
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Optimizing Multi-Query Evaluation in Federated
RDF Systems

Peng Peng, Qi Ge, Lei Zou, M. Tamer Özsu, Zhiwei Xu, and Dongyan Zhao

Abstract—This paper revisits the classical problem of multiple query optimization in federated RDF systems. We propose a heuristic
query rewriting-based approach to optimize the evaluation of multiple queries. This approach can take advantage of SPARQL 1.1 to
share the common computation of multiple queries while considering the cost of both query evaluation and data shipment. Although we
prove that finding the optimal rewriting for multiple queries is NP-complete, we propose a heuristic rewriting algorithm with a bounded
approximation ratio. Furthermore, we propose an efficient method to use the interconnection topology between RDF sources to filter
out irrelevant sources, and utilize some characteristics of SPARQL 1.1 to optimize multiple joins of intermediate matches. The
extensive experimental studies show that the proposed techniques are effective, efficient and scalable.

Index Terms—Federated RDF Systems, SPARQL Query Processing, Multiple Query Optimization.

F

1 INTRODUCTION

RDF is a data model that is proposed by the W3C to model
information on the Web, and represents data as triples of the form
⟨subject, property, object⟩. An RDF dataset can be represented as
a graph, where subjects and objects are vertices and each triple is
a labelled edge. To manipulate RDF data, W3C has also designed
a standard query language, named SPARQL. The latest version
of SPARQL is SPARQL 1.1, which extends SPARQL 1.0 by
introducing some new operators. Many popular RDF stores, like
Jena1, Sesame2 and Virtuoso3, support SPARQL 1.1.

Increasingly, data providers have been publishing their datasets
using the RDF model. These datasets are often stored at the
producers’ own sites, some of which are SPARQL endpoints
that can execute SPARQL queries. An autonomous site with a
SPARQL endpoint is called an RDF source in this paper.

To integrate and provide transparent access over multiple RDF
sources, federated RDF systems have been proposed [11], [30],
[32], [36], where a control site is introduced to provide a common
interface for users to issue SPARQL queries. Especially in the
filed of life science, some efforts have been made to integrate
different RDF sources into a federated system. For example, the
European Bioinformatics Institute has built up a uniform plat-
form4 supporting federated queries over multiple bioinformatics
SPARQL endpoints, including BioModels, Biosamples, ChEMBL,
Ensembl, ExpressionAtlas, Reactome and Uniprot. To support
federated queries over the data of The Cancer Genome Atlas

• Peng Peng, Qi Ge and Zhiwei Xu are with Hunan University, China and
their email addresses are hnu16pp@hnu.edu.cn, kathy_gq@hnu.edu.cn
and zhiweixu@hnu.edu.cn.

• Lei Zou and Dongyan Zhao are with Peking University, China and their
email addresses are zoulei@pku.edu.cn and zhaodongyan@pku.edu.cn.

• M. Tamer Özsu is with University of Waterloo, Canada and his email
address is tamer.ozsu@uwaterloo.ca.

The corresponding author is Lei Zou.
1. http://jena.apache.org/
2. http://rdf4j.org/
3. https://virtuoso.openlinksw.com/rdf-quad-store/
4. https://www.ebi.ac.uk/rdf/services/sparql

(TCGA) project for the cancer related molecular analysis, the
researchers from University of Leipzig and NUI Galway have built
a federated RDF system, named TopFed [33]. Fig. 1 shows an
example federated RDF system involving six RDF sources, such
as NYTimes, GeoNames, SWDF and DBPedia.

Existing federated RDF systems only evaluate single queries
and miss the opportunities for multiple query optimization. Real
SPARQL query workloads reveal that many SPARQL queries are
often posed simultaneously [7]. This provides significant multi-
query optimization opportunities. Consider a batch of queries (e.g.,
Q1, Q2 and Q3 in Fig. 1) that are posed simultaneously over the
federated RDF system. Q1 is to find out all news about Canada;
Q2 retrieves all people who graduated from Canadian universities;
and Q3 is to retrieve all semantic web-related workshops held
in Canada. It is easy to identify some common subgraphs over
these three queries. All the three queries will be used as running
examples throughout this paper.

SELECT ?x ?n WHERE {

?x g:parentFeature ?l .

?l g:name "Canada" .

?y sameAs ?x .

?y n:topicPage ?n .}

SELECT ?c ?p WHERE {

?c g:featureCode g:School.

?c g:parentCountry ?l .

?l g:name "Canada" .

?y sameAs ?c .

?p d:almaMater ?y . }

SELECT ?c ?m WHERE {

?c g:featureCode g:PopulatedPlace.

?c g:parentCountry ?l .

?l g:name "Canada" .

?y sameAs ?c .

?m s:hasLocation ?y .

?m type s:Workshop . }

Control Site
RDF Sources

LinkedMDB

DBPedia

Jamendo

NYTimes

GeoNames SWDF

The shaded triple patterns correspond to the common subgraph.

Q1:

Q2:

Q3:

Fig. 1. Multiple Federated SPARQL Queries
1.1 Challenges & Our Solution

Although multi-query optimization has been well studied in dis-
tributed relational databases [21], some techniques commonly
referred to as data movement and data/query shipping [19] are
not easily applicable to federated RDF systems. For example, we
cannot require one source to send intermediate results directly to
another source. Moreover, moving data from one source to another
for join processing is also infeasible [19].

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

The only multiple SPARQL query optimization work [20]
only considers the centralized environment. It [20] finds out all
maximal common edge subgraphs (MCES) among a group of
query graphs and rewrite each group of queries into one query
by only using OPTIONAL operators. Adapting this approach to
federated RDF systems is difficult, because rewriting multiple
queries as proposed may generate many intermediate matches and
result in high data shipment cost. Furthermore, the approach does
not consider some new operators introduced by SPARQL 1.1 like
VALUES.

Our method has two novel characteristics:

1) We consider some characteristics of SPARQL 1.1 in-
cluding operators such as “OPTIONAL”, “UNION” and
“VALUES”. This allows us great rewrite opportunities.

2) We propose a cost model-driven greedy solution for
multi-query rewriting. Our cost model considers the cost
of both query evaluation and data shipment, while our
solution considers both the common subgraphs and the
selectivity of queries. Also, the linear time complexity
of our greedy algorithm guarantees the scalability of our
rewriting strategy.

In addition, we also study relevant source selection and inter-
mediate match joining in federated RDF systems, which obviously
do not arise in the centralized counterpart. First, we propose
a topology structure-based source selection, while existing ap-
proaches only consider the properties in each source. Experiments
confirm that our approach can reduce remote requests by 20%
compared with the existing data localization techniques. Second,
we discuss how to to optimize multiple joins of intermediate
matches and propose a rewriting-based optimization for joins by
using some new operators in SPARQL 1.1. Experiments show that
the optimized join approach can improve query performance by
40% compared with the naive join techniques.

To the best of our knowledge, this is the first study of multiple
SPARQL query optimization over federated RDF systems while
considering the characteristic of SPARQL 1.1, with the objective
to reduce the query response time and the number of remote
requests.

2 RELATED WORK

There are two threads of related work: SPARQL query processing
in federated RDF systems and multi-query optimization.

Federated SPARQL Query Processing. Many methods [11],
[13], [23], [29], [30], [32], [36] have been proposed for federated
SPARQL query processing. The main differences among the meth-
ods are their query decomposition and source selection strategies.

For data localization, the metadata-assisted methods are pop-
ular. These find the relevant RDF sources for a query based
on the metadata. The metadata in DARQ [30] (called service
descriptions) describes the data available from a data source in
the form of capabilities. SPLENDID [11] uses Vocabulary of
Interlinked Datasets (VOID) as the metadata. QTree [13], [29]
is another kind of metadata. It is a variant of RTree, and its
leaf stores a set of source identifers, including one for each
source of a triple approximated by the node. HiBISCuS [32]
relies on capabilities to compute the metadata. For each source,
HiBISCuS defines a set of capabilities which map the properties
to their subject and object authorities. TopFed [33] is a biological
federated SPARQL query engine. Its metadata comprises of an
N3 file and a Tissue Source Site to Tumour hash table, which is

based on the data distribution. UPSP [25] extends HiBISCuS by
adding the indices for a special kind of properties that can only be
found in one RDF source and is not involved in subject-subject,
subject-object, object-subject or object-object joins. Odyssey [23]
maintains metadata that allows for a more accurate cost estimation
to produce better query execution plans.

There are few works that do not require the metadata. FedX
[36] selects sources by using ASK queries. It sends ASK queries
for triple patterns to the RDF sources. Based on the results, it
annotates each triple pattern in the query with its relevant sources.

Furthermore, in SPARQL 1.1, a new keyword, SERVICE,
is introduced, which can explicitly instruct a federated query
processor to invoke a portion of a SPARQL query against a
remote SPARQL endpoint. Some papers [4], [5], [6] discuss the
syntax of this SPARQL 1.1 federation extension and formalize its
semantics. Buil-Aranda et al. [3], [5] also discuss how to optimize
the evaluation for the queries in the presence of both SERVICE
and OPTIONAL operators. The keyword SERVICE needs users
to explicitly specify the remote SPARQL endpoints, while the
federate RDF system can support querying without specifying the
remote SPARQL endpoints.

In addition, there are many distributed RDF systems [9], [12],
[24], [34] based on query decomposition. In [24], the authors first
decompose the input query into star subqueries and compute their
matches. Then, the matches are joined by using the MapReduce
framework. CliqueSquare [9] decompose the input query into
multiple star subqueries and builds an optimized flat query plan
in Hadoop. S2RDF [34] partitions the RDF data vertically and
materializes some extra join results. The partitioning results and
extra join results are stored using SPARK SQL. For query process-
ing, S2RDF translates the query into SQL queries. DREAM [12]
maintains the whole RDF dataset at each site. It divides the input
query into subqueries and executes each subquery at one site. The
intermediate results are merged to produce the final matches.

Multiple SPARQL Query Optimization. Le et al. [20] were
the first to discuss how to optimize multiple SPARQL queries,
but only in a centralized environment. It first finds out all maximal
common edge subgraphs (MCES) among a group of query graphs,
and then rewrites these queries into a query with OPTIONAL
operators. In the rewritten queries, the MCES constitutes the
main pattern, while the remaining subquery of each individual
query generates an OPTIONAL clause. Konstantinidis et al. [18]
discuss how to optimize multiple SPARQL queries over multiple
views. They first find out some atomic join operations among
multiple queries. Then, they map each atomic join operation to
a view and compute it just once to avoid redundant work. Peng
et al. [27] propose a multi-query optimization over federated RDF
systems which only uses “OPTIONAL” and “FILTER” but does
not consider “UNION” and “VALUES”.

There are a few papers on multi-query processing and op-
timization on Hadoop. HadoopSPARQL [22] discusses how to
translate a set of join operators into one Hadoop job. Anyanwu et
al. [2] extend the “multi-starjoin” processing in multiple SPARQL
queries to “multi-OPTIONAL” processing, which reduces the
number of MapReduce cycles.

3 BACKGROUND

We build on the definition of the RDF graph, SPARQL query and
federated RDF systems given in Section 1.

In RDF, resources in the Web are identified by Uniform
Resource Identifiers (URIs). In the context of our federated RDF

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

SWDF

LinkedMDB

DBPedia

Jamendo

NYTimes

GeoNames

g:v1

g:v2

"University of

British Columbia"
g:name

"Toronto"

g:name

g:v4

 "Canada"
g:name

g:v5

"Lake Ontario"

g:name

s:v8

"Toronto"

name

j:v9"Brad Sucks" title

j:MusicArtist

n:v10

n:great-lakes/index.html

n:topicPage

s:v7

s:hasLocation "SWDB 2004"

s:hasAcronym

s:Workshop
type

d:v11

d:v12

d:almaMater

"Kim Campbell"name

"University of

British Columbia"

label

g:v3

g:v5
sameAs

g:v3

based_near

l:v13

g:v3
sameAs

l:v14

 "Johnny Mnemonic"
title

l:country

l:v15

l:actor

 "Takeshi Kitano"

l:actor_name

d:v16

sameAs

d:v16

l:v15

sameAs

 "Takeshi Kitano"

name

n:v17

n:v17

"Stalin, Joseph"

n:prefLabel

51

n:associated_article_count

g:v6
 "North America"

g:name

g:v2

sameAs

g:parentCountry

g:parentFeature

"Vancouver"

g:name g:parentCountry

g:parentFeature

g:v1
sameAs

d:v11

sameAs

d:v18 sameAs"Joseph Stalin" name

 g:PopulatedPlace

 g:featureCode

 g:PopulatedPlace

 g:featureCode

g:School

g:featureCode

type

g:parentFeature

parentCountry

Fig. 2. Example Federated RDF System

system, we extend the idea of authoritative source [16]. A key
characteristic of our federated RDF system is the correspondence
between an URI and a source; i.e., the name for a resource is
associated with the host source where the information of the
resource is contained.

Definition 1. (Resource in RDF, Lookup). Let U be the set of
all resources in the Web. The function d : U → S is a partial,
surjective mapping that models a lookup and returns the source
containing the information of URI.

Based on the definition of URI, we can define the RDF graph
as follows. We stay close to similar definitions as found in [4],
[14], [15], [28].

Definition 2. (RDF Terms, Triple and Graph). The set of RDF
terms consists of the set of URIs U, the set of blank nodes B
and the set of literals L. A triple (s, p, o) ∈ T = (U∪B)×U×
(U ∪B ∪L) is called an RDF triple, where s is the subject, p
is the property and o is the object. A set T of triples is called
an RDF graph.

In the context of federated RDF systems, G is a combination
of many RDF graphs located at different source sites.

Definition 3. (Federated RDF System) A federated RDF system
is defined as W = (S , g, d), where (1) S is a set of source sites
that can be obtained by looking up URIs in an implementation
of W; (2) g : S → 2T is a mapping that associates each source
with a graph of RDF graph T ; and (3) d : U → S is a partial,
surjective mapping that models the fact that looking up URI
of resource u matches in the retrieval of the source represented
by d(u) ∈ S . d(u) is called the host source of u, and is unique
for a given URL of vertex u.
Then, an RDF graph T is the union of all subgraphs at different
sources, i.e.,

⋃
τ∈S g(τ) = T .

An RDF graph can also be represented as a graph, where
subjects and objects are vertices and each triple is a labelled edge
between vertices. Fig. 2 shows a federated RDF system as a graph
distributed among six different sources. Given a resource with the
URI “g:v2”, d(“g:v2”)=GeoNames, where “g” is abbreviation of
“GeoNames”. This means that “g:v2” is dereferenced by the host
GeoNames. Although the URI of a resource u may be contained in
multiple sources, u is only dereferenced by the host source d(u);
the other copies are called mirrors. In Fig. 2, the URIs at their
host sources are denoted as the grey ovals and they connect to the
corresponding mirrors at other sources by dashed lines. For the
URI “g:v2”, it is distributed among two sources, GeoNames and
SWDF, and only GeoNames is its host source.

SPARQL is a structured query language over RDF where the
primary building block is the basic graph pattern (BGP).

Definition 4. (Basic Graph Pattern) Let V be a set of variables;
variables bind to RDF terms from U ∪ B ∪ L. A triple e ∈
(U∪V)× (U∪V)× (U∪V∪L) is called triple pattern. We
omit blank nodes from triple patterns for ease of exposition. P
is the set of all triple patterns. A basic graph pattern (BGP) is
a set Q ⊂ P. A set of queries is Q ⊂ 2P.

A match distributed over a set of sources S ′ ⊆ S is a function
µ from variables in Q to RDF terms in

⋃
τ∈S ′ g(τ). In federated

RDF systems, a match of BGP Q may span over different sources.

Definition 5. (BGP Match over Federated RDF System) Here,
we denote the partial function µ : V → U∪B∪L as a mapping
µ fromV toU∪B∪L. Abusing notation, for a triple pattern e,
we denote by µ(e) the triple obtained by replacing the variables
in e according to µ.
Consider a federated RDF system W = (S , g, d) and a BGP Q.
Given S ′ ⊆ S , a mapping µ is said to be a match of Q if and
only if µ(tp) ∈ ⋃τ∈S ′ g(τ) for each triple pattern e in Q.

The set of matches for Q over S ′ is denoted as ~Q�S ′ .

Definition 6. (Compatibility) Given two BGP queries Q1 and Q2,
µ1 and µ2 define two matching functions V1 → U ∪ B ∪ L
and V2 →U ∪B ∪ L, respectively. µ1 and µ2 are compatible
when for all x ∈ V1 ∩V2, µ1(x) = µ2(x) (denoted as µ1 ∼ µ2);
otherwise, they are incompatible, denoted as µ1 � µ2.

The semantics of a general SPARQL query is recursively
defined based on BGP.

Definition 7. (SPARQL Query) Any BGP is a SPARQL
query. If Q1 and Q2 are SPARQL queries, then expres-
sions (Q1 AND Q2), (Q1 UNION Q2), (Q1 OPT Q2),
(Q1 FILT ER F) and (VALUES

−→
W D) are also SPARQL

queries, where F is a constraint,
−→
W is a list of distinct variables

in V and D is a set of vectors of constants.

Fig. 3 shows an example SPARQL query.
Select ?l ?x ?c ?f where{

?l g:name "Canada" .

OPTIONAL {{?x g:parentFeature ?l . }UNION

 {?c g:featureCode ?f.

 ?c g:parentCountry ?l .

 VALUES (?f) {(g:School) (g:PopulatedPlace)} } }

Fig. 3. Example SPARQL Query

The matches of a query Q over sources S ′ are defined as
follows.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

Definition 8. (SPARQL Match over Federated RDF System)
Given a federated RDF system W = (S , g, d), the match of a
SPARQL query Q over a set of sources S ′ (S ′ ⊆ S), denoted
as [[Q]]S ′ , is defined recursively as follows:

1) If Q is a BGP, [[Q]]S ′ is defined in Definition 5;
2) If Q = Q1 AND Q2, then [[Q]]S ′ = [[Q1]]S ′ on [[Q2]]S ′ =

{µ1 ∪ µ2
∣∣∣ µ1 ∈ [[Q1]]S ′ ∧ µ2 ∈ [[Q2]]S ′ ∧ (µ1 ∼ µ2)};

3) If Q = Q1 UNION Q2, then [[Q]]S ′ = [[Q1]]S ′ ∪ [[Q2]]S ′ =

{µ
∣∣∣ µ ∈ [[Q1]]S ′ ∨ µ ∈ [[Q2]]S ′ };

4) If Q = Q1 OPT Q2, then [[Q]]S ′ = ([[Q1]]S ′ on [[Q2]]S ′) ∪
([[Q1]]S ′\[[Q2]]S ′) = {µ1∪µ2

∣∣∣ µ1 ∈ [[Q1]]S ′∧µ2 ∈ [[Q2]]S ′∧
(µ1 ∼ µ2)}∪{µ1

∣∣∣ µ1 ∈ [[Q1]]S ′ ∧ (∀µ2 ∈ [[Q2]]S ′ , µ1 � µ2)};
5) If Q = Q1 FILT ER F, then [[Q]]S ′ = ΘF([[Q1]]S ′) =

{µ1
∣∣∣µ1 ∈ [[Q1]]S ′ ∧ µ1 satis f ies F};

6) If Q = VALUES
−→
W D, then [[Q]]S ′ = {µ

∣∣∣dom(µ) =
−→
W ∧

µ(
−→
W) ∈ D}.

If S ′ = S , i.e., the whole federated RDF system W, we call [[Q]]S

the match of Q over federated RDF system W.

The problem to be studied in this paper is defined as follows:
Given a set of SPARQL queries Qin and a federated RDF

system W = (S , g, d), our problem is to find the matches of each
query in Qin over W.

4 FRAMEWORK

A federated RDF system consists of a control site as well as some
RDF sources. All queries are submitted to the control site. The
control site decomposes a query into several subqueries that are
sent to relevant sources. If many subqueries sent to the same
source share common subgraphs, the control site rewrites them
as few queries as possible. Matches of subqueries are returned to
the control site for joins to form complete matches.

Our framework consists of five steps: query decomposition and
source selection, query rewriting, local evaluation, postprocessing
and intermediate match join (see Fig. 4). We briefly review the five
steps before we discuss them in detail in upcoming sections. Note
that only local evaluation is conducted over the remote sources
and the other four steps work at the control site.

Control Site

Query Decomposition
and Source Selection

Q

q1

q2

qn

...

s1

s2

sn

Q

q1

q2

qn

...

s1

s2

sn

SPARQL Query

Subquery

Rewritten Query

SPARQL Query

Subquery

Rewritten Query

SPARQL
Queries
SPARQL
Queries

Postprocessing Intermediate
Match Join

Postprocessing Intermediate
Match Join

Query RewritingQuery Rewriting

Subqueries

Matches of
Subqueries

Local Evaluation
RDF Sources

Local Evaluation
RDF Sources

Rewritten Queries

Matches of
Rewritten Queries

Matches of
SPARQL
Queries

Matches of
SPARQL
Queries

Fig. 4. Scheme for Federated Multiple SPARQL Queries Processing
Query Decomposition and Source Selection. We first de-

compose a query Q into a set of subqueries expressed over relevant
sources. In this paper, we propose to utilize the interconnection be-
tween different RDF sources to further filter out irrelevant sources.
For a SPARQL query Qi in Qin, we obtain a set Qi of subqueries
{q1

i @S (q1
i), ..., qmi

i @S (qmi
i)}, where q j

i @S (q j
i) is subquery of query

Qi whose relevant sources are S (q j
i). Then, Qin is decomposed into⋃

i Qi.
Query Rewriting. The set of subqueries that are planned to

be sent to the same source provides an opportunity for multiple
query optimization. The control site uses UNION, OPTIONAL

and VALUES operators to rewrite them into fewer queries that
will be sent to the relevant source. Our query rewriting technique
is based on a cost model that considers the time for both local
evaluation and data shipment. We will discuss this in Section 6.

Local Evaluation. The set of rewritten queries are sent to their
relevant sources and evaluated there. Local evaluation matches are
returned to the control site.

Postprocessing. The union of local evaluation results from
evaluating rewritten queries is a superset of results obtained by
evaluating the original subqueries. Therefore, the control site
needs to perform some postprocessing to check each local evalua-
tion match against each original query. In this paper, we propose a
postprocessing method that only requires a linear scan of the local
results in Section 7.

Intermediate Match Join. For each subquery q j
i , collecting

the matches at each relevant source in τ ∈ S (q j
i), we obtain all

its matches. Assume that an original query is decomposed into a
set of subqueries, we can obtain matches of the original query by
joining matches of the subqueries. For multiple SPARQL queries
over a federated RDF system, we propose an optimized solution
to avoid duplicate computation in join processing (see Section 8).

5 QUERY DECOMPOSITION AND SOURCE SELEC-
TION

Each single-triple pattern in a SPARQL query corresponds to a
subquery that maps to a set of relevant sources by using ASK
queries [36]. If a triple pattern is variables-only, the triple pattern
can map to all sources in the federated RDF system as its relevant
source and corresponds to one subquery. Consider triple pattern
“?y sameAs ?x” in Q1 of Fig. 1. Since RDF sources “GeoNames”,
“NYTimes”, “DBPedia”, “SWDF” and “LinkedMDB” contain the
property “sameAs”, this triple pattern has five relevant sources.
However, triple pattern “?x g:parentFeature ?l” in Q1 only maps
to source “GeoNames”, because that is the only source which has
property “g:parentFeature”.

relevant sourcesrelevant source relevant sourcesrelevant sources

{GeoNames}

relevant source

SELECT ?c WHERE {

?c g:featureCode g:PopulatedPlace.

?c g:parentCountry ?l .

?l g:name "Canada" .}

q3
1
@{GeoNames}

{GeoNames} {SWDogFood}

SELECT ?m ?y WHERE {

?m s:hasLocation ?y .

?m type s:Workshop .}

q3
2
@{SWDogFood}

{SWDogFood}{GeoNames}

relevant source

SELECT ?y ?c WHERE {

?y sameAs ?c .}

q3
3
@{DBPedia,GeoNames,SWD

ogFood,NYTimes,LinkedMDB}

{DBPedia,GeoNames,SWDog

Food,NYTimes,LinkedMDB}

relevant source relevant sourcesrelevant sources

{GeoNames}

relevant source

SELECT ?c ?p WHERE {

?c g:featureCode g:School.

?c g:parentCountry ?l .

?l g:name "Canada" .

?y sameAs ?c .

?p d:almaMater ?y . }

SELECT ?c WHERE {

?c g:featureCode g:School.

?c g:parentCountry ?l .

?l g:name "Canada" .}

SELECT ?y ?c WHERE {

?y sameAs ?c .}

q2
1
@{GeoNames} q2

3
@{DBPedia,GeoNames,SWDog

Food,NYTimes,LinkedMDB}

{GeoNames} {DBPedia,GeoNames,SWDog

Food,NYTimes,LinkedMDB}

SELECT ?p ?y WHERE {

?p d:almaMater ?y .}

q2
2
@{DBPedia}

{DBPedia}{GeoNames}

relevant source

relevant source relevant sources relevant sources

{GeoNames}

relevant source

SELECT ?x ?n WHERE {

?x g:parentFeature ?l .

?l g:name "Canada" .

?y sameAs ?x .

?y n:topicPage ?n .}

SELECT ?x WHERE {

?x g:parentFeature ?l .

?l g:name "Canada" . }

SELECT ?y ?x WHERE {

?y sameAs ?x .}

q1
1
@{GeoNames} q1

2
@{DBPedia,GeoNames,SWDF,

NYTimes,LinkedMDB,}

{GeoNames} {DBPedia,GeoNames,SWDF,

NYTimes,LinkedMDB,}

SELECT ?y ?n WHERE {

?y n:topicPage ?n .}

q1
3
@{NYTimes}

{NYTimes}

(a) Q1

(b) Q2

(c) Q3

SELECT ?x WHERE {

?x g:parentFeature ?l .

?l g:name "Canada" . }

SELECT ?c WHERE {

?c g:featureCode g:School.

?c g:parentCountry ?l .

?l g:name "Canada" .}

SELECT ?c WHERE {

?c g:featureCode g:PopulatedPlace.

?c g:parentCountry ?l .

?l g:name "Canada" .}

GeoNames

SELECT ?c ?m WHERE {

?c g:featureCode g:PopulatedPlace.

?c g:parentCountry ?l .

?l g:name "Canada" .

?y sameAs ?c .

?m s:hasLocation ?y .

?m type s:Workshop . }

Fig. 5. Basic Query Decomposition and Source Selection Result for Q1

To reduce the number of subqueries that are sent to each
source, some single-triple pattern queries q1, ..., qm can be com-
bined to form a larger subquery if and only the following two
conditions hold: (1) all single-triple pattern queries qi (i = 1, ..,m)
have the same single relevant source; and (2) the subquery induced
by these single-triple patterns forms a connected subquery graph.
Note that, if two single-triple patterns qi and q j have the same
multiple (not a single one) relevant sources, they cannot be
merged. For example, qi and q j have the same relevant sources
{τ1, τ2}. If we merge qi with q j together and send the merged
query to both τ1 and τ2, we may miss the crossing match where
one triple in τ1 matches qi and another triple in τ2 matches q j.

Based on the above analysis, Fig. 5 illustrates that query Q1 is
decomposed into three subqueries q1

1, q2
1 and q3

1. We also show the
relevant sources of each subquery.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

The existing strategies (e.g., [36]) may overestimate relevant
sources, leading to unnecessary joins that do not produce results.
In this paper, we employ the interconnection structures among
sources to further filter out irrelevant sources. Based on the cross-
ing edges, a source topology graph can be defined and maintained
at the control site.

Definition 9. (Source Topology Graph) Given a federated RDF
system W = (S , g, d), the corresponding source topology graph
(STG) T = (V(T), E(T)) is an undirected graph, where (1)
each vertex in V(T) corresponds to a source τi ∈ S ; (2) there
is an edge between vertices τi and τ j in T if and only if there
is at least one triple (s, p, o) ∈ g(τi) (or (o, p, s) ∈ g(τi) or
(s, p, o) ∈ g(τ j) or (o, p, s) ∈ g(τ j)), where s and o are URIs
of two resources, d(s) = τi and d(o) = τ j.

Note that, unlike graph summarisation techniques like bisim-
ulation as surveyed in [8], the source topology graph maintains
the interconnection structure among RDF sources. In the source
topology graph, the RDF graphs in one source is as a whole, while
the graph summarisation techniques summary the structure of the
whole RDF graph.

Building up the source topology graph is challenging. How-
ever, many RDF sources provide their own schemas, and the
source topology graph can be built by merging the schemas of
different RDF sources. Furthermore, we can utilize the crawler,
LDspider proposed in [17], for a federated RDF system to figure
out edges that cross between different sources, since we can
look up the URIs to retrieve their host sources. We use the
SPARQL endpoint to sample some URIs, and perform crawls to
retrieve resources from every dataset using a breadth-first crawling
strategy. Based on the crawled data, we can build up the source
topology graph.

Based on this source topology graph, we propose a pruning
rule to filter out irrelevant sources. Each source in STG is first
annotated with its relevant decomposed subqueries. Specifically,
according to the baseline solution, query Q is decomposed into
several subqueries and each of them is associated with a set of
relevant sources. For example, “NYtimes” is a relevant source to
q3

1, we annotate “NYTimes” in STG with q3
1. Fig. 7(a) shows the

annotated STG T ∗ for query Q1. Then, each query results in an
annotated source topology graph.

Meanwhile, for a BGP Q, a linkage graph of subqueries
LG(Q) is defined as follows. Fig. 7(b) shows the linkage graph
of subqueries LG(Q1).

Definition 10. (Linkage Graph of Subqueries) Assume that
a BGP query Q is decomposed into a set of subqueries
{q1, ..., qm}. The Linkage Graph of Subqueries of Q is de-
fined as a graph, where each vertex represents a subquery qi

(i = 1, ..., n) of Q, an edge exists if and only if the correspond-
ing subqueries share some common URIs or variables. The
common variable must occur in “subject” position in at least
one triple pattern of Q. The common URIs and variables are
labels of the edge connecting their corresponding vertices.

Given a linkage graph of subqueries LG(Q) and the annotated
source topology graph T ∗, we find all the homomorphic matches
of LG(Q) over T ∗. Then, if a subquery q does not map to a source
τ in any match, τ is not a relevant source of subquery q. We
formalize this observation in Theorem 1.

relevant sourcesrelevant source

relevant sources

relevant sources

{GeoNames}

relevant source

SELECT ?c WHERE {

?c g:featureCode g:PopulatedPlace.

?c g:parentCountry ?l .

?l g:name "Canada" .}

q3
1
@{GeoNames}

{GeoNames} {SWDF}

SELECT ?m ?y WHERE {

?m s:hasLocation ?y .

?m type s:Workshop .}

q3
3
@{SWDF}

{SWDF}{GeoNames}

relevant source

SELECT ?y ?c WHERE {

?y sameAs ?c .}

q3
2
@{GeoNames,SWDF}

{GeoNames,SWDF}

relevant source relevant sources relevant sources

{GeoNames}

relevant source

SELECT ?c ?p WHERE {

?c g:featureCode g:School.

?c g:parentCountry ?l .

?l g:name "Canada" .

?y sameAs ?c .

?p d:almaMater ?y . }

SELECT ?c WHERE {

?c g:featureCode g:School.

?c g:parentCountry ?l .

?l g:name "Canada" .}

SELECT ?y ?c WHERE {

?y sameAs ?c .}

q2
1
@{GeoNames} q2

2
@{DBPedia,GeoNames,

NYTimes,LinkedMDB}

{GeoNames} {DBPedia,GeoNames,NY

Times,LinkedMDB}

SELECT ?p ?y WHERE {

?p d:almaMater ?y .}

q2
3
@{DBPedia}

{DBPedia}{GeoNames}

relevant source

relevant source
relevant sources relevant sources

{GeoNames}

relevant source

SELECT ?x ?n WHERE {

?x g:parentFeature ?l .

?l g:name "Canada" .

?y sameAs ?x .

?y n:topicPage ?n .}

SELECT ?x WHERE {

?x g:parentFeature ?l .

?l g:name "Canada" . }

SELECT ?y ?x WHERE {

?y sameAs ?x .}

q1
1
@{GeoNames} q1

2
@{DBPedia,GeoNames,NYTimes}

{GeoNames} {DBPedia,GeoNames,NYTimes}

SELECT ?y ?n WHERE {

?y n:topicPage ?n .}

q1
3
@{NYTimes}

{NYTimes}

(a) Q1

(b) Q2

(c) Q3

SELECT ?c ?m WHERE {

?c g:featureCode g:PopulatedPlace.

?c g:parentCountry ?l .

?l g:name "Canada" .

?y sameAs ?c .

?m s:hasLocation ?y .

?m type s:Workshop . }

Fig. 6. Optimized Query Decomposition and Source Selection Results
for Q1, Q1 and Q3

Theorem 1. Given a linkage graph of subqueries LG(Q) and
its corresponding annotated source topology graph T ∗ for a
subquery q, after we omit the the edges in LG(Q) that their
labels are literals and variables only occurring as the objects,
if there exists a match m of Q∗ over T ∗ containing q, then m(q)
is a relevant source of q.

Proof: The proof is given in the appendix.

DBpedia

LinkedMDB

NYTimes

GeoNames SWDogFood

Jamendo

q1
1

q1
2

q1
3

DBpedia

LinkedMDB

NYTimes

GeoNames SWDogFood

Jamendo

q1
2

q1
2

q1
2

q1
2

DBpedia

LinkedMDB

NYTimes

GeoNames SWDF

Jamendo

q1
1

q1
2

q1
3

q1
2

q1
2

q1
2

q1
2

(a) Annotated Source Topology Graph for Q1

?c g:name "Asia".

?l g:parentFeature ?c .

?l g:name "Georgia" .

?y sameAs ?l .

?y sameAs ?l .

?p d:birthPlace ?y .

SELECT ?l WHERE {

?c g:name "Asia".

?l g:parentFeature ?c .

?l g:name "Georgia" .}

SELECT ?y WHERE {

?p d:birthPlace ?y .}

q2
1

q2
2

Q3

?x ?y ?l ?y ?l ?y

Q1 Q2

Isomorphic

q1
1

q1
2

q1
3

?x
q1

1

?y
q1

3
q1

2

(b) Linkage Graph of Sub-
queries LG(Q1) of Q1

Fig. 7. The Linkage Graph of Subqueries and Annotated Source Topol-
ogy Graph for Q1

For example, there are three homomorphic matches of LG(Q1)
over T ∗ in Fig. 8. Sources “LinkedMDB” and “SWDF” do not
match q2

1, so both of them can be pruned from the relevant sources
of q2

1. Fig. 6(a) shows that q2
1@{DBpedia,GeoNames,NYTimes},

which means that q2
1 only has three relevant sources. Existing

solutions that only consider the “property” would assign the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

subquery to five relevant sources. Thus, the STG-based strategy
can reduce the number of relevant sources.

q1
1 GeoNames

q1
2 DBpedia

q1
3

NYTimes

q1
1 {GeoNames}

q1
2 {DBpedia, GeoNames, NYTimes}

q1
3 {NYTimes}

q1
1 GeoNames

q1
2 GeoNames

q1
3

NYTimes

q1
1 GeoNames

q1
2 NYTimes

q1
3

NYTimes

Match 1: Match 2: Match 3:

Fig. 8. Homomorphism Matches for LG(Q1) over the Annotated Source
Topology Graph

Analogously, Q2 and Q3 can be decomposed into subqueries
over their relevant sources. Fig. 6 shows the query decomposition
and source selection results of all three example queries.

6 QUERY REWRITING

As mentioned in Section 1, when multiple SPARQL queries are
posed simultaneously, there is room for sharing computation when
executing these queries. Assume that multiple decomposed sub-
queries that are expected to be sent to the same source share some
common substructures. A possible optimization is to rewrite them
(at the control site) into fewer SPARQL queries based on these
common substructures and then send them to relevant sources,
which can save both the number of remote accesses and query
response time. Obviously, different query rewritings may lead to
different performances; thus, this section proposes a cost-driven
query rewriting scheme. To simplify presentation, we assume that
the SPARQL query originally issued at the control site is a BGP.
Our solution is easily extended to handle general SPARQL queries
as discussed in appendix. Note that, the following discussion
focuses on the subqueries sent to the same source τ.

6.1 Intuition

We utilize “OPTIONAL”, “UNION” and “VALUES” operators to
utilize common subgraphs among different queries for rewriting.

6.1.1 OPTIONAL-UNION-based Rewriting

Consider two subqueries q1
1@{GeoNames} and q1

2@{GeoNames}
in Fig. 6 that are decomposed from Q1 and Q2. They share a
common subgraph: triple pattern “?l g:name “Canada” ”. There-
fore, a straightforward rewriting strategy in [20], [27] is to rewrite
them into a single query, where the subqueries q1

1@{GeoNames}
and q1

2@{GeoNames} minus “?l g:name “Canada” ” map to two
OPTIONAL clauses, and “?l g:name “Canada” ” is the left-hand-
side of the OPTIONAL.

However, simply rewriting each subquery as one OPTIONAL
clause may result in some redundant matches that can match the
union of multiple subqueries. For example, there may be some
triples matching both q1

1@{GeoNames} and q1
2@{GeoNames}.

Then, the straightforward rewriting strategy produces matches
of both q1

1@{GeoNames} and q1
2@{GeoNames}, but these are

redundant.
We can rewrite a set of subqueries with a common subgraph

as a query q̂ with an OPTIONAL clause that contains multiple
UNION clauses, where the main graph pattern of q̂ is the com-
mon subgraph among these subqueries and each subquery corre-
sponds to one UNION clause in the OPTIONAL. For example,
q1

1@{GeoNames} and q1
2@{GeoNames} are rewritten into a single

query with one OPTIONAL clause, where “?l g:name “Canada” ”
is the main pattern, and the subgraphs q1

1@{GeoNames} and
q1

2@{GeoNames} minus “?l g:name “Canada” ” map to two
UNION clauses in the OPTIONAL clause, as shown in Fig. 9.

q1
1@{GeoNames}

SELECT ?x WHERE {

?x g:parentFeature ?l .

?l g:name "Canada" . }

q2
1@{GeoNames}

SELECT ?c WHERE {

?c g:featureCode g:School.

?c g:parentCountry ?l .

?l g:name "Canada" .}

Select ?l ?x ?c where{

?l g:name "Canada" .

OPTIONAL {

{?x g:parentFeature ?l . }

UNION

{?c g:featureCode g:School.?c g:parentCountry ?l .}}

}

q1
1@{GeoNames}

Fig. 9. Rewriting Queries using OPTIONAL and UNION Operators

Formally, given a set of subqueries {q1, q2, ..., qn} over a source
τ, if p is the common subgraph among them, we rewrite them as
a query with OPTIONAL and UNION operators as follows.

q̂ = p OPT ((q1 − p) UNION (q2 − p) ... UNION (qn − p))

Most existing RDF stores implement OPTIONAL operators
using left-joins, so the cardinality of a SPARQL query with one
OPTIONAL operator often does not much exceed the cardinality
of the left-hand-side of the OPTIONAL [20], [27]. Thus, the
cardinality of the rewritten query with one OPTIONAL operator
does not increase much.

6.1.2 VALUES-based Rewriting
Consider two subqueries q1

2@{GeoNames} and q1
3@{ GeoNames}

in Fig. 10 decomposed from Q2 and Q3. Although their first triple
patterns are different, the only difference is constant bounded to
objects in the first triple pattern. We can rewrite the two queries
using VALUES, as shown in Fig. 10. In other words, if some
subqueries issued at the same source have the common subgraph
except the constants on a vertex (subject or object positions), they
can be rewritten as a single query with VALUES. For example, q1

2
and q1

3 share the same structure except for two entities “g:School”
and “g:PopulatedPlace” (highlighted in Fig. 10). We introduce a
new variable ? f and restrict the variable using VALUES operator.

q3
1@{GeoNames}

SELECT ?c WHERE {

?c g:featureCode g:PopulatedPlace .

?c g:parentCountry ?l .

?l g:name "Canada" .}

q2
1@{GeoNames}

SELECT ?c WHERE {

?c g:featureCode g:School .

?c g:parentCountry ?l .

?l g:name "Canada" .}

Select ?l ?c ?f where{

?c g:featureCode ?f .

?c g:parentCountry ?l .

?l g:name "Canada" .

VALUES (?f) {(g:School) (g:PopulatedPlace)}

}

Fig. 10. Rewriting Queries using VALUES Operator

Formally, if some subqueries {q1, q2, ..., qn} that are sent to the
same source τ employ the same query structure p except for some
vertex constants, we rewrite them as follows.

q̂ = p VALUES (?v) {(v1) (v2) ... (vn)}

where v1, v2, ..., vn are the different constants in the same position
of p and ?v is the variable that replaces the constants.

The VALUES operator provides inline data as a solution
sequence that are combined with the results of the main pattern.
Thus, the cardinality of the rewritten query with VALUES operator
is still equal to the total cardinality of the subqueries. Unlike
OPTIONAL operators adding extra columns, VALUES operators
do not introduce extra joins and extra intermediate matches.
Hence, the cost of data shipment will increase little.

6.1.3 Hybrid Rewriting
A hybrid rewriting strategy is also feasible by using OPTIONAL,
UNION and VALUES. Let us consider the three subqueries issued
at the same source GeoNames. Fig. 11 illustrates a hybrid rewiring
strategy, using OPTIONAL followed by UNION and VALUES.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

q1
1
@{GeoNames}

SELECT ?x WHERE {

?x g:parentFeature ?l .

?l g:name "Canada" . }
Select ?l ?x ?c ?f where{

?l g:name "Canada" .

OPTIONAL {{?x g:parentFeature ?l . }UNION

 {?c g:featureCode ?f.

 ?c g:parentCountry ?l .

 VALUES (?f) {(g:School) (g:PopulatedPlace)}}}

}q3
1
@{GeoNames}

SELECT ?c WHERE {

?c g:featureCode g:PopulatedPlace.

?c g:parentCountry ?l .

?l g:name "Canada" .}

q2
1
@{GeoNames}

SELECT ?c WHERE {

?c g:featureCode g:School.

?c g:parentCountry ?l .

?l g:name "Canada" .}

Fig. 11. Rewriting Queries using OPTIONAL, UNION and VALUES
Operators
6.2 Cost Model
Given a set of subqueries, we may have different rewriting strate-
gies with different costs. To select a better one, we need a model to
quantify the cost, which includes two components: time for local
evaluation and time for data shipment. The former is the CPU
time of evaluating subqueries, while the latter one refers to the
data (subquery results) shipment cost.

6.2.1 Cost Model for BGPs
It has been claimed that selective triple patterns in BGP have
higher priorities in evaluation [20], [27]. As verified in the ap-
pendix, the cardinality of a query is positively associated with the
selectivity of the most selective triple pattern, so we define the
cardinality of evaluating a basic graph pattern Q as follows.

card(Q) = mine∈E(Q){sel(e)}

where sel(e) is the selectivity of triple pattern e in Q.
As mentioned earlier, all matches of subqueries are sent to

the control site to join for the final matches after local evaluation.
Hence, the cost of data shipment for a BGP Q can be defined
based on the number of matches as follows.

costDS (Q) = card(Q) × TMS G = mine∈E(Q){sel(e)} × TMS G

where TMS G is the unit time to transmit a data unit.
The time for evaluating a query is proportional to the number

of matches, so the cost of local evaluation for a BGP Q is defined
as follows.

costLE(Q) = card(Q) × TCPU = mine∈E(Q){sel(e)} × TCPU

where TCPU is the CPU unit time to construct a match.
For estimating the selectivity of a triple pattern, we can employ

heuristics that can estimate the selectivity without pre-computed
statistics about the RDF source [37]. The selectivity of a triple
pattern is computed according to the type and number of unbound
components and is characterized by the ranking rule that subjects
are more selective than objects and objects more selective than
properties. Furthermore, the relative coefficients, TCPU and TMS G,
in the cost model are greatly influenced by the resources of each
RDF store and the network topology of the federated RDF system.
They can be estimated offline as the metadata.

6.2.2 Cost Model for General SPARQL Queries
We design the cost model to handle general SPARQL queries
based on the above discussion. The design of our cost model is
motivated by the way in which a SPARQL query is evaluated in
popular RDF stores. As discussed in previous studies [20], [27],
the graph patterns in OPTIONAL clauses are evaluated on the
results of the main pattern (for the fact that the graph pattern
in the OPTIONAL clause is a left-join), which suggests that a
good optimization should keep the cardinality from the common
subgraph as small as possible.

In addition, the VALUES operator specifies the variable with
some constants. The constants in the VALUES operator can
greatly increase the selectivity of the triple patterns containing
the variable, and the cardinality of a query relies heavily on the
selectivity of the most selective triple pattern. As a result, the
cardinality of a query with VALUES often relies heavily on the
number of constants in the VALUES operator.

Consequently, the cardinality of a SPARQL query Q, card(Q),
is defined as follows:

card(Q) =

min e∈E(Q){sel(e)} i f Q is a BGP;
min{card(Q1), card(Q2)} i f Q = Q1 AND Q2;
card(Q1) + card(Q2) i f Q = Q1 UNION Q2;
card(Q1) + ∆1 i f Q = Q1 OPT Q2;
card(Q1) + ∆2 i f Q = Q1 FILT ER F;
min{card(Q), |D|} i f Q = VALUES

−→
W D;

(1)
where ∆1 and ∆2 are empirically trivial values [20] and |D| is the
size of D.

When we rewrite the subqueries by using VALUES, all con-
stants added in VALUES are extracted from the subqueries. Be-
cause VALUES provides inline data to the variables, the rewriting
is nearly equivalent to merging the subqueries without extra cost.
Thus, the cardinality of the rewritten query with VALUES operator
is still equal to the total cardinality of the subqueries.

Thus, given a set of subqueries Q = {q1@{τ}, q2@{τ},
..., qn@{τ}} over a source τ, if p is the common subgraph among
them and we rewrite them into a query q̂ by using UNION,
OPTIONAL and VALUES, the cost of evaluating q̂ is defined
as follows:

costDS (q̂) = card(q̂) × TMS G = (min
e∈p
{sel(e)} + ∆1) × TMS G

Here, as discussed before, ∆1 is empirically trivial, so card(q̂)
is mostly determined by the cardinality of p. Hence, we ignore ∆1

and have the following cost function for data shipment.

costDS (q̂) = min
e∈p
{sel(e)} × TMS G

Similarly, the cost function for local evaluation is also mostly
determined by the cardinality of p:

costLE(q̂) = min
e∈p
{sel(e)} × TCPU

In summary, for a rewritten query q̂ with the main pattern p,
its total cost is defined as follows.

cost(q̂) = costLE(q̂) + costDS (q̂)

= min
e∈p
{sel(e)} × (TCPU + TMS G) = cost(p) (2)

6.2.3 Cost Model for Rewriting
The problem of query rewriting is that given a set Q of subqueries
{q1, ..., qn}, we find a set Q̂ of rewritten queries {q̂1, ..., q̂m} (m ≤
n) with the smallest cost. Each rewritten query q̂i (i = 1, ...,m)
comes from rewriting a set of original subqueries in Q, where
these subqueries share the same main pattern pi.

As mentioned in Equation 2, the cost of a rewritten query
is mostly determined by the cost of its main pattern. Thus, the
problem of finding out a set Q̂ of rewritten queries is equivalent
to finding out a set P of patterns, where each subquery contains
at least one pattern p ∈ P and can be rewritten by using p as
the main pattern. To find out the optimal set of patterns for query
rewriting, we need to measure the unit benefit of selecting a pattern
for rewriting a set of subqueries. The benefit is defined as follows.
Definition 11. (Benefit of Selecting a Pattern for Rewriting

Subqueries) Given a common subgraph p over a set of

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

q3
1@{GeoNames}

SELECT ?c WHERE {

?c g:featureCode g:PopulatedPlace.

?c g:parentCountry ?l .

?l g:name "Canada" .}

q2
1@{GeoNames}

SELECT ?c WHERE {

?c g:featureCode g:School.

?c g:parentCountry ?l .

?l g:name "Canada" .}

q1
1@{GeoNames}

SELECT ?x WHERE {

?x g:parentFeature ?l .

?l g:name "Canada" . }

q1
1@{GeoNames}

SELECT ?x WHERE {

?x g:parentFeature ?l .

?l g:name "Canada" . }

First equivalence class

Second equivalence class

q3
1@{GeoNames}

SELECT ?c WHERE {

?c g:featureCode g:PopulatedPlace.

?c g:parentCountry ?l .

?l g:name "Canada" .}

q2
1@{GeoNames}

Select ?l ?c ?f where{

?l g:name "Canada" .

?c g:featureCode ?f .

?c g:parentCountry ?l .

VALUES (?f) {(g:School) (g:PopulatedPlace)}

}

q1
1@{GeoNames}

SELECT ?x WHERE {

?x g:parentFeature ?l .

?l g:name "Canada" . }

Select ?l ?x ?c ?f where{

?l g:name "Canada" .

OPTIONAL {{?x g:parentFeature ?l . }UNION

 {?c g:featureCode ?f.

 ?c g:parentCountry ?l .

 VALUES (?f) {(g:School) (g:PopulatedPlace)}}}

}

SELECT ?c WHERE {

?c g:featureCode g:School.

?c g:parentCountry ?l .

?l g:name "Canada" .}

Fig. 12. Example of Rewriting Subqueries

subqueries Q, the benefit of using p to rewrite Q, B(p,Q),
is denoted as follows:

B(p,Q) = (
∑
q∈Q

cost(q)) − cost(p)

= ((
∑
q∈Q

min
e∈q
{sel(e)}) −min

e∈p
{sel(e)}) × (TCPU + TMS G)

In practice, there may be no common subgraph over all the
subqueries in Q. Thus, we may need to decompose Q into multiple
subsets {Q1, ...,Qm} such that subqueries in each subset Qi share a
common subgraph pi and they can be rewritten based on pi. In this
case, we define the benefit of rewriting the whole Q using patterns
{p1, ..., pm} as follows.
Definition 12. (Benefit of Selecting a Pattern Set for Rewriting

a Subquery Set) Given a set of subqueries Q, assume that Q
can be partitioned into a collection {Q1, ...,Qm} of subsets of Q
and pi is the most beneficial common subgraph over Qi. Then,
the benefit of rewriting Q using P = {p1, ..., pm} is defined as.

B(P,Q) =
m∑

i=1

B(pi,Qi)

Then, the problem of query rewriting is equivalent to finding
the set of patterns P and its corresponding partitioned collection
of subsets of Q that leads to the maximal benefit.

6.3 Query Rewriting Algorithm
Given a set of subqueries Q, Definition 12 is a set-function with
respect to set P, a set of patterns. Unfortunately, the function is
submodular. Hence, finding the optimal set Pmax for rewriting is a
NP-hard problem as discussed in the following theorem.
Theorem 2. Given a set of subqueries Q, finding the optimal

set Pmax of patterns to rewrite all subqueries in Q while
maximizing the benefit function in Definition 12 is NP-hard.

Proof: The proof is given in the appendix.
We propose a greedy algorithm that iteratively selects the

locally optimal triple pattern in Algorithm 1. Generally, at each
iteration, there are three steps:

1) Step 1: Determining the set of subqueries for rewrit-
ing (Lines 3-4). We select a triple pattern emax with

the largest discrete derivative
△Bene f it(emax |P)

sel(emax)×(TCPU+TMS G) =∑
q∈Q′ cost(q)−cost(emax)

sel(emax) , where P is the set of selected
patterns, Q′ denote the set of subqueries hit by emax and
all patterns of P hitting the subqueries in Q′ are less
selective than emax. This ensures that all subqueries in Q′
contains the common triple pattern emax. We can start the

search from the common triple pattern to check whether
different subqueries have the same common substructure
except for some constants on subject or object positions.
Furthermore, the average number of triple patterns in
the queries of most real workloads are less than 4 [7].
Because of the common triple pattern and the limited
sizes of queries, we can divide Q′ into several equivalence
classes, where each class contains subqueries with the
same structure except for some constants on subject or
object positions, within a reasonable amount of time.

2) Step 2: VALUES-based rewriting (Lines 5-8). Sub-
queries in the same equivalence class can be rewritten
to a query pattern with VALUES operators.

3) Step 3: OPTIONAL-UNION-based rewriting (Lines
9-10). All subqueries in Q′ can be rewritten into query q̂
with an OPTIONAL operator using p as the main pattern.
All the returning variables in the subqueries of Q′ and the
join variables are specified in the select clauses of q̂.

Then, we remove queries in Q′ from Q and iterate the above
process until Q is empty.

Algorithm 1: Query Rewriting Algorithm
Input: A set of subqueries Q.
Output: A set of rewritten queries sets Q̂.

1 Initialize a pattern set P with ∅;
2 while Q , ∅ do
3 Select the triple pattern emax with the largest value∑

q∈Q′ cost(q)−cost(emax)
sel(emax) , where Q′ is the set of subqueries

hit by emax and all patterns of P hitting the
subqueries in Q′ are less selective than emax;

4 Divide Q′ into a collection of equivalence classes EC,
where each class contains subqueries isomorphic to
each other;

5 for each class ec ∈ EC do
6 Generalize a pattern p′ isomorphic all patterns in

EC, where p′ does not contain any constants;
7 Build a query pattern with p′;
8 Add VALUES by mapping p′ to patterns in EC;
9 for each class ec ∈ EC do

10 Add the pattern into q̂ as a UNION pattern in the
OPTIONAL clause;

11 All the returning variables in the queries of Q′ and the
join variables are specified in the select clauses of q̂;

12 Add q̂ into Q̂;
13 Q = Q − Q′, and P = P ∪ {p};
14 Return Q̂;

Given subqueries q1
1@{GeoNames}, q1

2@{GeoNames} and
q1

3@{GeoNames} in Fig. 12, we select the triple pattern “?l

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

g:name “Canada”” in the first step. It hits the three subqueries.
We divide them into two equivalence classes {q1

1@{GeoNames}},
{q1

2@{GeoNames}, q1
3@{GeoNames}} according to the query

structure. Then, we rewrite {q1
2@{GeoNames}, q1

3@{GeoNames}}
using VALUES operator. Finally, we rewrite the three queries
using OPTIONAL and UNION operators using the “?l g:name
“Canada”” as the main pattern.
Theorem 3. The total benefit of patterns selected by using Algo-

rithm 1 is no less than (1− 1
e)× bene f itopt, where bene f itopt is

the largest benefit of patterns that rewrite all subqueries.

Proof: The proof is given in the appendix.
7 LOCAL EVALUATION, POSTPROCESSING AND
INTERMEDIATE MATCH JOIN

A set of subqueries Q that will be sent to source τ are rewritten as
queries Q̂ and evaluated at source τ. Let ~q̂�{τ} denote the match
set of q̂ (∈ Q̂) at source τ; q̂ is obtained by rewriting a set of
original subqueries in Q; Thus, ~q̂�{τ} is the union of the matches
of the subqueries that are rewritten, and we track the mappings
between the variables in the rewritten query and the variables in
the original subqueries. The match of a rewritten query might
have empty (null) bindings corresponding to the variables from the
OPTIONAL operators. Thus, a match in ~q̂�{τ} may not conform
the description of every subquery in Q. We need identify the valid
overlap between each match in ~q̂�{τ} and each subquery in Q, and
check whether a match in ~q̂�{τ} is a match of a subquery. Each
subquery receives the match that it is supposed to get.

To achieve the above objective, we perform an intersection
between each match in ~q̂�{τ} and each subquery. We distribute
the corresponding part of this match to q@{τ} as one of its query
matches, if the match meet two conditions: 1) the bindings of this
match corresponding to those bindings of a subquery q@{τ} ∈ Q
are not null; and 2) the bindings of the match meet the constraints
in the VALUES operators rewritten from q. This step iterates
over each row and each subquery in Q. The checking on ~q̂�{τ}
only requires a linear scan on ~q̂�{τ}. Therefore, it can be done
on-the-fly as the matches of q̂@{τ} are streamed out from the
evaluation. We also give an example to illustrate how we dis-
tribute ~q̂1�{GeoNames} to q1

1@{GeoNames}, q1
2@{GeoNames} and

q1
3@{GeoNames}, after evaluating rewritten query q̂2 in appendix.

After we postprocess all matches of rewritten queries and find
out the matches of all subqueries, we need to join the subquery
matches for each input query. The straightforward method to
obtain matches of all input queries in Q is to join subquery matches
for each original SPARQL query independently. For a BGP query
Q, we define the join graph JG(Q), where each vertex represents a
subquery of Q and an edge exists if and only if the corresponding
subqueries share some common constants (including URIs, blank
nodes and literals) or variables in the original SPARQL query. The
common constants and variables of two subqueries are labels of
the edge connecting their corresponding vertices. Then, we find
the optimal execution plan by directly extending the join ordering
algorithm proposed in [26]. Last, the matches of the subqueries
join together according to the optimal execution plan.

8 MULTI-JOIN OPTIMIZATION

For multiple subqueries, there may exist common computation
in joining intermediate matches. In this section, we discuss an
optimization to share some common computations of multi-join.
Here, we assume that the query Qi (i = 1, ..., n) is decomposed
into a set of subqueries {q1

i @S (q1
i), ..., qmi

i @S (qmi
i)}. We need to

obtain query match ~Qi� by joining ~q1
i �S (q1

i),..., ~q
mi
i �S (qmi

i) . In
the following, for simplicity, we abbreviate qmi

i @{S (qmi
i)} and

~qmi
i �S (qmi

i) to qmi
i and ~qmi

i �.

8.1 Multi-Join Graph
Considering multiple subqueries, there may exist common com-
putation in joining intermediate matches. Especially when some
subqueries have been rewritten as described in Section 6.1, we can
merge multiple joins by directly joining the matches of rewritten
queries. For example, q1

1, q1
2 and q1

3 are rewritten to one query
q̂2 as shown in Fig. 12, while q2

1, q2
2 and q2

3 can be rewritten to
q̂3 that only contains one triple pattern “?y sameAs ?c”. As a
result, we can directly join ~q̂2� with ~q̂3� to compute out the
combination of matches of q1

1 on q2
1, q1

2 on q2
2 and q1

3 on q2
3. Then,

some postprocessings can be applied in the control site to refine
the matches of ~q̂2 on q̂3� and find out the matches of q1

1 on q2
1,

q1
2 on q2

2 and q1
3 on q2

3.
Based on the above observation, a multi-join optimization is

proposed to combine multiple joins together. Here, for a set Q of
queries, we extend the definition of the join graph in Section 5 to
combine multiple join graphs as a multi-join graph MJG(Q).

In a multi-join graph, one vertex indicates a subquery or a
rewritten query. We introduce an edge between two vertices in
the multi-join graph if and only if the corresponding subqueries
or rewritten queries share some common variables or constants.
The common variables or constants of two subqueries or rewritten
queries are labels of the edge connecting their corresponding
vertices. The multi-join graph is a multigraph that two vertices
may be connected by more than one edge.

?x
q1

1

?y
q1

3
q1

2

?c
q2

1

?y
q2

3
q2

2

?c
q3

1

?y
q3

3
q3

2

JG(Q1)

JG(Q2)

JG(Q3)

?y

q1
3

?c
?y

q2
3

?y q3
3

?x

Fig. 13. Example Multi-Join Graph
Fig. 13 shows the example multi-join graph, MJG(Q), com-

bined the three join graphs of JG(Q1), JG(Q2) and JG(Q3). As
discussed before, q1

1, q1
2 and q1

3 are rewritten to one query q̂2, while
q2

1, q2
2 and q2

3 can be rewritten to q̂3. Therefore, MJG(Q) replaces
the vertices of q1

1, q1
2 and q1

3 with one vertex q̂2 and q2
1, q2

2 and
q2

3 with q̂3. There are two edges between q̂2 and q̂3, because the
common join variable of q1

1 and q2
1 is different from the common

join variable of q1
2 and q2

2 (and q1
3 and q2

3).
Based on the multi-join graph, we can find out the opportunity

of merging multiple joins by directly joining the matches of
rewritten queries. For example, in Fig. 13, directly joining q̂2 with
q̂3 is the combination of q1

1 on q2
1, q1

2 on q2
2 and q1

3 on q2
3.

8.2 Rewriting-based Join Method
Joining the matches of all subqueries or rewritten queries may be
costly. Given a set of subqueries or rewritten queries, there often
exist both subqueries or rewritten queries with high selectivity
and subqueries or rewritten queries with low selectivity in the
multi-join graph. We propose to generate the intermediate matches
only for selective subqueries or rewritten queries and use them to
optimize the evaluation of unselective ones.

The overall idea of our rewriting-based join method is to group
a set of join variables’ matches in the unselective subqueries and

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

rewritten queries using VALUES operators. This grouped query
is then sent to the relevant sources in a single remote request.
Finally, some postprocessings are applied in the control site to
retain correctness. For example, as shown in Fig. 14, evaluating
q̂2 can get the matches ~q̂2�. Then, q̂3 can be optimized by using
VALUES and evaluated in its relevant sources.

?n
"Boethius"

?x
Boethius

?l ?c

g:v3

?x

g:v5

?f

g:v3 g:v1 g:School

g:v3 g:v2 g:PopulatedPlace

g:v3 g:v4 g:PopulatedPlace

SELECT ?y ?z WHERE {

?y sameAs ?z .}

SELECT ?y ?c ?x WHERE {

{?y sameAs ?c .

VALUES (?c) {(g:v1) (g:v2) (g:v4)}}

UNION {?y sameAs ?x .

VALUES (?x) {(g:v5)}}

}Control Site

RDF Sources

"Boethius"

?l ?c ?f

g:v3 g:v1 g:School

g:v3 g:v2 g:PopulatedPlace

g:v3 g:v4 g:PopulatedPlace

SELECT ?y ?x WHERE {

?y sameAs ?c .}

?c

g:v1

g:v2

g:v4

SELECT ?y ?x WHERE {

?y sameAs ?c .

VALUES (?c) {(g:v1) (g:v2) (g:v4)}

}

?c

d:v11

s:v8

Control Site

RDF Sources

?c?x

g:v5

g:v1

g:v2

g:v4

?y ?c

n:v10

?x

g:v5

d:v11 g:v1

s:v8 g:v2

Fig. 14. VALUES-based Rewriting for Joining

Note that, as the number of intermediate matches increases,
the values added to a query using VALUES also increase and
the performance of evaluating the query decreases. When the
performance drops to a certain level, it may be better to use the
basic join method discussed in Section 7. In practice, because
most RDF stores can only support the SPARQL query of the
limited length, so the use of the above optimization technique is
beneficial if the length of the query adding intermediate matches
in one VALUES operator is not beyond the length limit.

The effect of our join strategy is similar to the effect of a semi-
join [26]. However, it reduces the number of intermediate results
in a different way. Semi-join still needs to generate the matches
of two joining subqueries and requires an additional inner join
operation following the semi-join. However, the federated RDF
system cannot directly send intermediate matches from one source
to another source, so sending the projected results to the other join
operand is not applicable in federated RDF systems.

Two similar techniques are discussed in literature [10], [36],
[38]. FedX [36] proposes a join strategy called bound join that
groups a set of matches in a single query using UNION constructs,
while the second technique [10], [38] proposes to send the buffered
mappings as additional conditions in a FILTER expression. The
VALUES-based rewriting strategy can rewrite queries in a more
compact way than other rewriting strategies, and the VALUES
operator can outperform the FILTER and UNION.

8.3 Multi-Join Optimization Algorithm
In this section we illustrate the use of the techniques presented
in earlier subsections. We describe an optimization algorithm
based on our VALUES-based rewriting strategy in Algorithm 2.
Generally, there are two steps Algorithm 2 at each iteration.

1) Step 1: Selecting the next subquery or rewritten query
for evaluation (Line 3). We select the query qmin of the
smallest cost in Q as the next query for evaluation.

2) Step 2: Joining the selected query with other evaluated
queries (Lines 4-17). If the selected query qmin can
join with an evaluated query q∗ according to MJG(Q),
we determine whether we use the VALUES-based join
method based on the number of intermediate matches. If
the use of the VALUES-based join method is not beyond
the length limit, we rewrite qmin by using VALUES to
join q∗ and qmin; otherwise, we use the basic join method
to join q∗ and qmin. If qmin cannot join with any other
evaluated queries, we directly send qmin to its relevant
sources and evaluate it.

For example, let us consider the example multi-join graph as
shown in Fig. 13. We assume that q̂2 and q̂3 are the first two
selected rewritten queries to be evaluated and adding q̂3 with
the bindings of common variables (?x and ?c) in ~q̂2� by using
VALUES is not beyond the length limit of a query. According the
example multi-join graph, q̂3 need join with q̂2, so we rewrite q̂3 by
using VALUES as shown in Fig. 14, send the new rewritten query
to the relevant sources, evaluate it, and postprocess the evaluation
results to get the matches of q1

1 on q2
1, q1

2 on q2
2 and q1

3 on q2
3.

Algorithm 2: Multi-Join Optimization Algorithm
Input: A set Q of subqueries and rewritten queries, and

its multi-join graph MJG(Q).
Output: The matches set RS of all queries in Qin.

1 Initialize an empty set Qeva for evaluated subqueries and
rewritten queries;

2 while Q , ∅ do
3 Select the subquery or rewritten query qmin ∈ Q of the

smallest cost;
4 for each query q∗ ∈ Qeva do
5 if qmin is connected with q∗ in MJG(Q) then
6 if Adding qmin with the common variables’

bindings in ~q∗� by using VALUES is not
beyond the length limit of a query then

7 Rewriting qmin by using VALUES to q̂min;
8 Send q̂min to its relevant sources and

evaluate it;
9 if All subqueries or rewritten queries from

Qi ∈ Qin has been evaluated then
10 Postprocess ~q̂min� to get ~Qi�;
11 Add ~Qi� in RS ;
12 else
13 Send qmin to its relevant sources and

evaluate it;
14 Join ~qmin� with ~q∗�;
15 if All subqueries or rewritten queries from

Qi ∈ Qin has been evaluated then
16 Postprocess ~qmin on q∗� to get ~Qi�;
17 Add ~Qi� in RS ;
18 if qmin cannot join with any queries in Qeva then
19 Send qmin to its relevant sources and evaluate it;
20 Q = Q − {q}, and Qeva = Qeva ∪ {q};
21 Return RS ;

9 HANDLING GENERAL SPARQL QUERIES

So far, we only considered BGP (basic graph patterns) over feder-
ated RDF systems. In this section, we discuss how to extend our
method to general SPARQL queries with UNION, OPTIONAL,
FILTER and VALUES statements. Generally, any type of query
can be transformed to the operations on a set of BGPs.

Queries with UNION/OPTIONAL operators. A query with
UNION operator (Q1 UNION Q2) can be directly decomposed
into two BGPs Q1 and Q2, while a query with a OPTIONAL
operator Q1 OPT IONAL Q2 can be rewritten into two BGPs Q1

and (Q1 AND Q2). Then, we can pass the batch of BGPs for our
multi-query optimization, and the matches to the original query
with UNION operators can be generated through the matches from
the transformed BGPs after our multi-query optimization.

Queries with FILTER/VALUES operators. For queries with
FILTER or VALUES operators, during data localization, we move
possible FILTER or VALUES constraints into the subqueries to

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

reduce the size of intermediate matches as early as possible. For
example, the query with FILTER and VALUES operators in Fig.
15(a) is decomposed to two subqueries as in Fig. 15(b).

In addition, when we use VALUES-based rewriting strategy
to rewrite a subquery, we merge the original VALUES operators
and the rewritten VALUES operators by using the intersection
operators. For example, the subquery in Fig. 15(b) can be rewritten
to the query in Fig. 16.

SELECT ?c ?n WHERE {

?c g:featureCode g:School.

?c g:name ?n

?c g:parentCountry ?l .

?l g:name x .

?y sameAs ?c

FILTER (regex(str(?n), "Toronto", "i"))

VALUES (?x) {("Canada")}}

(a) Query with FILTER/-
VALUES Operator

SELECT ?c ?n WHERE {

?c g:featureCode g:School.

?c g:name ?n

?c g:parentCountry ?l .

?l g:name ?x .

FILTER (regex(str(?n), "Toronto", "i"))

VALUES (?x) {("Canada")}}

SELECT ?x ?n WHERE {

?y sameAs ?c }

(b) Subqueries

Fig. 15. Query with FILTER/VALUES Operator to Its Subqueries
SELECT ?c ?n WHERE {

?c g:featureCode g:School.

?c g:name ?n

?c g:parentCountry ?l .

?l g:name ?x .

FILTER (regex(str(?n), "Toronto", "i"))

VALUES (?x) {("Canada")}

VALUES (?f) {(g:School)} }

Fig. 16. Rewritten Query for Subquery with VALUES

10 EXPERIMENTAL EVALUATION

In this section, we evaluate the proposed federated multiple
query optimization method (FMQO) over both real and synthetic
datasets, WatDiv and LargeRDFBench. We also evaluate FMQO
over the real dataset FedBench [35] and the results are given
in appendix. We compare our system with four state-of-the-art
federated SPARQL query engines: FedX [36], SPLENDID [11],
HiBISCuS [32] and our previous study [27]. The codes of FedX,
SPLENDID and HiBISCuS have been released in GitHub5. We
also release our codes in GitHub6.

10.1 Setting
WatDiv. WatDiv [1] is a benchmark that enables diversified stress
testing of RDF data management systems. In WatDiv, instances of
the same type can have the different sets of attributes. We generate
three datasets varying sizes from 100 million to 300 million triples.
WatDiv provides its own workload generator and we directly use
it to generate different workloads for testing.

LargeRDFBench. LargeRDFBench [31] is a comprehensive
benchmark extended from a well-known benchmark FedBench
[35] for testing and analyzing both the efficiency and effectiveness
of federated RDF systems. There are 13 datasets in different
domains, and the number of triples is more than one billion. It
provides 40 benchmark queries, and we use these 40 queries as
seeds and generate different kinds of workloads in our experi-
ments. For each benchmark query, we remove all constants (strings
and URIs) at subjects and objects and replace them with variables
as a template. Then, we instantiate these templates with actual
RDF terms from the dataset. By default, we generate 150 queries.

We conduct all experiments on a cluster of machines running
Linux, each of which has one CPU with four cores of 3.06GHz.
Each site has 16GB memory and 150GB disk storage. The proto-
type is implemented in Java. At each site, we install Sesame 2.7 to
build up an RDF source. Each source can only communicate with
the control site through HTTP requests and cannot communicate

5. https://github.com/dice-group/LargeRDFBench
6. https://github.com/QiGe57/MultiQueryOptimization

with each other. For LargeRDFBench, we assume that each dataset
is resident at a source site. For WatDiv, we cluster by the types
occurring in the dataset, finally obtaining m subdatasets, where
parameter m varies from 2 to 8. The default value for m is 6.

10.2 Evaluation of Proposed Techniques
In this section, we use WatDiv 100M and a query workload of 150
queries to evaluate each proposed technique in this paper. In other
words, 150 queries are posed simultaneously to the federated RDF
systems storing WatDiv 100M.

Effect of the Query Decomposition and Source Selection
Technique. First, we evaluate the effectiveness of our source
topology-based technique proposed in Section 5. In Fig. 17, we
compare our technique with the baseline that does not utilize any
topological information to prune irrelevant sources during source
selection (denoted as FMQO-Basic). We also compare the source
selection method proposed in [13], [29], which is denoted as
QTree. It only uses the neighborhood information in the source
topology to prune some irrelevant sources for each triple patterns.

FMQO-BasicQTree FMQO
50

55

60

65

N
um

be
ro

fR
em

ot
e

R
eq

ue
st

s

(a) Number of Remote Requests

FMQO-BasicQTree FMQO
40

60

80

100

120

140

R
es

po
ns

e
Ti

m
e

(i
n

s)

(b) Response Time

Fig. 17. Evaluating Source Topology-based Source Selection Technique

Obviously, FMQO-Basic does not prune any sources, so it
leads to the most number of remote requests and the largest query
response time. QTree only uses the neighborhood information and
does not consider the whole topology of relevant sources. Hence,
the effectiveness of its pruning rule is limited. Many queries
contain triple patterns containing constants with high selectivity
that can be localized to a few sources. Then, for other triple
patterns, if some of their relevant sources are far from relevant
sources of the selective triple patterns in the source topology
graph, they can be filtered out by our method.Thus, our method
leads to the smallest numbers of remote requests (as shown in Fig.
17(a)) and the least query response time (as shown in Fig. 17(b)).

Effect of the Rewriting Strategies. In this experiment, we
compare our SPARQL query rewriting strategies with a base-
line using only the OPTIONAL-UNION-based rewriting strat-
egy (denoted as OU-only) and a baseline only using only the
VALUES-based rewriting strategy (denoted as V-only). We also
re-implement the rewriting strategies proposed in [20] (denoted as
Le et al.) and [27] (denoted as Peng et al.) to rewrite subqueries.
Our query rewiring technique is denoted as FMQO. Fig. 18 shows
the experiments by using the five rewriting strategies.

For a workload, since the number of subqueries sharing
common subgraphs is often more than the number of subqueries
of the same structure, V-only leads to the largest number of
rewritten queries which results in most remote requests. Le et al.
first cluster all subqueries into groups, and then find the maximal
common edge subgraphs (MCESs) of the group. Thus, the number
of rewritten queries generated by Le et al. is no less than the
number of the groups. In contrast, OU-only, Peng et al. and FMQO
use some triple patterns to hit subqueries. Hence, the number of
rewritten queries they generate is the number of selected triple

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

patterns. In practice, most MCESs found by Le et al. also contain
most of our selected triple patterns. Hence, Le et al. generate more
rewritten queries, which means more remote requests. Finally,
FMQO obtains the smallest number of rewritten queries.

Since OU-only generates smaller number of rewritten queries
and share more computation than Le et al., it can result in faster
query response time. A query with OPTIONAL operators is slower
than a query with VALUES operators, assuming they have the
same main pattern, since the former is based on left-join and
the latter is based on the inline mappings to the variable. Hence,
although more queries are generated by using V-only rewriting
strategy, V-only takes about half the time of Le et al. and nine-
tenths of OU-only, as shown in Fig. 18(b). Furthermore, because
our rewriting technique takes advantages of both the rewriting
strategy using OPTIONAL and UNION and the rewriting strategy
only using VALUES, FMQO can outperform others.

Le et al. Peng et al. OU-only V-only FMQO

60

80

100

120

140

N
um

be
r

of
R

em
ot

e
R

eq
ue

st
s

(a) Number of Remote Requests

Le et al. Peng et al.OU-only V-only FMQO

100

150

200

250

300

350

400

N
um

be
r

of
R

em
ot

e
R

eq
ue

st
s

(b) Response Time

Fig. 18. Evaluating Different Rewriting Strategies

Evaluation of the Cost Model. In this section, we evaluate the
effectiveness of our cost model and cost-aware rewriting strategy
in Section 6.2 in Fig. 19. We design a baseline (FMQO-R) that
does not selects the locally optimal triple patterns as Algorithm 1
but randomly select triple patterns to rewrite subqueries.

FMQO-R FMQO
0

50

100

150

N
um

be
ro

fR
em

ot
e

R
eq

ue
st

s

(a) Number of Remote Requests

FMQO-R FMQO
0

200

400

600

800

1,000

1,200

R
es

po
ns

e
Ti

m
e

(i
n

s)

(b) Response Time

Fig. 19. Evaluating Cost Model

As shown in Fig. 19(a), we find out that cost-based selection
causes fewer remote requests than FMQO-R. This is because the
patterns with lower cost are shared by more subqueries, which
results in fewer rewritten queries. In addition, in our cost-based
rewriting strategy, we prefer selective query patterns, resulting in
lower query response times, as shown in Fig. 19(b). Generally, the
cost model-based approach can provide tenfold speed up.

Effect of Join Optimization Techniques. We evaluate our
optimized join strategy proposed in Section 8, by comparing it
with three baselines. The first baseline runs multiple federated
queries with only rewriting strategies but no any optimization
techniques for joins (denoted as FMQO-BJ), the second one uses
the FILTER-based optimization for joins [10], [38] (denoted as
FMQO-FJ) and the third uses the UNION-based optimization
for joins [36] (denoted as FMQO-UJ). Our proposed VALUES-
based optimization for joins is denoted as FMQO. Although
the optimization techniques of FMQO-FJ, FMQO-UJ and FMO
cause some extra remote requests for joins due to the rewriting,
they can reduce the high join cost by avoiding the evaluation

of unselective subqueries. Especially, compared with FMQO-BJ,
FMQO reduces join processing time by 40%, as shown in Fig.
21(b). Note that, the number of remote requests of FMO is a little
smaller than FMQO-FJ and FMQO-UJ, because the VALUES-
based optimization can rewrite the subqueries in a more compact
way and more intermediate results can be rewritten into one
rewritten query for joins, as shown in Fig. 21(a).

FMQO-BJ FMQO-FJ FMQO-UJ FMQO

30

40

50

60

70

80

90

100

N
um

be
r

of
R

em
ot

e
R

eq
ue

st
s

(a) Number of Remote Requests

FMQO-BJ FMQO-FJ FMQO-UJ FMQO

100

110

120

130

140

150

R
es

po
ns

e
Ti

m
e

(i
n

s)

(b) Response Time

Fig. 20. Effect of Optimization Techniques for Joins

10.3 Evaluating Scalability
In this section, using WatDiv, we test the scalability of our
method in four aspects: varying the number of queries, varying the
number of query templates, varying the dataset sizes and varying
the number of sources. We design a baseline that runs multiple
federated queries sequentially (denoted as No-FMQO), which
does not employ the source topology graph and any optimizations
for multiple queries. We compare our method with FedX [36],
SPLENDID [11], HiBISCuS [32] and our previous multiple query
optimization technique [27] (denoted as Peng et al.). By default,
the dataset is WatDiv 100M, the number of sources is 6, the
number of queries is 150 and the number of templates is 10.

Varying Number of Queries. We study the impact of the
size of the query set, which we vary from 100 to 250 queries, in
increments of 50. Fig. 21 shows the experimental results.

50 100 150 200 250
0

200

400

600

Number of Queries

N
um

be
r

of
R

em
ot

e
R

eq
ue

st
s No-FMQO

FMQO
Peng et al.

(a) Number of Remote Requests

50 100 150 200 250

102

103

Number of Queries

R
es

po
ns

e
Ti

m
e

(i
n

s)

No-FMQO
FMQO
Peng et al.
FedX
SPLENDID
HiBISCuS

(b) Response Time
Fig. 21. Varying Number of Queries

Due to query rewriting, Peng et al. and FMQO can rewrite
many subqueries into fewer queries, which results in smaller num-
ber of remote requests than No-FMQO, as shown in Fig. 21(a).
FMQO can reduce the number of remote accesses by 4/5-9/10,
compared with No-FMQO. For evaluation times as shown in Fig.
21(b), since No-FMQO does not share any computation, it takes
a third more time than FMQO. Because FMQO further rewrites
some intermediate matches into some unselective subqueries by
using VALUES operators, the number of remote requests in Peng
et al. is a little fewer than FMQO (as shown in Fig. 21(a)) and
the cost-driven rewriting-based join method can ensure the better
performance of FMQO (as shown in Fig. 21(b)).

FedX, SPLENDID and HiBISCuS do not provide their num-
bers of remote requests, so we do not compare FMQO with
them in Fig. 21(a). In addition, FedX, SPLENDID and HiBISCuS
always employ a semijoin algorithm to join intermediate results.
Since almost all partial matches of subqueries participate in the
join in WatDiv, the semijoin algorithm is not always efficient for

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

this dataset. Hence, FMQO is twice as fast as FedX, SPLENDID
and HiBISCuS (as shown in Fig. 21(b)).

Varying Number of Query Templates. We study the impact
of the number of templates. We vary the number of templates from
5 to 25, in increments of 5. The results are shown in Fig. 22. As
before, we do not compare FMQO with FedX, SPLENDID and
HiBISCuS in Fig. 22(a).

5 10 15 20 25
0

100

200

300

400

Number of Templates

N
um

be
ro

fR
em

ot
e

R
eq

ue
st

s

No-FMQO
FMQO
Peng et al.

(a) Number of Remote Requests

5 10 15 20 25

102

103

Number of Templates

R
es

po
ns

e
Ti

m
e

(i
n

s)

No-FMQO
FMQO
Peng et al.
FedX
SPLENDID
HiBISCuS

(b) Response Time
Fig. 22. Varying Number of Query Templates

As the number of queries is kept constant, more templates
mean that fewer queries have the common subgraphs. Since
FMQO and Peng et al. use the common subgraphs to rewrite
queries, fewer queries containing the common subgraphs result
in more number of rewritten queries. More rewritten queries
mean that their number of remote requests increases and less
computation is shared by different queries, so the performance
of FMQO and Peng et al. become worse as shown in Fig. 22(b)
and the number of remote requests increases with the number
of templates as shown in Fig. 22(a). However, the response time
of FMQO increases slowly, so it is still less than 30% of FedX,
SPLENDID and HiBISCuS, and two thirds less than No-FMQO.

Varying Dataset Size. We investigate the impact of dataset
size. We generate three WatDiv datasets varying the sizes from 100
million to 300 million triples. Fig. 23 shows the results. While the
dataset size has little effect on the number of remote requests, it
clearly affects evaluation times. As the size of RDF datasets gets
larger, the response time of all six methods increases. However,
the rate of increase for FMQO is smaller than other competitors.
The response time of FMQO decreases from 50% of No-FMQO
to 30% of No-FMQO, is always smaller than Peng et al. and less
than 25% of SPLENDID, FedX and of HiBISCuS.

100M 200M 300M

102

103

104

Size of Datasets

R
es

po
ns

e
Ti

m
e

(i
n

s)

No-FMQO
FMQO
Peng et al.
FedX
SPLENDID
HiBISCuS

Fig. 23. Varying Size of Datasets

Varying Number of Sources. In this experiment, we vary the
number of sources from 2 to 8. Fig. 24 presents the scalability
of our solution adapting to different number of RDF sources.
As the number of sources increases, a query may be relevant to
more sources and it is decomposed into more subqueries. Thus,
more rewritten queries and more joins are generated to evaluate
the input queries. However, FMQO grows much slower than No-
FMQO in both the number of remote accesses and query response
time. Although FMQO further rewrites some intermediate matches
by using VALUES for joins which results more remote requests
than Peng et al., its cost-driven rewriting-based join method can
ensure the better performance. Finally, the experiments confirms
that FMQO has better scalability with the number of sources.

2 4 6 8
0

100

200

300

400

500

Number of RDF Sources

N
um

be
ro

fR
em

ot
e

R
eq

ue
st

s

No-FMQO
FMQO
Peng et al.

(a) Number of Remote Requests

2 4 6 8

50

100

150

200

250

Number of RDF Sources

R
es

po
ns

e
Ti

m
e

(i
n

s)

No-FMQO
FMQO
Peng et al.

(b) Response Time

Fig. 24. Varying Number of RDF Sources

10.4 Performance over Real Datasets

In this experiment, we test FMQO using the real RDF dataset,
LargeRDFBench. Since real datasets do not allow changing data
sizes and the number of sources, we only test the methods by
varying the number of queries in Fig. 25.

50 100 150 200 250
0

500

1,000

Number of Queries

N
um

be
ro

fR
em

ot
e

R
eq

ue
st

s

No-FMQO
FMQO
Peng et al.

(a) Number of Remote Requests

50 100 150 200 250

101

102

103

104

Number of Queries

R
es

po
ns

e
Ti

m
e

(i
n

s)

No-FMQO
FMQO
Peng et al.
FedX
SPLENDID
HiBISCuS

(b) Response Time
Fig. 25. Experimental Results over LargeRDFBench

Experiments over LargeRDFBench confirm that our method
lead to fewer remote requests and better query performance
than FedX [36], SPLENDID [11], HiBISCuS [32], Peng et al.
[27] and our proposed baseline, since FMQO can rewrite many
queries into fewer rewritten queries and the cost-driven rewriting
strategy guarantees that rewritten queries are always faster than
evaluating them sequentially. In addition, our rewriting-based join
method can rewrite unselective subqueries in a more selective way.
Although our join method may result in more remote requests
than others, it avoids the high cost of executing the unselective
subqueries, which improves the performance.

11 CONCLUSIONS AND FUTURE WORK

In this paper, we study the problem of multiple query optimization
over federated RDF systems. Our optimization framework, which
integrates a novel algorithm to identify common subqueries with a
cost model, rewrites queries into fewer queries while considering
some characteristics of SPARQL 1.1. We also discuss how to
efficiently selection relevant sources and join intermediate results
by using the operators in SPARQL 1.1. Experiments show that our
optimizations are effective.

Although we consider some new operators introduced in
SPARQL 1.1 (e.g. VALUES), there are other features in SPARQL
1.1 that are still not studied in federated RDF systems, like
aggregate functions and property paths. Studying these features
in federated RDF systems is our future research plan. Moreover,
how to access the federated RDF systems in more flexible ways,
like keyword search and natural language question answering, is
also a open problem that we intend to sutdy.

Acknowledgement. This work was supported by The National Key
Research and Development Program of China under grant 2018YFB1003504,
NSFC under grant 61702171, 61932001, 61961130390, 61622201 and
61532010, and Hunan Provincial Natural Science Foundation of China under
grant 2018JJ3065. This work is also supported by Beijing Academy of
Artificial Intelligence (BAAI). Tamer Ozsu’s work has been supported by a
Discovery Grant from Natural Sciences and Engineering Research Council
(NSERC) of Canada. Lei Zou is the corresponding author of this paper.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

REFERENCES

[1] G. Aluç, O. Hartig, M. T. Özsu, and K. Daudjee. Diversified Stress
Testing of RDF Data Management Systems. In ISWC, pages 197–212,
2014.

[2] K. Anyanwu. A Vision for SPARQL Multi-Query Optimization on
MapReduce. In Workshops of ICDE, pages 25–26, 2013.

[3] C. B. Aranda, M. Arenas, and Ó. Corcho. Semantics and Optimization
of the SPARQL 1.1 Federation Extension. In ESWC, pages 1–15, 2011.

[4] C. B. Aranda, M. Arenas, Ó. Corcho, and A. Polleres. Federating Queries
in SPARQL 1.1: Syntax, Semantics and Evaluation. J. Web Semant.,
18(1):1–17, 2013.

[5] C. B. Aranda, A. Polleres, and J. Umbrich. Strategies for Executing
Federated Queries in SPARQL1.1. In ISWC, pages 390–405, 2014.

[6] M. Arenas and J. Pérez. Federation and Navigation in SPARQL 1.1. In
Reasoning Web, pages 78–111, 2012.

[7] A. Bonifati, W. Martens, and T. Timm. An analytical study of large
SPARQL query logs. PVLDB, 11(2):149–161, 2017.

[8] S. Cebiric, F. Goasdoué, H. Kondylakis, D. Kotzinos, I. Manolescu,
G. Troullinou, and M. Zneika. Summarizing Semantic Graphs: A Survey.
VLDB J., 28(3):295–327, 2019.

[9] F. Goasdoué, Z. Kaoudi, I. Manolescu, J. Quiané-Ruiz, and S. Zam-
petakis. CliqueSquare: Flat Plans for Massively Parallel RDF Queries.
In ICDE, pages 771–782, 2015.

[10] O. Görlitz and S. Staab. Federated Data Management and Query
Optimization for Linked Open Data, pages 109–137. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2011.

[11] O. Görlitz and S. Staab. SPLENDID: SPARQL Endpoint Federation
Exploiting VOID Descriptions. In COLD, 2011.

[12] M. Hammoud, D. A. Rabbou, R. Nouri, S. Beheshti, and S. Sakr.
DREAM: Distributed RDF Engine with Adaptive Query Planner and
Minimal Communication. PVLDB, 8(6):654–665, 2015.

[13] A. Harth, K. Hose, M. Karnstedt, A. Polleres, K. Sattler, and J. Umbrich.
Data Summaries for On-demand Queries over Linked Data. In WWW,
pages 411–420, 2010.

[14] A. Harth and S. Speiser. On Completeness Classes for Query Evaluation
on Linked Data. In AAAI, 2012.

[15] O. Hartig. SPARQL for a Web of Linked Data: Semantics and Com-
putability. In ESWC, pages 8–23, 2012.

[16] A. Hogan, A. Harth, and A. Polleres. Scalable Authoritative OWL
Reasoning for the Web. Int. J. Semantic Web Inf. Syst., 5(2):49–90,
2009.

[17] R. Isele, J. Umbrich, C. Bizer, and A. Harth. LDspider: An Open-source
Crawling Framework for the Web of Linked Data. In ISWC, 2010.

[18] G. Konstantinidis and J. L. Ambite. Optimizing Query Rewriting for
Multiple Queries. In IIWeb, pages 7:1–7:6, 2012.

[19] D. Kossmann. The State of the Art in Distributed Query Processing.
ACM Comput. Surv., 32(4):422–469, 2000.

[20] W. Le, A. Kementsietsidis, S. Duan, and F. Li. Scalable Multi-query
Optimization for SPARQL. In ICDE, pages 666–677, 2012.

[21] J. Li, A. Deshpande, and S. Khuller. Minimizing Communication Cost
in Distributed Multi-query Processing. In ICDE, pages 772–783, 2009.

[22] C. Liu, J. Qu, G. Qi, H. Wang, and Y. Yu. HadoopSPARQL: A Hadoop-
Based Engine for Multiple SPARQL Query Answering. In ESWC
(Satellite Events), pages 474–479, 2012.

[23] G. Montoya, H. Skaf-Molli, and K. Hose. The Odyssey Approach for
Optimizing Federated SPARQL Queries. In ISWC, pages 471–489, 2017.

[24] C. Nomikos, M. Gergatsoulis, E. Kalogeros, and M. Damigos. A
Map-Reduce Algorithm for Querying Linked Data based on Query
Decomposition into Stars. In EDBT/ICDT Workshops, pages 224–231,
2014.

[25] E. C. Ozkan, M. Saleem, E. Dogdu, and A. N. Ngomo. UPSP: Unique
Predicate-based Source Selection for SPARQL Endpoint Federation. In
PROFILES@ESWC, 2016.

[26] M. T. Özsu and P. Valduriez. Principles of Distributed Database Systems,
Third Edition. Springer, 2011.

[27] P. Peng, L. Zou, M. T. Özsu, and D. Zhao. Multi-query Optimization in
Federated RDF Systems. In DASFAA, pages 745–765, 2018.

[28] J. Pérez, M. Arenas, and C. Gutierrez. Semantics and Complexity of
SPARQL. ACM Trans. Database Syst., 34(3), 2009.

[29] F. Prasser, A. Kemper, and K. A. Kuhn. Efficient Distributed Query
Processing for Autonomous RDF Databases. In EDBT, pages 372–383,
2012.

[30] B. Quilitz and U. Leser. Querying Distributed RDF Data Sources with
SPARQL. In ESWC, pages 524–538, 2008.

[31] M. Saleem, A. Hasnain, and A.-C. N. Ngomo. LargeRDFBench: A
Billion Triples Benchmark for SPARQL Endpoint Federation. Journal of
Web Semantics, 48(0), 2018.

[32] M. Saleem and A. N. Ngomo. HiBISCuS: Hypergraph-Based Source
Selection for SPARQL Endpoint Federation. In ESWC, pages 176–191,
2014.

[33] M. Saleem, S. S. Padmanabhuni, A. N. Ngomo, A. Iqbal, J. S. Almeida,
S. Decker, and H. F. Deus. TopFed: TCGA Tailored Federated Query
Processing and Linking to LOD. J. Biomedical Semantics, 5:47, 2014.

[34] A. Schätzle, M. Przyjaciel-Zablocki, S. Skilevic, and G. Lausen. S2RDF:
RDF Querying with SPARQL on Spark. PVLDB, 9(10):804–815, 2016.

[35] M. Schmidt, O. Görlitz, P. Haase, G. Ladwig, A. Schwarte, and T. Tran.
FedBench: A Benchmark Suite for Federated Semantic Data Query
Processing. In ISWC, pages 585–600, 2011.

[36] A. Schwarte, P. Haase, K. Hose, R. Schenkel, and M. Schmidt. FedX:
Optimization Techniques for Federated Query Processing on Linked
Data. In ISWC, pages 601–616, 2011.

[37] M. Stocker, A. Seaborne, A. Bernstein, C. Kiefer, and D. Reynolds.
SPARQL Basic Graph Pattern Optimization Using Selectivity Estima-
tion. In WWW, pages 595–604, 2008.

[38] J. Zemánek and S. Schenk. Optimizing SPARQL Queries over Disparate
RDF Data Sources through Distributed Semi-Joins. In International
Semantic Web Conference (Posters & Demos), 2008.

Peng Peng received his BS degree and Ph.D.
degree in Computer Science at Beijing Normal
University and Peking University in 2009 and
2016, respectively. Now, he is an assistant pro-
fessor of Hunan University. His research inter-
ests include graph database, distributed RDF
system.

Qi Ge is currently pursuing a MS degree advised
by Dr. Peng Peng in Computer Science and
Technology at Hunan University. Her research
interests include graph database, data mining
and distributed RDF system.

Lei Zou received his B.S. degree and Ph.D. de-
gree in Computer Science at Huazhong Univer-
sity of Science and Technology (HUST) in 2003
and 2009, respectively. Now, he is a professor
in Institute of Computer Science and Technol-
ogy of Peking University. His research interests
include graph database and semantic data man-
agement.

M. Tamer Özsu is a professor of computer sci-
ence and an associate dean (research) of the
Faculty of Mathematics at the Cheriton School
of Computer Science, University of Waterloo.
His current research focuses on large-scale data
distribution and management of unconventional
data. He is a fellow of the IEEE and the ACM, an
elected member of Turkish Academy of Science,
and a member of Sigma Xi.

Zhiwei Xu is currently a senior student pursuing
BE degree in software engineering in Hunan
University. He is a research assistant advised
by Dr. Peng Peng. His research interest include
data mining, distributed RDF system and deep
learning.

Dongyan Zhao received the B.S. degree, M.S.
degree and Ph.D. degree from Peking University
in 1991, 1994 and 2000, respectively. Now, he is
a professor in Institute of Computer Science and
Technology of Peking University. His research
interest is on information processing and knowl-
edge management.

