduce
their space to about 10 percent of the original size, see Sb
and Sc in the last two columns. As a result, the space of the
succinct q-gram tree, namely the sum of Sa, Sb, and Sc, is
less than 20 percent of that of the original q-gram tree (i.e.,
the sum ofMa,Mb, andMc).

Evaluating Filters. In this part, we evaluate the effective-
ness of the proposed lower bounds and boosting technique
under different thresholds t setting, that is, t 2 f1; 3; 5; 7; 9g.
Notice that t ¼ 9 is the maximum threshold value used in
the current indexing-based methods [21], [32], [36], [37],
[38], [39]. Here we only display the experimental results on
the large dataset Pub-25M; for the results on other datasets,
see Appendix E3 in supplementary materials, available
online.

First, we fix the boosting parameter d ¼ 0 and then evalu-
ate the effectiveness of the proposed lower bounds. Fig. 10
shows the obtained results, where “QF” denotes that we
employ the label-based and degree-based q-gram counting
lower bounds, and “DF” denotes the improved version of
QF by incorporating the degree-sequence lower bound.

Fig. 9. Space of compressing ID (left) and IL (right).

TABLE 2
Dataset Statistics

Dataset jGj avg. jV j avg. jEj jSV j jSE j
AIDS 42,687 25.6 27.5 62 3
COIL 7,200 21.5 54 4 2
NASA 36,790 33.2 32.2 10 1
Sync-5M 5,000,000 27.5 38.4 5 3
Pub-25M 25,000,000 23.4 25.2 101 3

TABLE 3
Space Usage (MByte)

Dataset q-gram tree succinct q-gram tree

Ma Mb Mc Sa Sb Sc
AIDS 0.29 6.09 2.11 0.88 0.41 0.25
COIL 0.09 3.62 0.17 0.15 0.18 0.04
NASA 0.44 7.28 1.38 0.85 0.46 0.21
Sync-5M 59.6 3527.8 236.3 141.9 415.3 41.8
Pub-25M 343.6 3669.2 2014.1 649.1 327.3 191.9

2664 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 6, JUNE 2021

As depicted in Fig. 10, we can use these two q-gram
counting lower bounds to filter most of the dissimilar
graphs out. For instance, when t ¼ 3, QF produces less than
1:0� 104 candidate graphs, which indicates that more than
99.9 percent of data graphs are pruned. Moreover, through
incorporating with the degree-sequence lower bound,
DF further reduces the candidate set size by about
30–60 percent.

Second, we evaluate the effectiveness of the proposed
boosting technique. From Fig. 11, we know that the candi-
date set size is getting smaller and smaller with the increas-
ing of d. For instance, when t ¼ 9, the candidate set size of
d ¼ 2 is about 67 percent of that of d ¼ 0. Also, we observe
that the response time first decreases and then increases,
as d increases; it achieves the minimum when d ¼ 2 in most
cases. Two factors may contribute to this trend: (1) When d

is too small, we obtain a large candidate set and spend lots
of GED verification time; (2) When d is too large, we spend
too much filtering time. Thus, we set d ¼ 2 as the default
parameter inMSQ-Index.

Evaluating Preprocessing. In this part, we evaluate the
effectiveness of the proposed preprocessing method.

To measure how much the query region Qh gets smaller
w.r.t. the whole region A, we define a metric access ratio as
jQhj
jGj , where jQhj is the number of points contained in Qh.

Correspondingly, we obtain the speedup in filtering time,
which is computed as the filtering time of SQ-Index divided
by that of MSQ-Index, where SQ-Index is a succinct q-gram
tree built in A. Table 4 lists the access ratio and speedup on
the average for the 100 query graphs.

Table 4 shows that Qh contains a small number of points;
for example, it contains about 25 percent of the points when
t ¼ 5. This means that MSQ-Index searches only on a small
percentage of data graphs in the database. As a result,
MSQ-Index achieves 1.4x–9.7x speedup in filtering time
compared with SQ-Index.

Besides, we observe that the access ratio increases with
the increasing of t. This is because that a larger t will pro-
duce a larger Qh. For the experimental results of the subre-
gion length ‘, see Appendix E4 in supplementary materials,
available online.

6.3 Comparing With Existing Methods

In this section, we compare MSQ-Index with existing index-
ing methods GSimJoin [37], Pars [38], and Mixed [39] to
evaluate its performance.

Index Construction. For the above methods, we test their
index construction performance and list the obtained results
in Table 5, where “-O” means that the memory consumption
is out of the 24 GB main memory during the index
construction.

Table 5 shows that the succinct index MSQ-Index takes
much less space than GSimJoin, Pars, and Mixed; its index
size is only 5–15 percent of other methods. For Pars, it has
the longest construction time since there are many subgraph
isomorphism tests during index construction. For Mixed, it
stores all branch and disjoint substructures, consuming the
most space in most cases. Besides, we observe that
GSimJoin requires more space than other methods on the
COIL dataset. This is because that COIL contains relatively
dense graphs and the number of paths increases exponen-
tially in these dense graphs. It is worth to mention that
although MSQ-Index is stored in a compressed form, its
building time is shortest in most cases.

For the large dataset Pub-25M, GSimJoin, Pars, and
Mixed all throw the memory error, and only MSQ-Index can
be successfully constructed. At the same time, MSQ-Index’s
index size is less than 1.2 GB and the index building time is
less than 45 minutes, achieving an excellent performance.

Query Performance.We evaluate the query performance of
all tested methods under different thresholds t setting.
Fig. 12 shows the average candidate set size and the average
response time for the 100 query graphs.

From Fig. 12, we know that MSQ-Index produces the
smallest candidate set. GSimJoin does not perform
well because the path-based q-grams have too many over-
lapping. Mixed performs better than GSimJoin and Pars in

Fig. 11. Performance of boosting on Pub-25M.

Fig. 10. Performance of multiple lower bounds on Pub-25M.

TABLE 4
Average Access Ratio and Speedup

Metric Dataset t ¼ 1 t ¼ 3 t ¼ 5 t ¼ 7 t ¼ 9

access ratio

AIDS 9.9% 19.2% 25.5% 33.2% 38.7%
COIL 4.5% 8.4% 11.3% 14.8% 17.6%
NASA 4.7% 8.1% 12.1% 15.5% 21.1%
Sync-5M 4.0% 7.6% 14.1% 22.9% 32.3%
Pub-25M 3.4% 6.35% 8.6% 17.2% 22.8%

speedup

AIDS 8.73 4.24 2.31 1.90 1.37
COIL 9.61 4.75 2.24 1.97 1.51
NASA 6.88 3.69 2.12 1.83 1.54
Sync-5M 7.58 3.44 2.69 1.88 1.46
Pub-25M 9.14 4.49 3.04 2.69 1.71

TABLE 5
Index Size (MByte) and Building Time (s)

Dataset GSimJoin Pars Mixed MSQ-Index

size time size time size time size time

AIDS 33.8 5.8 15.6 29.2 37.5 3.2 1.7 2.5
COIL 11.9 2.7 3.1 3.2 7.5 1.5 0.4 0.8
NASA 16.7 12.9 17.9 25.4 47.3 4.2 1.5 3.6
Sync-5M -O -O 3859.2 4407.6 6952.9 722.2 597.7 1821.8
Pub-25M -O -O -O -O -O -O 1168.1 2509.5

CHEN ET AL.: MSQ-INDEX: A SUCCINCT INDEX FOR FAST GRAPH SIMILARITY SEARCH 2665

most cases. Compared with Mixed, the candidate set size
produced by MSQ-Index can decrease by about 67, 79, 28
and 25 percent on the AIDS, COIL, NASA and Sync-5M
datasets, respectively, when t ¼ 5. Notice that for Sync-
5M, GSimJoin throws the memory error and we do not
display the results.

For the response time of GSimJoin, Pars, Mixed and
MSQ-Index, denoted by “G”, “P”, “M” and “S”, respectively,
MSQ-Index takes the shortest response time in most cases,
which benefits from two aspects: (1) it searches in a reduced
query region, requiring the shortest filtering time; (2) it gener-
ates the smallest candidate set, consuming the shortest verifi-
cation time. For Pars, it takes the longest filtering time
because it preforms lots of subgraph isomorphism tests. For
GSimJoin, it has the shortest response timewhen t ¼ 1; this is
because that GSimJoin’s verifier A

?
has a better performance

than other methods’ verifier CSI GED [12]. However, when t

becomes large (e.g., t > 5), A
?
consumes a large amount of

memory and running time; as a result, A
?
cannot finish the

verification phase at this time. So we prefer CSI GED as the
default verifier in Pars, Mixed and MSQ-Index. Notice that
when t > 5, we do not show the response time of GSimJoin
because its verifier cannot properly run for thememory error.

To evaluateMSQ-Index on the large dataset Pub-25M, we
compare it with the online similarity search method,
CSI GED, which is the only method (as far as we know)
that can successfully run on this dataset. Fig. 13 shows the
average candidate set size and response time.

From Fig. 13, we know that the non-indexing method
CSI GED does not perform well. The reasons are as follows:
(1) the lower bound employed in CSI GED has a weak
pruning ability, leading to a large candidate set; thus the
verification cost is unacceptable. (2) CSI GED performs
pairwise computations to prune data graphs, resulting in a
large amount of filtering time. Compared with CSI GED,
MSQ-Index can achieve several hundred times speedup.

6.4 Scalability

In this section, we fix t ¼ 5 and then evaluate the scalability
of the tested methods on the real and synthetic datasets.

Varying jGjjGj. We vary the size of Pub-25M from 500 K (kilo)
to 25M (million) to study the effect of the database size jGj. As
can be seen in Fig. 14, when the database size increases, the

candidate set size jCj produced by MSQ-Index shows a non-
linear increasing trend. For instance, when increasing the
database size from 5M to 10M, jCj increases by 2.58 times,
while increasing from 10M to 20M, it increases by 3.88 times.
This naturally leads to a problem: why jCj does not increases
linearly with the size of the database for a fixed threshold
t ¼ 5? The possible reason is that the distribution of data
graphs in Pub-25M is uneven (see Appendix E5 in supple-
mentary materials, available online). From Appendix E5, on
the uniformly distributed dataset obtained by randomly shuf-
fling the Pub-25Mdataset,MSQ-Index shows a linear scalabil-
ity. Furthermore, when jGj reaches 5M, 10M, and 10M,
GSimJoin, Pars, andMixed cannot properly run, respectively,
because of the memory error. Among these indexing meth-
ods, onlyMSQ-Index can scale to deal with such an extensive
database.

Varying jVhjjVhj.We vary the query graph size jVhj from 10 to
60 to study jVhj’s effect. The tested dataset is a subset of
Pub-25M, which contains 5 million randomly selected
graphs. Fig. 15 shows the average candidate set size and fil-
tering time, where we do not display GSimJoin’s results
since this method cannot properly run.

From Fig. 15, as jVhj increases, the candidate set size of
all tested methods first increases and then decreases. The
reason is that the distribution of data graphs in the data-
base is not uniform, where the number of graphs whose
size near 30 occupies a relatively large proportion. As jVhj
increases, the filtering time of Pars increases steadily,
while for MSQ-Index the filtering time incurred first
increases and then decreases. This is because that
MSQ-Index searches only in a reduced query region, which
contains few graphs when jVhj is smaller than 20 or larger
than 50.

Fig. 12. Average candidate size and response time under different t.

Fig. 13. Results on Pub-25M.

2666 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 6, JUNE 2021

Varying jSV jjSV j. We generate a group of synthetic datasets
to study the effect of the number of vertex labels. Precisely,
we fix the dataset size be 100K, the average graph density
r ¼ 50%, and the number of edges in each data graph be 30,
respectively, and then vary the number of vertex labels.
Fig. 16 shows the average candidate size. Clearly, as the
number of vertex labels increases, the candidate set size of
all tested methods decreases; this is because that more label
information can be used to filter graphs out.

Varying rr. We fix the synthetic dataset size, the number
of edges, and the number of vertex labels be 100K, 30, and 5,
respectively, and then vary the graph density r to study the
effect of graph density. Fig. 17 displays the average candi-
date set size; it shows that as r increases, the candidate set
size increases in most cases. This is because that all tested
methods only considering the local structures have a weak
filtering ability when dealing with the density graphs.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we present a space-efficient index structure for
the graph similarity search problem. The proposed succinct
index structure incorporates succinct data structures and
hybrid encoding, significantly reducing the space usagewhile
at the same time keeping fast query performance. Each entry
in the index structure is compressed and requires about 4–6
bits to store on the tested datasets, which takes much fewer
bits than that used to store an int type in the previous indexing
methods. However, there is still a room for improvement on
the space bound. The design of a representation of the q-gram
tree that achieves the entropy-compressed space boundwhile
still preserving query efficiency is left as a futurework.

ACKNOWLEDGMENTS

The authors thank the editor and anonymous reviewers for
their careful reading and their constructive comments,
which have considerably improved the quality and read-
ability of the paper, and thank Xiang Zhao and Xuemin Lin
for their codes. This work was supported in part by the
National Natural Science Foundation of China Grants
61741215, 61373044, and 61173025, and by the U.S. National
Science Foundation grant CCF-1017623.

REFERENCES

[1] J. Berg and M. Lassig, “Local graph alignment and motif search in
biological networks,” Proc. Nat. Academy Sci. United States America,
vol. 101, no. 41, pp. 14689–14694, 2004.

[2] F. Bi, L. Chang, X. Lin, L. Qin, and W. Zhang, “Efficient subgraph
matching by postponing cartesian products,” in Proc. Int. Conf.
Manage. Data, 2016, pp. 1199–1214.

[3] D. B. Blumenthal and J. Gamper, “Improved lower bounds for
graph edit distance,” IEEE Trans. Knowl Data Eng., vol. 30, no. 3,
pp. 503–516, Mar. 2018.

[4] J. Cheng, Y. Ke, A.W. C. Fu, and J. X. Yu, “Fast graph query process-
ingwith a low-cost index,”VLDB. J, vol. 20, no. 4, pp. 521–539, 2011.

[5] X. Chen, H. Huo, J. Huan, J. S. Vitter, W. Zheng, and L. Zou,
“Source code for MSQ-Index,” 2016. [Online]. Available: https://
github.com/Hongweihuo-Lab/MSQ-Index

[6] X. Chen, H. Huo, J. Huan, and J. S. Vitter, “Efficient graph similar-
ity search in external memory,” IEEE Access, vol. 5, no. 1,
pp. 4551–4560, 2017.

[7] X. Chen, H. Huo, J. Huan, and J. S. Vitter, “An efficient algorithm
for graph edit distance computation,” Knowl.-Based Syst., vol. 163,
pp. 762–775, 2019.

[8] P. Elias, “Universal codeword sets and representations of the inte-
gers,” IEEETrans. Inf. Theory., vol. 21, no. 2, pp. 194–203,Mar. 1975.

[9] F. Emmert-Streib, M. Dehmer, and Y. Shi, “Fifty years of graph
matching, network alignment and network comparison,” Inf. Sci.,
vol. 346, pp. 180–197, 2016.

[10] M. L. Fern�andez and G. Valiente, “A graph distance metric com-
bining maximum common subgraph and minimum common
supergraph,” Pattern Recognit. Lett., vol. 22, no. 6, pp. 753–758,
2001.

[11] K. Gouda and M. Arafa, “An improved global lower bound for
graph edit similarity search,” Pattern Recognit. Lett., vol. 58,
pp. 8–14, 2015.

[12] K. Gouda and M. Hassaan, “CSI–GED: An efficient approach for
graph edit similarity computation,” in Proc. Int. Conf. Data Eng.,
2016, pp. 256–275.

[13] R. Grossi, A. Gupta, and J. S. Vitter, “High-order entropy-com-
pressed text indexes,” in Proc. 14th Annu. ACM-SIAM Symp. Dis-
crete Algorithms, 2003, pp. 841–850.

[14] A. Guttman, “R-trees: A dynamic index structure for spatial
searching,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 1984,
pp. 47–57.

[15] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” IEEE Trans. Syst.
Sci. Cybern., vol. 4, no. 2, pp. 100–107, Jul. 1968.

[16] H. Huo, L. Chen, J. S. Vitter, and Y. Nekrich, “A practical imple-
mentation of compressed suffix arrays with applications to self-
indexing,” in Proc. Data Compression Conf., 2014, pp. 292–301.

Fig. 14. Scalability versus jGj.

Fig. 15. Scalability versus jVhj.

Fig. 16. Scalability versus jSV j

Fig. 17. Scalability versus r.

CHEN ET AL.: MSQ-INDEX: A SUCCINCT INDEX FOR FAST GRAPH SIMILARITY SEARCH 2667

https://github.com/Hongweihuo-Lab/MSQ-Index
https://github.com/Hongweihuo-Lab/MSQ-Index

[17] G. Jacobson, Succinct Data Structures, Pittsburgh, PA USA:
Carnegie Mellon Univ., 1989.

[18] D. Justice and A. Hero, “A binary linear programming formula-
tion of the graph edit distance,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 28, no. 8, pp. 1200–1214, Aug. 2006.

[19] A. Khan, Y. Wu, C. C. Aggarwal, and X. Yan, “NeMa: Fast graph
search with label similarity,” in Proc. VLDB Endowment, vol. 6,
pp. 181–192, 2013.

[20] H. W. Kuhn, “The hungarian method for the assignment prob-
lem,”Naval Res. Logistics, vol. 2, pp. 83–97, 1955.

[21] Y. Liang and P. Zhao, “Similarity search in graph databases: A
multi-layered indexing approach,” in Proc. IEEE 33rd Int. Conf.
Data Eng., 2017, pp. 783–794.

[22] R. M. Mar�ın, N. F. Aguirre and E. E. Daza, “Graph theoretical
similarity approach to compare molecular electrostatic
potentials,” J. Chem. Inf. Model., vol. 48, no. 1, pp. 109–118, 2008.

[23] M. Neuhaus and H. Bunke, “Edit distance-based kernel functions
for structural pattern classification,” Pattern Recognit., vol. 39,
no. 10, pp. 1852–1863, 2006.

[24] N. Prz̎ulj, “Biological network comparison using graphlet degree
distribution,” Bioinf., vol. 23, no. 2, pp. e177–e183, 2007.

[25] M. Rahman, M. A. Bhuiyan and M. Al Hasan, “Graft: An efficient
graphlet counting method for large graph analysis,” IEEE Trans.
Knowl Data Eng., vol. 26, no. 10, pp. 2466–2478, Oct. 2014.

[26] K. Riesen and H. Bunke, “IAM graph database repository for
graph based pattern recognition and machine learning,” in Proc.
Joint IAPR Int. Workshops Statistical Techn. Pattern Recognit. Struc-
tural Syntactic Pattern Recognit., 2008, pp. 287–297.

[27] K. Riesen, S. Emmenegger, and H. Bunke, “A novel software tool-
kit for graph edit distance computation,” in Proc. Int. Workshop
Graph-Based Representations Pattern Recognit., 2013, pp. 142–151.

[28] H. Shang, K. Zhu, X. Lin, Y. Zhang, and R. Ichise, “Similarity
search on supergraph containment,” in Proc. IEEE 26th Int. Conf.
Data Eng., 2010, pp. 903–914.

[29] N. Shervashidze and K. M. Borgwardt, “Fast subtree kernels on
graphs,” in Proc. 22nd Int. Conf. Neural Inf. Process. Syst., 2009,
pp. 1660–1668.

[30] X. Wang, X. Ding, A. K. H. Tung, S. Ying, and H. Jin, “An efficient
graph indexing method,” in Proc. IEEE 28th Int. Conf. Data Eng.,
2012, pp. 210–221.

[31] X. Wang, A. Smalter, J. Huan, and H. Gerald, “G-hash: Towards
fast kernel-based similarity search in large graph databases,” in
Proc. Int. Conf. Database Theory, 2009, pp. 472–480.

[32] G. Wang, B. Wang, X. Yang, and G. Yu, “Efficiently indexing large
sparse graphs for similarity search,” IEEE Trans. Knowl Data Eng.,
vol. 24, no. 3, pp. 440–451, Mar. 2012.

[33] N.Weskamp, E. Hullermeier, D. Kuhn, and G. Klebe, “Multiple graph
alignment for the structural analysis of protein active sites,” IEEE/ACM
Trans. Comput. Biol. Bioinf., vol. 4, no. 2, pp. 310–320,Apr.-Jun. 2007.

[34] X. Yan, P. S. Yu, and J. Han, “Graph indexing: A frequent struc-
ture-based approach,” in Proc. ACM SIGMOD Int. Conf. Manage.
Data, 2004, pp. 335–346.

[35] S. J. Yen and A. L. P. Chen, “A graph-based approach for discov-
ering various types of association rules,” IEEE Trans. Knowl Data
Eng., vol. 13, no. 5, pp. 839–845, Sep./Oct. 2001.

[36] Z. Zeng, A. K. H. Tung, J. Wang, J. Feng, and L. Zhou,
“Comparing stars: On approximating graph edit distance,” Proc.
VLDB Endowment, vol. 2, no. 1, pp. 25–36, 2009.

[37] X. Zhao, C. Xiao, X. Lin, W. Wang, and Y. Ishikawa, “Efficient proc-
essing of graph similarity queries with edit distance constraints,”
Int. J. Very Large Data Bases, vol. 22, no. 6, pp. 727–752, 2013.

[38] X. Zhao, C. Xiao, X. Lin, W. Zhang, and Y. Wang, “Efficient struc-
ture similarity searches: A partition-based approach,” Int. J. Very
Large Data Bases, vol. 27, no. 1, pp. 53–78, 2018.

[39] W. Zheng, L. Zou, X. Lian, D. Wang, and D. Zhao, “Efficient graph
similarity search over large graph databases,” IEEE Trans. Knowl
Data Eng., vol. 27, no. 4, pp. 964–978, Apr. 2015.

Xiaoyang Chen received the PhD degree in com-
puter science from Xidian University, Xi’an, China,
in 2019. His research interests include graph
indexing and search, design and analysis of algo-
rithms, external memory algorithms, and com-
pressed indexes.

Hongwei Huo (SM’17) received the BS degree in
mathematics from Northwest University, China, and
the MS degree in computer science and the PhD
degree in electronic engineering from Xidian Univer-
sity, Xi’an, China. She is currently a professor in
the School of Computer Science and Technology,
Xidian University. Her research interests include the
design and analysis of algorithms, graph indexing
and search, external memory algorithms and com-
pressed indexes, genome compression, and algo-
rithm engineering. She is a senior member of
the IEEE.

Jun (Luke) Huan (SM’11) directs the Baidu Big
Data Lab in Beijing. He is currently working on data
science, AI, machine learning, and datamining. He
has published more than 130 peer reviewed
papers in leading conferences and journals. He
was a recipient of the US National Science Foun-
dation Faculty Early Career Development Award in
2009. His group won several best paper awards
from leading international conferences. His service
record includes program cochair of IEEE BIBM in
2015 among others. He is a senior member of
the IEEE.

Jeffrey Scott Vitter (F’93) received the BS
degree (Hons.) in mathematics from the Univer-
sity of Notre Dame, in 1977, the PhD degree in
computer science from Stanford University, in
1980, and the MBA degree from Duke University,
in 2002. He is a fellow of the Guggenheim Foun-
dation, the National Academy of Inventors, the
American Association for the Advancement of
Science, the ACM, and IEEE. He is currently a
distinguished professor of computer and informa-
tion science at the University of Mississippi. His

research interests include span the design and analysis of algorithms,
big data, external memory algorithms, data compression, databases,
compressed data structures, parallel algorithms, and machine learning.

Weiguo Zheng received the PhD degree in com-
puter science from Peking University, Beijing,
China, in July 2015. He is currently an associate
professor in the School of Data Science, Fudan
University, Shanghai, China. His research inter-
ests include graph database, knowledge graph
management, natural language question answer-
ing, and similarity search.

Lei Zou received the BS and PhD degrees in
computer science from the Huazhong University
of Science and Technology (HUST), Wuhan,
China, in 2003 and 2009, respectively. Now, he is
a full professor with the Institute of Computer Sci-
ence and Technology of Peking University. His
research interests include graph database and
semantic data management.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

2668 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 6, JUNE 2021

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

