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Abstract—Real-world graphs exhibit many interesting proper-
ties that differentiate them from random graphs, which have been
extensively studied for the past decades. For various proposed
generative models, a majority of them build the graph by
sequentially adding each node and the attached edges. However,
the growth of many real-world graphs, such as social networks,
is naturally modeled by the sequential insertion of edges. Unfor-
tunately, to the best of our knowledge, no generative model has
been proposed to reveal this process.

We propose the first sequence-of-edges model, denoted as
temporal preferential attachment (TPA). It relies on preferential
attachment (PA), one of the most influential mechanisms to gener-
ate scale-free graphs, and takes time-decay effect and node fitness
into consideration. Empirical analysis demonstrates that our
model preserves several key properties of the real-world graphs,
including both the properties observed from the snapshot graphs
(e.g., power-law distribution) and temporal properties observed
from the graph generation process (e.g., shrinking diameter).
Meanwhile, our model is sufficiently general to accommodate
several forms of time decay and fitness distributions. Then, we
design two efficient algorithms that generate TPA graphs with
billions of edges in several minutes.

I. INTRODUCTION

Graphs are widely used to model the relationships between

objects in various applications, such as websites, social net-

works and knowledge graphs. Some of the real-world graphs,

such as social networks and graph streams, exhibit structural

properties that are fundamentally different from those of

random graphs, e.g., the Erdős and Rényi’s graphs. Tracing

back to the pioneering work in early 20th century, considerable

research has been devoted to the study of the properties of

real-world graphs, with new observations and understandings

continuously arising in the past ten years. These findings

not only further our understanding of graph theory, but also

change the way we design graph algorithms and systems. For

example, the fact that the degrees of real-world graphs follow

heavy-tailed distribution facilitates a number of efficient graph

algorithms. On the other hand, the same property poses new

challenges for graph-parallel systems.

The study of structural properties on real-world graphs can

be broadly divided into three categories. First, many early

works focus on making observations for various structural
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properties on real-world graphs. Second, based on these ob-

servations, a significant amount of research tries to propose

complex graph models that explain the observed properties.

Finally, to incorporate the growing need of large synthetic

graphs, a few recent work focuses on designing efficient algo-

rithms to generate synthetic graphs that look like real-world

graphs. State-of-the-art algorithms can generate a billion-edge

graph on a commodity machine [1], or a trillion-sized graph in

the distributed environment. This not only avoids the privacy

concerns of real-world data, but also facilitates the evaluation

of algorithms and systems for large graphs.

Sequence-of-edges graph. As pointed by [2], growth is the

very important property of real-world graphs. Nonetheless,

graphs generated by various applications exhibit fundamen-

tally different growth patterns. For citation networks and

Wikipedia graphs, they evolve in a node-centric way, i.e., the

graph expands by additions of nodes (e.g., papers, entities)

and the attached edges. On the other hand, graphs such as

social networks and communication networks grow in an edge-
centric way. For example, social network grows by building

new edges (e.g., friendship, the follow relationship) between

nodes (i.e., users). However, each newly established interaction

does not necessarily involve the addition of new users. In

fact, interaction among existing users evolves over time and

comprises a large fraction of edges in the network. Another

example is the graphs that can be represented by a sequence

of time-stamped edges, such as graph streams. It is natural to

model these graphs by a sequence-of-edges manner.

Definition 1 (Sequence-of-edges graph). The generation pro-
cess of a sequence-of-edges graph is defined as G =
(G1, . . . , Gk, Gk+1, . . .), where

Gk+1.V = Gk.V ∪ {uk+1} ∪ {vk+1},
Gk+1.E = Gk.E ∪ {(uk+1, vk+1)}.

For k ∈ [1,∞), the graph grows by adding an edge
(uk+1, vk+1) to the current graph Gk. Note that the two
endpoints uk+1 and vk+1 do not have to be nodes in Gk.V ,
and can be newly added ones.

In this paper, we aim to propose a sequence-of-edges

model by non-trivially integrating several key ingredients of
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the preferential attachment-based model, which is powerful

enough to explain the well-recognized properties of real-world

graphs, and yet simple enough so we can design highly

scalable algorithms that generate large synthetic datasets.

II. TPA: OUR SEQUENCE-OF-EDGES MODEL

A. Model Specification

We formally describe our temporal preferential attachment

(TPA) model as follows. For simplicity, we focus on undirect-

ed graphs.

Step 1. Start with a small random graph (e.g., ER graph) Gk,
which consists k vertices {v1, . . . , vk}. Note that the subscript
k represents the number of nodes in the current graph. Place
one virtual node vk+1 outside of Gk. For simplicity, we can
set k = 1.
Step 2. At each time, add one edge e = (u1, u2) between nodes
{v1, . . . , vk, vk+1}.
• For each v ∈ {v1, . . . , vk}, the node preference, denoted

by tpa(v), is computed by the attachment function. The
preference of vk+1 is a constant α ∈ [1,∞) given as
model parameter.

• Both endpoints u1 and u2 of e is chosen in proportional
to the node preference. As long as a self-loop is formed
(u1 = u2), we re-sample u2.

• If vk+1 is chosen as one endpoint of e, add it (and
e) to the current graph, and place virtual node vk+2.
Otherwise, we only add the edge to the graph.

The attachment function. We adopt a general function which

consists three independent parts:

tpa(v) = f(d(v)) · g(Δt(v)) · h(v). (1)

The degree-based PA function f(·) is a monotonic increasing

function of node degree. By default, we set it as the power-

law (i.e., polynomial) function: f(d(v)) = d(v)
βd , where

βd ∈ [0,∞) is the preferential attachment exponent. Similarly,

the temporal PA function g(·) parameterized by βt ∈ [0,∞) is

a monotonic decreasing function of node age. The function has

a general form and can be power law, exponential (g(Δt(v)) =
e−βtΔt(v)) or log-normal (g(Δt(v)) = e−βtlog

2(Δt(v)+1)). We

assume nodes are numbered v1, . . . , vk, . . . by their insertion

order. By supposing nodes are inserted sequentially and at a
steady rate, the time decay of node vk at time t is t−k. Finally,

we use a general distribution Dh to generate node fitness,

which can be power-law, exponential or Poisson distribution

(Pr[h(v) = k] ∝ βf
ke−βf /k!), where βf ∈ [0,∞) is the

model parameter and h(v) is the fitness of v. We use another

parameter hmax to limit the upper bound of node fitness, i.e.,

h(v) ∈ {1, . . . , hmax} for each node v.

B. Generation Algorithm

To generate a graph with n nodes, we start with a single

node v1 (and an additional virtual node), and sequentially add

edges to the graph. We employ a preferential node selection
procedure to determine the two endpoints of each edge. Once

the virtual node is selected as an endpoint, we add it to the

graph and place another virtual node, until the graph contains

n nodes. According to the implementation of the preferential

node selection procedure, we propose the baseline algorithm

and two efficient algorithms.
TPA-U-RW (baseline). Since the preference of each node can

be computed by the attachment function, we can implement

preferential node selection by the roulette wheel. Since roulette

wheel selection incurs linear complexity with respect to the

number of existing nodes, the algorithm needs O(nm) time

to generate a graph with n nodes and m edges.
TPA-U-SA. The introduction of time decay in TPA inherently

prevents the application of optimization techniques for gen-

erating Barabási-Albert graphs. Hence, we adopt logarithmic
binning to place nodes into a sequence of bins (called T-
Bucket) according to their insertion time (see Fig. 1). To this

end, preferential node selection can be decomposed into inter-

bucker selection (to choose a T-Bucket by its weight) and the

following intra-bucket selection (to choose a node inside the

bucket), while both procedures can be handled efficiently. For

TPA-U-SA, we simply implement T-Buckets as an array (called

D-Array), and use stochastic acceptance algorithm for intra-

bucket node selection. The time complexity is bounded by

O(mdmax/d̄) where dmax (resp. d̄) stands for maximum (resp.

average) degree, and is asymptotically more efficient than the

stochastic acceptance algorithm for Barabási-Albert model.
TPA-U-Hybrid. To further accelerate intra-bucket selection

for large-sized T-Buckets, we implement T-Buckets as ROLL-

trees [1] (called D-Tree) for those whose size is above a

predefined threshold, as shown in Fig. 1. The total amount

of data transfer from D-Array to D-Tree can be bounded, and

the algorithm is practically more efficient than TPA-U-SA.

Fig. 1. Data structure for the TPA-U-Hybrid algorithm.

III. EXPERIMENTS

We empirically evaluate the properties of synthetic graphs

generated by the TPA model. The degree distribution of TPA

graph follows power law with various function forms of aging

and node fitness. As opposed to existing sequence-of-nodes PA

models, TPA graphs also exhibit several temporal properties

such as shrinking diameter. We also demonstrate that temporal

preferential attachment does exist in real-world graphs. For

the evaluation of generation algorithms, TPA-U-Hybrid can

generate a TPA graph with one billion edges in about five

minutes on a commodity machine.
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