
MPC: Minimum Property-Cut RDF Graph
Partitioning

Peng Peng1, M. Tamer Özsu2, Lei Zou3,4, Cen Yan1, Chengjun Liu1

1College of Computer Science and Electronic Engineering, Hunan University, China
2 University of Waterloo, Canada

3 Peking University, China
4 Beijing Academy of Artificial Intelligence, Beijing, China

{hnu16pp,yan_cen,lcj2021}@hnu.edu.cn, tamer.ozsu@uwaterloo.ca, zoulei@pku.edu.cn

Abstract—Scaling-out RDF processing to deal with graph size
usually requires partitioning the RDF graph. Typical partitioning
approaches minimize edge-cuts or vertex-cuts. In this paper we
argue that these approaches do not avoid or reduce joins between
different partitions (i.e., inter-partition join), and propose an
approach based on minimizing the number of distinct crossing
properties, which we call Minimum Property-Cut (MPC). This
approach enables more queries to be independently evaluated
without inter-partition join. However, the minimum property-cut
partitioning is a NP-hard problem and we propose a heuristic
greedy algorithm to address that. Extensive experiments over
a variety of synthetic and real RDF graphs show that the
proposed technique can significantly avoid joins and results in
good performance.

Index Terms—RDF graph partitioning, distributed RDF sys-
tems, SPARQL query execution

I. INTRODUCTION

Resource description framework (RDF) is a data model

proposed by the W3C, where a triple of the form 〈subject,
property, object〉 is the basic unit to describe the properties
of the resources on the web and the relationships among

these resources. An RDF dataset can be represented as a

graph where subjects and objects are vertices, and triples

are edges with property names as edge labels. SPARQL is

the query language for RDF, where the basic graph pattern

(BGP) is the fundamental building block. A BGP query

can also be represented as a query graph, and answering a

BGP query is equivalent to finding subgraph matches (using

homomorphism) of the query graph over the RDF graph.

As RDF dataset sizes increase, the typical performance is-

sues of managing and querying them on a single machine arise,

stimulating the interest in distributed solutions. In this paper,

we focus on optimizing specialized distributed RDF systems,

which are built specifically for SPARQL query evaluation

by utilizing custom physical layouts that integrate multiple

centralized RDF systems on different sites. This layout is

widely-used because of its high efficiency [2], [25]. In this

layout, the RDF graph G is divided into a set of subgraphs

{F1, ..., Fk}, called partitions, which are then distributed over
a cluster of sites. If a query matches data across multiple

partitions, inter-partition joins are involved to compute the

result. Our focus in this paper is a partitioning technique that

eliminates or minimizes the number of inter-partition joins,

thereby improving overall query execution performance.

A. Background

Many popular partitioning approaches in existing distributed

RDF systems are vertex-disjoint [16], [21], [22], [15], which
assign each vertex to a single partition. In these approaches,

some edges are “cut” across partitions and replicated in the

two partitions of their endpoints to guarantee the completeness

of the graphs of each partition. This is called 1-hop replication.

An edge (triple) between two vertices in the same partition is

an internal edge while one connecting two vertices in different
partitions is called a crossing edge. Some works also discuss
k-hop replication [16], [21], [15], allowing replication of k-

hop neighbors of endpoints of crossing edges to improve lo-

calization. However, this increases the space cost and the data

consistency maintenance overhead. Thus, this paper focuses

on 1-hop replication.

Given a vertex-disjoint partitioning over an RDF graph G,
the matches of a SPARQL query Q fall into two categories:

internal matches and crossing matches. An internal match is
fully contained in a single partition, while a crossing match

spans multiple partitions. When a query Q is submitted, if

we can determine that there are only internal matches, we can
do independent evaluation at each partition. More specifically,
we send Q to each site holding a partition Fi (i = 1, ..., k)
and evaluate Q over each Fi independently; we denote Q’s
match over partition Fi as M(Q,Fi). Since there are no
crossing matches, the full result is computed as the union

of these matches, i.e., M(Q,G) =
⋃k

i=1 M(Q,Fi). Existing
approaches [21], [22], [3], [39], [16], [13] can guarantee

independent execution of star queries that involve a vertex
and its neighbors because of 1-hop replication noted above.

If it is not possible to determine that a query Q con-

sists only of internal matches, a common technique is to

decompose Q into a set of star subqueries {q1, ..., qy} and
independently execute each qj over every partition to find

matches M(qj , G) =
⋃k

i=1 M(qj , Fi). Then, the final result
is computed as M(Q,G) =�� M(qj , G), (j = 1, ..., y).
This inter-partition join involves communication and extra

computation that are costly.

192

2022 IEEE 38th International Conference on Data Engineering (ICDE)

2375-026X/22/$31.00 ©2022 IEEE
DOI 10.1109/ICDE53745.2022.00019

20
22

 IE
EE

 3
8t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
at

a
En

gi
ne

er
in

g
(IC

DE
) |

 9
78

-1
-6

65
4-

08
83

-7
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

DE
53

74
5.

20
22

.0
00

19

Authorized licensed use limited to: Peking University. Downloaded on October 13,2022 at 08:07:54 UTC from IEEE Xplore. Restrictions apply.

(a) Example Partitionings

(b) Example Queries

Fig. 1. Comparison of Different Partitioning Approaches and Example
Queries

B. Motivation & Our Approach

Existing works only consider the necessary condition for

independent execution from the perspective of query structure:

the query graph has to be star shaped. However, the class

of independently executable queries (IEQs) can be extended

beyond star queries by considering the properties (on edges).

Given a vertex-disjoint partitioning, a property is called a

crossing property if and only if there exists at least one cross-
ing edge with that property as its label; otherwise, it is called

an internal property. It can be proven that a query without any
crossing property edges can be executed independently over

each partition without inter-partition join.

The motivation of this paper is to find an RDF graph

partitioning that avoids inter-partition joins in a wider set (than

star queries) of SPARQL workloads. The traditional objective

function of vertex-disjoint partitioning is to minimize edge-
cuts while balancing the partition sizes (e.g., [16], [39], [13],
[35], [32]); this is known as minimum edge-cut partitioning.
The expectation is that fewer crossing edges can produce

fewer crossing matches. This is a reasonable expectation, but

it does not sufficiently eliminate or reduce the number of

inter-partition joins. If we cannot judge that a query Q has

no crossing matches before starting execution, inter-partition

join cannot be avoided even if Q has no crossing matches

during execution. Consider the vertex-disjoint partitioning in

Fig. 1(a) where the blue dashed line indicates minimum

edge-cut partitioning. In this case, there are three crossing

properties:residence, birthPlace and producer. Executing query
Q2 in Fig. 1(b) would involve a crossing match, so Q2 cannot

be executed independently. Note that an edge (i.e., triple) with

a crossing property does not mean that it has to be a crossing

edge; there can be many edges with the same property and only

some of them might be crossing edges. For example, although

residence is a crossing property in the minimum edge-cut

partitioning, edge
−−−−−→
006 004 with property residence is not a

crossing edge. However, if an edge has an internal property,

it must be an internal edge. The important point here is the

distinction between crossing edges and crossing properties.
In this paper we propose an alternative vertex-disjoint

approach, called Minimum Property-Cut (MPC), where the
objective function is to minimize the cuts to the number of

distinct crossing properties rather than minimizing the edge-
cuts. We prove and demonstrate that this approach avoids inter-

partition joins in a wider set of SPARQL workloads. Consider

the red dashed line partitioning in Fig. 1(a) that is the result

of MPC partitioning. In this case there is only one crossing

property, birthPlace. Query Q2 does not involve this property,

so it can be executed independently without inter-partition join

although it is not a star query. Since MPC partitioning is also

vertex-disjoint, it can still ensure that all star queries (e.g.,

Q1) can be executed independently. Consequently, MPC can

execute a larger class of queries without needing inter-partition

joins, although it may have more crossing edge cuts than the

minimum edge-cut partitioning.
Unfortunately, as proven in Theorem 1, the MPC problem

is NP-complete. It is obvious that minimizing the number of

crossing properties is equivalent to maximizing the number of

internal properties. We, therefore, propose a greedy heuris-

tic partitioning algorithm to find the partitioning with the

maximum set of internal properties (Section IV). The greedy

algorithm progressively coarsens internal properties, performs

partitioning on this coarsened graph, and uncoarsens it to get

a partitioning of the original graph. We prove that a star query

is always independently evaluated in our approach (Theorem

5), so the number of decomposed subqueries in our MPC

partitioning is no more than previous proposals. In addition to

star queries, we demonstrate two additional query categories

that can avoid inter-partition joins with MPC partitioning

(Section V): internal queries that do not contain any crossing
property edges and extended independently executable queries
that may contain crossing properties but can be guaranteed to

not involve any crossing matches. Thus, MPC partitioning can

avoid more inter-partition joins than existing approaches.
In summary, we make the following contributions:

• We propose minimum property-cut (MPC) as a novel

graph partitioning scheme for RDF graphs in the context

of distributed SPARQL query evaluation.

• Due to the hardness of the MPC problem, we propose a

greedy heuristic. The property selection order influences

the partitioning quality and we propose a cost function

to decide the order. We propose to use disjoint-set forest

data structure to efficiently compute the cost function.

• We define the types of queries that can be independently

executed and the set of such queries is larger than what

is supported by existing approaches. We discuss how a

query is decomposed into one of these types for inde-

pendent execution, and prove the number of subqueries

is guaranteed to be no more than existing approaches.

• Experiments show that MPC can significantly improve

distributed SPARQL query processing by avoiding a

higher number of inter-partition joins.

193

Authorized licensed use limited to: Peking University. Downloaded on October 13,2022 at 08:07:54 UTC from IEEE Xplore. Restrictions apply.

II. RELATED WORK

Distributed SPARQL query evaluation has been extensively

studied in the literature [18], [25], [2], [19]. One of the key

issues is how to partition an RDF graph into subgraphs and

distribute them among the sites. Generally, we classify the

RDF graph partitioning approaches into three categories:

Vertex-disjoint partitioning approaches. Most popular
partitioning techniques in existing distributed RDF systems

are vertex-disjoint and assign each vertex to a single partition.

The edges connecting two vertices in different partitions are

replicated in the two partitions of their endpoints, ensuring

that star queries can be evaluated independently. A non-star

query is decomposed it into several star-shaped subqueries.

In particular, SHAPE [21], [22] and AdPart [3] use hash

functions to assign each vertex to a partition; while EAGRE

[39], H-RDF-3X [16] and TriAD [13] use the minimum edge-

cut partitioning method to partition the RDF graphs.

The proposed MPC partitioning is also vertex-disjoint, but

differs from the others in its consideration of crossing prop-
erties. MPC enables more IEQs and reduces the number of

inter-partition joins.

Edge-disjoint partitioning approaches. An alternative is
edge-disjoint, which partitions an RDF graph according to

edge properties. The triples with the same property go to

the same partition, like vertical partitioning [1]. Edge-disjoint

partitioning has been widely used in many cloud-based dis-

tributed RDF systems [17], [11], [31], [24], [34], where edges

of different properties are put into different storage units in

the cloud. For example, in HadoopRDF [17] and CliqueSquare

[11], edges of different properties are stored in different HDFS

files; while S2RDF [31], WORQ [24] and Sparklify [34] store

edges of different properties in different Spark SQL tables.

In cloud-based systems, the main optimization objective is

to prune irrelevant partitions and avoid too many scans in

the cloud. Edge-disjoint partitioning can achieve this goal by

only scanning storage units of relevant properties. However,

in vertex-disjoint partitioning, although partitions can also be

stored in different storage units in cloud, all these storage units

need to be scanned.

Other approaches. Some other partitioning approaches

consider extra information besides RDF graph itself. For

example, DiploCloud [37] requires the administrator to define

templates as partition units; WARP [15], Partout [9], Peng et

al. [26], [27] and WASP [5] utilize query workloads to define

partitioning units. In this paper, we focus on a data-driven

approach without considering extra information, such as query

logs. Considering the frequency of properties in query logs, a

weighted MPC partitioning is also desirable, but that is beyond

the scope of the paper.

The above methods focus on offline partitioning strategy

to improve the system’s performance. There are other ap-

proaches that optimize inter-partition join processing during

query evaluation, which we call run-time optimizations, that
are orthogonal to the RDF graph partition strategies. TriAD

[13] performs distributed merge-joins over different indexes.

Multiple join operators are executed in parallel. AdPart [3]

employs distributed semijoin to optimize query evaluation and

Wu et al. [36] propose a top-down join enumeration algorithm

that enumerates query plans with multiway joins. WORQ

[24] minimizes the intermediate results by precomputing join

reductions through Bloom-joins and cache the join reductions

that correspond to the frequent join patterns. Our earlier work,

gStoreD [28], [29], proposes a partial-evaluation-and-assembly

run-time query framework.

Our method involves the weakly connected components

(WCCs) induced by some edge labels, which is also also used

in GRASP [6]. However, GRASP is designed to handle regular

path queries over property graphs, so it only considers the

connectivity of WCCs induced by the edge labels. In contrast,

our goal is to optimize distributed query evaluation, and we

additionally consider balancing the sizes of the WCCs.

III. PRELIMINARIES

An RDF dataset can be represented as a graph where

subjects and objects are vertices and triples are labeled edges.

Definition 3.1: (RDF Graph) An RDF graph is denoted as
G = {V,E,L, f}, where V is a set of vertices that correspond

to all subjects and objects in the RDF data; E ⊆ V × V is a

multiset of directed edges that correspond to all triples in the

RDF data; L is a set of edge labels; and f : E → L is a label
mapping, where for each edge e ∈ E, its edge label f (e) is
its corresponding property.

A directed graph G is called weakly connected if replacing
all of its directed edges with undirected edges produces a

connected (undirected) graph. A weakly connected component
G′ of an RDF graph G is a maximal weakly connected

subgraph of G such that G′ is not the subgraph of another
weakly connected component. The set of weakly connected

components of G is denoted as WCC(G).
Definition 3.2: (Property-Induced Subgraph) Given a set

of properties L′ ⊆ L and an RDF graph G, the property-
induced subgraph of G by L′, denoted as G[L′], is the
subgraph formed by only edges with properties in L′.
As noted earlier, vertex-disjoint partitioning assigns each

vertex to one site (i.e., the partitions are vertex-disjoint), and

to guarantee data integrity and consistency, replicas of each

crossing edge are stored in the partitions of its two endpoints.

Formally, we define the partitioning of an RDF graph as

follows, where u and
−→
uu′ denote the vertex and edge and k

is the number of graph partitions. Usually, k depends on the
number of machines in the distributed system.

Definition 3.3: (Partitioning) Given an RDF graph G, a
partitioning F is a set of partitions {F1, F2, ..., Fk}, where
each Fi = (Vi ∪ V e

i , Ei ∪ Ec
i , Li, fi) (1 ≤ i ≤ k) such that

1) {V1, ..., Vk} is a disjoint partitioning of V , i.e., Vi∩Vj =
∅, 1 ≤ i, j ≤ k, i �= j and

⋃
1≤i≤k Vi = V ;

2) Ei ⊆ Vi×Vi, 1 ≤ i ≤ k; edges in Ei are called internal
edges of Fi;

3) Ec
i is a set of crossing edges between Fi and other

partitions, and Ec =
⋃

1≤i≤n E
c
i is the set of all crossing

edges in F ;

194

Authorized licensed use limited to: Peking University. Downloaded on October 13,2022 at 08:07:54 UTC from IEEE Xplore. Restrictions apply.

4) Replicas of crossing edges are stored at two sites of

its two endpoints’ partitions, so some vertices of other

partitions are stored at Fi and the set of these vertices

are denoted as V e
i . A vertex u

′ ∈ V e
i if and only if vertex

u′ resides in other partitions Fj and u
′ is an endpoint of

a crossing edge between partitions Fi and Fj (Fi �= Fj).

5) Li is a set of edge labels in Fi.

6) fi : Ei → Li is a label mapping, where for each edge

e ∈ Ei, its edge label fi(e) is f(e).

Based on the above partitioning definition, we can formally

define internal and crossing properties.

Definition 3.4: (Internal/Crossing Property) Given a par-
titioning F over an RDF graph G, a property that does not
exist in any crossing edge (i.e., in Ec) is called an internal
property and Lin = {p|p ∈ L ∧ ∀e ∈ Ec, f (e)�= p} is the set
of all internal properties. In contrast, a property that is not in

Lin is called a crossing property and Lcross = L−Lin is the

set of all crossing properties. A crossing property is the label

of at least one crossing edge in Ec.

Fig. 2 shows a partitioning over an RDF graph consisting

of two partitions F1 & F2. For F2, 004, 005, 006, 007, 008
and 009 are internal vertices, and the edges between any

two of them are internal edges. The edges between 002, 003
and 010 and internal vertices of F2 are crossing edges. The

internal properties are starring, residence, chronology, spouse
and foundingDate, while the crossing property is birthPlace.

Fig. 2. Example RDF Graph and Partitioning

If a property is a crossing property, this indicates that there

is at least one crossing edge with that property, but it does

not mean that all edges with the property are crossing edges.

For example, although edge
−−−−−→
003 010 in Fig. 2 is an internal

edge of F1, its property is the crossing property birthPlace.
However, if a property is an internal property, all edges having

the property must be internal edges.

A SPARQL query can similarly be represented as a query

graph Q. In this study, we focus on BGP queries as they
are foundational to SPARQL, and we consider techniques for

handling them.

Definition 3.5: (SPARQL BGP Query) A SPARQL BGP
query is denoted as Q = {V Q, EQ, LQ, fQ}, where V Q ⊆
V ∪VV ar is a set of vertices, where V denotes all vertices in the

RDF graph G, and VV ar is a set of variables; E
Q ⊆ V Q×V Q

is a multiset of edges in Q; LQ ⊆ L ∪ LV ar is a set of edge

labels, where L denotes all properties in the RDF graph G, and
LV ar is a set of variables for properties; and fQ : EQ → LQ

is a mapping, where each edge e in EQ either has an edge

label fQ(e) in L (i.e., property) or the edge label is a variable.
We assume that query Q is a weakly connected directed

graph; otherwise, each connected component of Q is consid-

ered separately. Answering a SPARQL query is equivalent to

finding all subgraphs of G that are homomorphic to Q. The
subgraphs of G homomorphic to Q are called matches of Q
over G.

Definition 3.6: (SPARQL BGP Match) Consider an RDF
graph G and a query graph Q with n vertices {v1, ..., vn}.
A subgraph M with m vertices {u1, ..., um} (in G) is said
to be a match of Q if and only if there exists a function μ
from {v1, ..., vn} to {u1, ..., um} (n ≥ m) where the following
conditions hold: 1) if vi is not a variable, μ(vi) and vi have the
same uniform resource identifier (URI) or literal value (1 ≤
i ≤ n); 2) if vi is a variable, there is no constraint over μ(vi)
except that μ(vi) ∈ {u1, ..., um}; 3) if there exists an edge−−→vivj in Q, there also exists an edge

−−−−−−−→
μ(vi)μ(vj) in G; 4) there

must exist an injective function from edge labels in fQ(−−→vivj)
to edge labels in f(

−−−−−−−→
μ(vi)μ(vj)). Note that a variable edge

label in fQ(−−→vivj) can match any edge label in f(
−−−−−−−→
μ(vi)μ(vj)).

The motivation of our work is to find an RDF graph

partitioning that enables more SPARQL queries to be executed

independently. We formally define independent evaluation as
follows:

Definition 3.7: Independent Execution. A SPARQL query
Q is said to be independently executable over a partitioning
F = {F1, F2, ..., Fk} of RDF graph G if and only if its result

M(Q,G) =
⋃k

i=1 M(Q,Fi), where M(Q,Fi) is the result of
executing Q on partition Fi (i = 1, ..., k).

IV. MINIMUM PROPERTY-CUT PARTITIONING

We now define minimum property-cut partitioning. Our
focus is on the new partitioning definition, its complexity (it is

NP-complete), and the design of an approximate algorithm. We

defer proof that this approach enables independent execution

of a broader class of queries to Section V.

A. Problem Definition

Intuitively, to minimize inter-partition joins, it is neces-

sary to minimize the number of distinct crossing properties

(|Lcross|); we prove this formally in Section V-A in the context
of query types (Theorem 3). We use this notion to formally

define minimum property-cut partitioning.
Definition 4.1: (Minimum Property-Cut Partitioning)

Given an RDF graph G and a positive integer k, the mini-
mum property-cut (MPC) partitioning of G is a partitioning

F = {F1, F2, ..., Fk} such that (1) the number of crossing
properties |Lcross| is minimized (i.e. the number of internal
properties |Lin| is maximized); and (2) the size of Fi (i.e. |Vi|)
is not larger than (1 + ε) × |V |/k for each Fi, where ε is a
user-defined maximum imbalance ratio of a partitioning (i.e.,

how much difference can be in the relative sizes of partitions).

Note that, ε is a parameter widely used in previous works
(e.g., [35], [32]) to specify how much of an imbalance the

195

Authorized licensed use limited to: Peking University. Downloaded on October 13,2022 at 08:07:54 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Example of Coarsening

user can tolerate. This is needed because we usually cannot

ensure that the partitions are completely balanced.

Theorem 1: The MPC partitioning problem is NP-complete.
Proof: We reduce the NP-complete minimum edge-cut

problem to the MPC problem. Given an instance of minimum

edge-cut graph partitioning over G, we assign each edge in
G with a distinct property, which is denoted as G. In this
case, finding MPC graph over G is equivalent to finding

minimum edge-cut over G. The latter is a classical NP-
complete problem, thus, Theorem 1 holds.

Given this complexity proof, we propose, in Section IV-B,

a greedy heuristic that achieves a good approximation.

B. Partitioning Technique

Following Definition 4.1, we note that Lcross = L − Lin,

and, therefore, minimizing |Lcross| is equivalent to maximiz-
ing the set of internal properties |Lin|. Our solution focuses
on maximizing |Lin|.
First, we use a greedy algorithm to select internal properties

Lin (Section IV-C). Let G[Lin] be the subgraph induced
by internal properties Lin. Then, each weakly connected

component (WCC) in G[Lin] is represented as a superver-
tex – we call this coarsening. In this way, we obtain a

coarsened graph (denoted as Gc) with much smaller number

of vertices, each of which represent a WCC. For example,

given a graph G in Fig. 3 and internal properties Lin =
{starring, residence, producer, spouse, foundingDate}, the red
and blue vertices and edges show two WCCs in G[Lin]. Each
one is represented as a supervertex and G is coarsened into

Gc (Fig. 3). Note that there are no internal property edges in

Gc, since they have been coarsened into supervertices.

We can now use any vertex-disjoint partitioning algorithm

(e.g., METIS [20]) over the coarsened graph Gc. The com-

plexity of these algorithms is not an impediment since Gc is

much smaller than G. An example is shown in Fig. 3. There
are only two vertices in Gc, which are partitioned into two

partitions. Finally, the partitioning over Gc is uncoarsened to

obtain a partitioning of the original graph G – see the dashed

line in Fig. 3.

It is obvious that no internal property edge in G can be

a crossing edge in the final partitioning, since the internal

property edges have been coarsened into supervertices in Gc

and each supervertex is in one partition.

C. Internal Property Selection

The key issue in this framework is how to select Lin, i.e.,

how to maximize the number of internal properties under par-

tition size constraint (see Definition 4.1). Since the problem is

NP-complete, we use a greedy heuristic algorithm to select Lin

(Algorithm 1). Since our formulation of the internal property

selection algorithm is based on WCC, we first establish the

relation between them.

Theorem 2: Let Lin be the set of internal properties and

G[Lin] be the subgraph induced by Lin. Any two vertices in

a weakly connected component (WCC) of G[Lin] must be in
the same partition.

Proof: Assume that two vertices u and v in a WCC of
G[Lin] are not in the same partition. Since they are in the
same WCC, there exists at least one weakly connected path

π between them. Since they are not in the same partition, at
least one edge in path π crosses two partitions, i.e., it is a

crossing edge. This conflicts with the fact that all properties

along the path π are internal properties.
According to the definition of MPC partitioning (Definition

4.1), the number of vertices in each partition should be no

larger than (1+ε)×|V |/k. Therefore, given a set of properties
L′, the cost of selecting them as internal properties is defined

as the size of the largest WCC in the property induced

subgraph G[L′].
Definition 4.2: (Selecting Internal Property Cost) Given

a set of properties L′ ⊆ L, the cost of selecting L′ as internal
properties is:

Cost(L′) = max
c∈WCC(G[L′])

|c|

where c is a weakly connected component in WCC(G[L′])
and |c| denotes the number of vertices in c.
Using this cost function, we select as many properties to

be internal properties as possible as long as the cost of the

selected internal properties is no larger than (1 + ε)× |V |/k.
The internal property selection algorithm is given in Al-

gorithm 1. Note that the optimizations we discuss in the

following section (Section IV-D) are built into this algorithm.

Therefore, at this stage, we provide the highlights of its

operation; more details will be filled in Section IV-D. Initially,

Lin starts empty (Line 1) and we compute the WCCs of the

property-induced subgraphs for each property (Lines 2-4). In

each iteration, a property p that minimizes Cost(Lin∪{p}) is
selected as the next popt and inserted into Lin (Lines 5-14);

popt is then removed from L (Lines 15-16). These steps are

repeated until L is empty (Line 5) or no more property can be
selected due to the cost constraint (Lines 13-14). The selected

internal properties Lin are returned (Line 17).

D. Optimization Using Disjoint-Set Forest

The bottleneck of Algorithm 1 lies in Lines 3 and 8, namely

computing the WCCs. The first step is to compute the WCCs

196

Authorized licensed use limited to: Peking University. Downloaded on October 13,2022 at 08:07:54 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Internal Property Selection Algorithm
Input: An RDF graph G = (V,E, L, f)
Output: A set of internal properties Lin ⊆ L

1 Lin ← ∅;
2 for each property p in L do
3 Compute WCC(G[{p}]), i.e., weakly connected

components in G[{p}];
4 Compute the cost of Cost({p}) according to Definition

4.2.
5 while L �= ∅ do
6 mincost←∞; popt ← φ
7 for each property p in L do
8 Compute WCC(G[Lin ∪ {p}])
9 if Cost(Lin ∪ {p}) < (1 + ε)× |V |/k then

10 if Cost(Lin ∪ {p}) < mincost then
11 mincost← Cost(Lin ∪ {p});
12 popt ← p
13 if popt == φ then
14 BREAK
15 Lin ← Lin ∪ {popt};
16 L← L− {popt};
17 Return Lin;

in G[{p}] (Line 3). The second step is to iteratively merge
WCCs in G[Lin] and G[{p}] (Line 8).
We propose to use the disjoint-set forest data structure [10],

since it can dynamically track the WCCs of a graph as vertices

and edges are added. For each property p, we initialize a
disjoint-set forest DS({p}), in which each node u corresponds
to a single tree and u is associated three values u({p}).parent,
u({p}).rank and u({p}).size. u({p}).parent is the parent of
u in DS({p}) and initialized as u itself; u({p}).rank is an
upper bound on the height of the rooted tree and initialized as

0; and u({p}).size is the number of the vertices in the rooted
tree and initialized as 1.
Then, for each edge

−→
uu′ in RDF graph G, if its edge

property is p, the rooted trees of u and u′ in the corresponding
disjoint-set forest DS({p}) are combined, which means that
the WCCs containing u and u′ are merged. This is a UNION
operation in disjoint-set forest [10]. The root of the tree with

smaller rank is adjusted to point to the root of the tree with

larger rank, each vertex on the paths from u and u′ to their
roots is made to point directly to the root of its disjoint-set

forest, and the sizes of the rooted trees of u and u′ are summed.
After processing all the edges with property p, two vertices
are in the same connected component of G[{p}] if and only
if they are in the same tree of disjoint-set forest DS({p}). In
other words, each tree inDS({p}) corresponds to one WCC in
G[{p}]. Therefore, it is straightforward to compute Cost({p})
using Definition 4.2.

To compute WCC(G[Lin ∪{p}]) (Line 8 in Algorithm 1),

we compute the disjoint-set forest DS(Lin∪{p}) by merging
DS(Lin) and DS({p}). Initially, we set DS(Lin ∪ {p}) =
DS(Lin). For each vertex u in DS({p}), we find the root
of its tree in DS({p}), denoted as uRoot. This is done by
recursively visiting the current node’s ancestors up to the root,

which is the FIND operation in disjoint-set forest [10]. Since u
and uRoot are in the same WCC of G[{p}], they should also

be in the same WCC of G[Lin∪{p}]. Thus, we first FIND two
rooted trees of u and uRoot in the current DS(Lin∪{p}). If u
and uRoot are not in the same rooted tree in DS(Lin ∪{p}),
we merge them by UNION operation.

E. Analysis

The complexity of Algorithm 1 depends on computing

WCC (Lines 3 and 8) using the disjoint-set forests. The com-

plexity of building the disjoint-set forests is O(α(|V |)× |E|),
where α(|V |) is the inverse Ackermann function and smaller
than 5 for all practical purposes [8].

Merging two disjoint-set forests needs O(α(|V |)×|E|) time.
Considering the dual loop in Lines 5-7 of Algorithm 1, the

time complexity is O(|L|2×α(|V |)×|V |). Therefore, the total
time complexity of Algorithm 1 is O(|L|2 × α(|V |) × |V |).
Usually, the number of properties is much less than the number

of vertices and edges in RDF graphs (i.e. |L| � |V |) and
α(|V |) is a trivial value, thus, the complexity mainly depends
on the number of vertices, |V |.
The complexity of Algorithm 1 can be further improved

by some additional heuristics. First, given a property p, if the
largest WCC in its property-induced subgraph G[{p}] is larger
than (1 + ε)× |V |/k, this property can be pruned. There are
some popular properties in RDF that always generate large-

size WCCs. For example, rdf:type is widely used in most

RDF datasets to represent the class information, and almost

all entities have class owl:Thing in many real RDF graphs.

Therefore, we can prune these properties and not consider

them. This reduces the size of the property set on which the

complexity of the algorithm is dependent.

Second, for some real RDF datasets (such as DBpedia and

LGD in our experiments), most properties can be selected as

internal properties. Thus, we can initially put all properties into

Lin. In each step, we greedily remove one property p (from
Lin) that leads to maximum cost reduction (i.e., maximizing

Cost(Lin) − Cost(Lin − {p})) until the Cost(Lin) ≤ (1 +
ε)× |V |/k.

V. DISTRIBUTED QUERY EXECUTION

In this section, we address two problems. First, we identify

the set of SPARQL queries that can be independently executed.

Then, we study how to answer a query if it is not indepen-

dently executable.

A. Independently Executable Queries

Independently executable queries (IEQs) are those that are
“local” to a partition and can be executed without a join with

another partition. Existing work that uses minimum edge-

cut partitioning guarantee that star queries can be executed

independently; this holds under Definition 3.7 as well. In

this paper, we extend the class of independently executable

queries. We identify two categories of such queries—internal

and extended1 .

1SPARQL queries may have variables in edge properties, such as edge ?p
inQ5 in Fig. 5. We can regard these variable-edges as crossing-property edges
in the following discussion, without affecting the correctness of our method.

197

Authorized licensed use limited to: Peking University. Downloaded on October 13,2022 at 08:07:54 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. Example Extended IEQs

Definition 5.1: (Internal Independently Executable
Query) A SPARQL query Q that does not contain any cross-

ing property edges is an internal independently executable
query (IEQ).

Theorem 3: An internal IEQ Q can be executed without

inter-partition join.

Proof: (Proof by contradiction) If an internal IEQ Q has

a crossing match m, requiring an inter-partition join, there is
at least one edge eq in Q that matches a crossing edge ec and
they have the same property, so eq’s property is a crossing
property. This contradicts the definition of an internal IEQ.

For the partitioning in Fig. 2 where Lcross = {birthPlace},
Q2 in Fig. 1(b) is an internal IEQ, since it does not have an

edge labelled birthPlace.
The second category of independently executable queries

are what we call extended independently executable queries.

There are two types: A Type-I query (Definition 5.2) con-

tains crossing properties but is guaranteed to not involve any

crossing edges. Recall that a crossing property is the label of

at least one crossing edge, but this does not imply that all

edges with this property are crossing edges. A Type-II query

(Definition 5.3) may involve the replicas of crossing edges at

each partition (as stated earlier replicas of crossing edges are

stored at the two sites of its two endpoints’ partitions).

Definition 5.2: (Type-I Extended Independently Exe-
cutable Query) If a SPARQL query Q is weakly connected

when all crossing property edges in Q are removed, then it is

a Type-I extended independently executable query.
Definition 5.3: (Type-II Extended Independently Exe-

cutable Query) Consider a SPARQL query Q that is decom-

posed into x WCCs {q1, q2, ..., qx} after all crossing property
edges are removed. Q is a Type-II extended independently
executable query if and only if all qj are one-vertex WCCs
except for a single WCC qi, where 1 ≤ j �= i ≤ x, and there
are no crossing property edges between any two one-vertex

WCCs qj1 and qj2 (1 ≤ j1 �= j2 �= i ≤ x). Formally, (1)
there is a single WCC qi, where |qi| ≥ 1 and |qi| denotes
the number of vertices in qi, and all other WCCs |qj | = 1
(1 ≤ j �= i ≤ x); and (2) there are no crossing property edges
between any two qj1 and qj2 (1 ≤ j1 �= j2 �= i ≤ x).
For example, Q3 and Q4 in Fig. 4 are extended IEQs:

Q3 is Type-I, while Q4 is Type-II. Q3 is Type-I, because

it is still weakly connected after removing crossing property

edge
−−−→
?z ?p. Since the other three edges in Q3 are internal

property edges, all variable bindings are internal vertices of

the same partition. In other words, the vertices matching ?z
and ?p are internal vertices in the same partition; thus, the edge

matching
−−−→
?z ?p must be an internal edge in the same partition.

Therefore, evaluating Q3 does not need inter-partition join.

In query Q4, removing the crossing property edges
−−−→
?y ?x

and
−−−→
?z ?x leads to a size-1 subquery (i.e., containing only

one vertex) ?x and the remaining part Q′
4. Obviously, Q

′
4 is

an internal IEQ. For any match of Q4, all its vertices are

internal to one partition. Due to crossing edge replication in

vertex-disjoint partitioning, the matching vertex of the size-1

subquery ?x must be an extended vertex of the corresponding
partition, since it is one-hop from the internal match. Thus,

Q4 is independently executable.

Theorem 4: Both Type-I and Type-II extended IEQs can be
independently executed.

Proof: The set of crossing property edges in a query
Q is denoted as EQc. Given a Type-I extended IEQ Q,
after removing all crossing property edges, the remaining part

(denoted as Q′) is still weakly connected. Q′ is an internal
IEQ, because there is no crossing property in Q′. Thus, in any
match of Q′, all vertices must be internal vertices in the same
partition, which indicates that the edges that map to edges in

EQc should be internal edges in the same partition. Thus, Q
can be independently executed.

Given a Type-II extended IEQ Q that is decomposed into

x WCCs {q1, q2, ..., qx} after removing all crossing property
edges in Q, where |qi| ≥ 1 and |qj | = 1 (1 ≤ j �= i ≤ x), it
is easy to show that qi is an internal IEQ because all crossing
property edges are removed. Thus, qi only matches to internal
vertices. Other size-1 subqueries qj (j �= i) are one-hop from
qi. Due to crossing edge replication, all 1-hop neighbors of
internal vertices must be in the same partition. Therefore, Q
can also be independently executed.

As noted earlier, under MPC partitioning, star queries are

still independently executable. The following theorem estab-

lishes this; thus MPC significantly extends the class of IEQs.

Theorem 5: A star query is either an internal IEQ or a Type-
II extended IEQ.

Proof: Given a star query Q, if there is no crossing
property edge in Q, it is obvious that it is an internal IEQ.
If Q contains some crossing property edges, we prove that

Q is a Type-II extended IEQ. Since Q is a star query, there

should exist one vertex vc as the central vertex and all other
vertices are incident to vc. After removing crossing property
edges, we assume that Q is decomposed into {q1, q2, ..., qy}
and q1 is the subquery containing vc. Because any other vertex
is only adjacent to vc, qj (1 < j ≤ y) should only contain
one vertex, which meets condition (1) of Definition 5.3. Non-

central vertices in Q cannot be connected. Therefore, there is

no crossing property edges between any pairs of subqueries

qi and qj (1 < i �= j ≤ y), and Q meets condition (2) of

Definition 5.3. Thus, Q is Type-II extended IEQ.

B. Query Decomposition & Execution

Real SPARQL workloads are likely to contain queries that

are not independently executable, e.g., Q5 in Fig. 5. For these

queries, to exploit the MPC partitioning and minimize the

inter-partition joins, we first decompose them into a set of

198

Authorized licensed use limited to: Peking University. Downloaded on October 13,2022 at 08:07:54 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. Example Non-IEQ

independently executable subqueries (Section V-B1) and then

join their results to obtain the final result (Section V-B2).

1) Query Decomposition: Algorithm 2 outlines query de-

composition in the context of MPC partitioning. Given a non-

IEQ Q and a MPC partitioning F with the set of crossing

properties Lcross, we remove all crossing property edges and

edges with variables in the property position from Q resulting

in a set of subqueries {q′1, q′2, ..., q′x} (Line 2). Each q′i only
involves internal properties and is an internal IEQ.

Algorithm 2: Query Decomposition Algorithm
Input: A SPARQL Query Q, and a MPC partitioning F

with the set of crossing properties Lcross

Output: A query decomposition result Q = {q1, q2, ..., qy}
1 Q ← ∅;
2 Remove the crossing property edges and edges with

variables in the property position in Q and get a set of
WCCs, {q′1, q′2, ..., q′x};

3 for each crossing property edge −−→vivj and edges with
variables in the property position in Q do

4 /* q(vi) and q(vj) denote the WCCs containing vertices
vi and vj , respectively */

5 if q(vi) = q(vj) then
6 Add −−→vivj into q(vi);
7 else
8 if |q(vi)| ≤ |q(vj)| then
9 /* |q(vi)| denotes the no. of vertices in q(vi) */

10 Add −−→vivj into q(vj);
11 else
12 Add −−→vivj into q(vi);
13 for each q′i in {q′1, q′2, ..., q′x} do
14 if |q′i| > 1 then
15 Add q′i into Q;
16 Return Q;

We then consider crossing property edges and edges with

variables in the property position one-by-one. We add them to

these subqueries. Consider a crossing property edge or edge

with a variable in the property position −−→vivj and let q(vi) and
q(vj) be the two subqueries containing vertices vi and vj ,
respectively. If q(vi) = q(vj) (i.e., vi and vj are in the same
subquery), we add the crossing property edge −−→vivj into q(vi)
(Lines 5-6 in Algorithm 2), making q(vi) a type-I extended
IEQ; otherwise, we add the crossing property edge −−→vivj to the
subquery with more vertices (Lines 7-12 in Algorithm 2), and

that subquery becomes a type-II extended IEQ. Once all the

crossing property edges are handled, all the subqueries with

more than one vertex are returned as the decomposition result,

denoted as Q = {q1, q2..., qy} (Lines 13-15 in Algorithm 2).

Since Algorithm 2 needs to scan the query graph at most twice,

its time complexity is O(|EQ|).

Fig. 6. Example Query Decomposition

Fig. 6 illustrates the decomposition of Q5 using MPC

partitioning with Lcrossing ={birthPlace}. We first remove the
crossing property birthPlace edges

−−−→
?y ?x and edge of variable

property
−−−→
?y ?z. Then, the query is decomposed into three

subqueries: q′1, q
′
2 and q′3. Crossing property edge

−−−→
?y ?x is

adjacent to q′1 and q′2 and is added to q′1 to form q1, since q
′
1

is larger than q′2. Edge
−−−→
?y ?z can be added to either q′2 or q

′
3

since they are of the same size; we assume that it is added to

q′2 to form q2. In addition, q
′
3 only contains one query vertex

and is removed. There are too many matches mapping to the

query of one vertex q′3 but these matches are unnecessary. This
is because matches of q′3 that can contribute to a final match of
Q5 can also map to the vertex ?z in q2. Consequently, {q1, q2}
is the query decomposition result.

2) Query Execution: When a non-IEQ Q is received, it is

decomposed into a set of subqueries {q1, q2, ..., qy} as dis-
cussed in the previous section. This set of subqueries are sent

to each partition for execution. We note that this approach does

not localize each subquery to one partition; it executes each

subquery over every partition. The localization of SPARQL

queries is challenging and is left as future work. However, the

approach takes advantage of intra-query parallelism; each qi
can be independently executed over each partition Fj , allowing

both concurrent execution at each partition site and concurrent

execution across the worker machines. The result of these

executions are a set of matches of each subquery over each

partition, i.e., M(qi, Fj).
Then, the subqueries’ matches need to be joined to obtain

the final result, i.e., M(qi, G) =�� M(qi, Fj). How this inter-
partition join is executed depends on the particular system

architecture: it may involve distributed joins or individual

matches can be collected at the querying site and the join

performed there. The possible run-time optimization strategies

are well-studied and we do not discuss them further; these are

orthogonal to our offline partition-oriented optimizations.

199

Authorized licensed use limited to: Peking University. Downloaded on October 13,2022 at 08:07:54 UTC from IEEE Xplore. Restrictions apply.

TABLE I
STATISTICS OF DATASETS

Dataset #Entities #Triples #Properties
LUBM 100M 17,473,142 106,909,064 18
LUBM 1B 173,891,493 1,069,331,221 18
LUBM 10B 1,737,718,408 10,682,013,023 18

WatDiv 100M 5,212,745 108,997,714 86
WatDiv 1B 52,120,745 1,099,208,068 86
WatDiv 10B 521,200,745 10,987,996,562 86

YAGO2 21,073,153 284,417,966 98
Bio2RDF 804,671,979 4,426,591,829 1,581
DBpedia 139,493,254 1,111,481,066 124,034

LGD 311,153,753 1,292,933,812 33,348

VI. EXPERIMENTS

A. Setting

We evaluate MPC over both synthetic and real RDF datasets

(Table I). All experiments are conducted on a cluster of 8

machines running Linux version 3.10.0, each of which has

two CPUs with 6 cores of 2.27 GHz, 128 GB memory and

10 TB disk. At each site, a partition is stored in the gStore

RDF engine [40], [38]. We select one of these machines as

the coordinator to receive queries and use MPICH-3.0.4 for

communication. Implementations are in C++. Our code has

been released in GitHub 2.

We compare MPC with three RDF partitioning schemes

that are widely used in distributed RDF systems: hashing

triples based on subjects (denoted Subject_Hash) [21], [22],

[3], minimum edge-cut partitioning using METIS algorithm

[20] (denoted METIS) and hashing triples based on properties

[17], [31], [24] (denoted VP). All methods except VP are

vertex-disjoint partitioning methods, while VP is edge-disjoint

and assign each edge to a single partition (allowing vertex

copies between different partitions).

1) Synthetic Datasets: We use two synthetic datasets,

LUBM and WatDiv. The default size is 100 million triples and

we vary data sizes from 100 million to 10 billion to evaluate

the scalability of our approach.

LUBM. LUBM [12] is a customizable synthetic RDF

data generator that models a university. LUBM includes 18
properties and 14 benchmark queries (LQ1 − LQ14) [40].

WatDiv. WatDiv [4] is a benchmark that enables diversified
stress testing of RDF data management systems, which in-

cludes 86 properties. WatDiv provides a generator to generate
test workloads, and we generate a query log of 1, 000 queries.

2) Real Datasets: We also use four real RDF datasets,

YAGO2 [14], Bio2RDF [7], DBpedia [23] and LGD [33]. For

the first two datasets, we use benchmark queries proposed in

[2]; and for the others we use their open real query logs.

YAGO2. YAGO2 [14] is a semantic knowledge base, de-
rived from Wikipedia, WordNet and GeoNames. It has 284
million triples and 98 properties. We use all four benchmark
queries (Y Q1 − Y Q4) [2].

Bio2RDF. Bio2RDF [7] is an open source project to gen-
erate and provide Linked Data for the life sciences. It has 4

2https://github.com/bnu05pp/mpc

billion triples and 1, 714 properties. All five benchmark queries
(BQ1 −BQ5) [2] are used in our experiments.

DBpedia. DBpedia [23] is an RDF dataset extracted from
Wikipedia and contains about 1 billion triples and 124, 000
properties. There is an open available query log including

8, 151, 238 queries [30].
LGD. LGD [33] is a large spatial RDF graph that has been

derived from Open Street Map. This dataset contains more

than 1 billion triples and 33, 000 properties. We also use an
open real query log [30] including 1, 702, 961 queries.

B. Partitioning Quality

The partitioning quality is measured as the percentage of

IEQs and the end-to-end query performance. Our goal is to

minimize the number of distinct crossing properties in vertex-

disjoint partitioning. Table II shows the number of crossing

properties, |Lcross|, and the number of crossing edges, |Ec|, in
different partitioning approaches. Although MPC partitioning

may result in more crossing edges than minimum edge-cut

partitioning like METIS, it results in fewer number of crossing

properties, especially for real RDF graphs YAGO2, DBpedia

and LGD. In real RDF graphs, there are many properties.

The more properties an RDF graph has, the smaller the size

of the maximal WCC in the property-induced subgraph of

a property is. Hence, many properties can be selected as

internal properties. For example, in DBpedia, there are only 64
crossing properties in MPC, while there are more than 2, 000
crossing properties in other partitioning approaches. Since VP

is an edge-disjoint partitioning that distributes edges according

their properties, it has vertices but not edges across different

partitions. Thus, there are no crossing properties or crossing

edges, so we do not include VP in Table II.

Obviously, fewer crossing properties in MPC means that

more queries are IEQs. Table III shows the percentage of the

IEQs over the total benchmark queries in LUBM, YAGO2

and Bio2RDF, and also reports the percentages of the IEQs

in query logs in WatDiv, DBpedia and LGD. Note that the

percentages of IEQs in MPC are far higher than other vertex-

disjoint partitioning techniques. For comparison, we report the

percentages of star queries in Table III as these are the only

ones that the other techniques can independently execute.

IEQs in Subject_Hash and METIS are star queries. Al-
though Subject_Hash and METIS originally do not introduce

the concept of crossing properties, we extend them by finding

out their crossing properties (denoted as Subject_Hash+ and

METIS+ in Table III). This slightly increases the number of

IEQs in these systems beyond star queries (i.e., they have a

few non-star IEQs). VP follows edge-disjoint partitioning and

queries in VP can be IEQs only when all properties in the

query are coincidentally assigned to a single partition. Thus,

the percentages of IEQs are small.

C. Query Performance

1) Evaluation of Each Stage: In this experiment, we study
the performance of our approach at each stage with regard

to different benchmark queries. We report the running time

of each stage, including the query decomposition time, local

200

Authorized licensed use limited to: Peking University. Downloaded on October 13,2022 at 08:07:54 UTC from IEEE Xplore. Restrictions apply.

TABLE II
NUMBER OF CROSSING PROPERTIES AND CROSSING EDGES IN DIFFERENT VERTEX-DISJOINT PARTITIONINGS

MPC Subject_Hash METIS
Datasets |Lcross| |Ec| |Lcross| |Ec| |Lcross| |Ec|
LUBM 5 29,971,560 14 62,377,786 13 21,853,766
WatDiv 17 95,497,642 31 95,786,527 31 58,100,544
YAGO2 5 128,758,514 45 142,274,454 43 58,912,138
Bio2RDF 36 2,044,500,633 398 2,184,075,117 -∗ -
DBpedia 64 504,897,118 33,966 681,734,289 17,807 171,944,344

LGD 6 518,035,967 2,012 676,620,154 2,010 296,443,817
∗ - means that data size is beyond the capacity of METIS.

TABLE III
PERCENTAGE OF IEQS

MPC VP Subject_Hash / METIS Subject_Hash+ METIS+
LUBM 100% 28.57% 71.43% 71.43% 71.43%
WatDiv 60% 0% 50% 50% 50%
YAGO2 100% 0% 0% 0% 0%
Bio2RDF 100% 40% 80% 80% 80%
DBpedia 75.19% 24.25% 46.87% 51.87% 51.90%

LGD 99.95% 83.51% 96.95% 96.98% 96.98%

TABLE IV
EVALUATION OF EACH STAGE ON LUBM (IN MS)

Queries LQ1 LQ2 LQ3 LQ4 LQ5 LQ6 LQ7 LQ8 LQ9 LQ10 LQ11 LQ12 LQ13 LQ14

QDT1 82 81 81 80 80 80 81 81 80 80 80 79 80 80

LET2 39 246 102 33 12 34,759 102 123 2,580 38 44 44 47 34,512

JT3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Total 125 12,365 185 119 124 32,267 29,166 16,419 42,564 118 88 87 100 32,650

1 QDT means the query decomposition time; 2 LET means the local evaluation time; 3 JT is the join time.

TABLE V
EVALUATION OF EACH STAGE ON YAGO2 AND BIO2RDF (IN MS)

YAGO2 Bio2RDF
Queries Y Q1 Y Q2 Y Q3 Y Q4 BQ1 BQ2 BQ3 BQ4 BQ5

QDT 81 83 81 81 80 80 81 81 82
LET 373 191 2,967 281 192 213 479 264 248
JT 0 0 0 0 0 0 0 0 0

Total 454 274 3,048 362 272 293 560 345 330

evaluation and the join time with regard to different queries

in Tables IV and V.
As shown in Table III, all benchmark queries in LUBM,

YAGO2 and Bio2RDF are IEQs which can be executed

independently while avoiding joins, so the join times for them

are always 0. Meanwhile, the sizes of queries are small and

few of them contain more than 10 triple patterns, so the times

to parse and decompose the benchmark queries are also very

small. Thus, the main differences among different queries are

due to their local evaluation time. The local evaluation time

mainly depends on two factors: the shape of the query graph

and the existence of selective triple patterns. The complex

queries (LQ2 and LQ9 in LUBM and Y Q1, Y Q3 and Y Q4

in YAGO2) often have higher local evaluation times, while the

existence of selective triple patterns (LQ1 in LUBM and BQ1

and BQ2 in Bio2RDF) significantly reduces local evaluation

times. Further, LQ6 has large input and low selectivity, and it

takes much time to generate a large number of its results.
2) Query Performance Comparison: We evaluate query

performance under different partitioning methods on LUBM,

YAGO2 and Bio2RDF (Fig. 7). All benchmark queries are

classified into two categories for reporting: star queries and

other queries.
MPC, Subject_Hash and METIS partitioning lead to similar

query response times for star queries, because they can be

evaluated independently in any vertex-disjoint partitioning.

However, for VP, few queries are IEQs, which often results in

the worst performance.
MPC enables a significantly larger class of queries to be

independently executable, and many IEQs in MPC require

inter-partition join in other partitioning techniques: LQ2, LQ7,

LQ8, LQ9 and LQ12 in LUBM, Y Q1−Y Q4 in YAGO2 and

BQ4 in Bio2RDF. The performance of these queries under

MPC is much better than under others, sometimes by orders

of magnitude, due to the elimination of inter-partition joins.
We also use query logs on WatDiv, DBpedia and LGD

to evaluate the effectiveness of our MPC partitioning. We

randomly sample 1, 000 queries from the query log and report
query response times in Fig. 8 across five values: minimum,

maximum, sample median, and first and third quartiles. The

minimum and first quartile query response times on different

vertex-disjoint partitionings are similar, because there are

nearly 25% IEQs in query logs on the vertex-disjoint parti-

tionings, as shown in Table III. For these IEQs, independent

201

Authorized licensed use limited to: Peking University. Downloaded on October 13,2022 at 08:07:54 UTC from IEEE Xplore. Restrictions apply.

LQ∗1 LQ2 LQ∗3 LQ∗4 LQ∗5 LQ∗6 LQ7 LQ8 LQ9 LQ∗10 LQ∗11 LQ12 LQ∗13 LQ∗14

102

103

104

105

106

107

Q
u
er
y
R
es
p
o
n
se
T
im
e
(i
n
m
s)

MPC
Subject_Hash
VP
METIS

∗ means star queries

(a) LUBM

Y Q1 Y Q2 Y Q3 Y Q4

101
102
103
104
105
106
107
108

Q
u
er
y
R
es
p
o
n
se
T
im
e
(i
n
m
s)

MPC
Subject_Hash
VP
METIS

(b) YAGO2

BQ∗1 BQ∗2 BQ∗3 BQ4 BQ∗5
101
102
103
104
105
106
107

Q
u
er
y
R
es
p
o
n
se
T
im
e
(i
n
m
s)

MPC
Subject_Hash
VP

∗ means star queries

(c) Bio2RDF

Fig. 7. Online Performance Comparison on Benchmark Queries

Fig. 8. Online Performance over Real Query Logs

execution can always result in high performance. Especially

IEQs with high selectivity result in very low query response

times in all partitioning methods. Meanwhile, the maximum

and third quartile query response times differ sharply. As

shown in Table III, MPC can localize more queries without

inter-partition joins than other partitioning methods, so the

independent execution on MPC results in the best perfor-

mance, especially for DBpedia. For LGD, most queries are

star queries – some are even one-triple queries (see Table III)

– that are IEQs in all vertex-disjoint partitioning methods; thus,

the performance improvement in MPC is not so significant. In

addition, there inevitably exist some large queries containing

many properties in real query logs, and their query response

times in VP lead to worst performance.

Furthermore, there are also some queries that cannot be

IEQs under any partitioning methods. These queries are de-

composed as discussed earlier. Usually, the granularity of

decomposed subqueries under MPC is larger than that in

others, highlighting the fact that there are fewer subqueries

leading to fewer inter-partition joins. This results in better

performance for these queries under MPC.

Fig. 8 shows that the improvement in WatDiv is not as

pronounced as in other datasets. Entities in WatDiv are less

homogeneous and most entities share common properties.

The percentage difference of IEQs between MPC and other

partitioning is 10% in WatDiv (Table III), which is smaller

than that in other datasets.

D. Additional Experiments

1) Offline Performance: Given an RDF graph, the entire
offline process includes two steps: graph partitioning and

loading each partition to the RDF engine. We report the total

offline time as well as time of each step in Table VI.

The partitioning time mainly depends on the complexity

of the partitioning schemes. VP and Subject_Hash only need

to scan the dataset once and can directly place the triples

TABLE VI
PARTITIONING AND LOADING TIME (IN MINUTES)

Datasets Strategies Partitioning Loading Total

LUBM

MPC 12 15 27
Subject_Hash 6 21 27

VP 8 16 24
METIS 11 18 29

WatDiv

MPC 11 46 57
Subject_Hash 7 44 51

VP 8 41 49
METIS 10 89 99

YAGO2

MPC 34 215 249
Subject_Hash 23 117 140

VP 28 130 158
METIS 51 137 188

Bio2RDF

MPC 790 975 1,765
Subject_Hash 351 1,361 1,712

VP 174 1,216 1,390
METIS - - -

DBpedia

MPC 262 745 1,007
Subject_Hash 127 220 347

VP 53 203 256
METIS 171 123 294

LGD

MPC 204 389 593
Subject_Hash 81 694 755

VP 54 489 543
METIS 145 581 726

according to their values of subjects or properties, so their

partitioning times are less than MPC and METIS, as expected.

Although the partitioning time of MPC is larger than VP and

Subject_Hash, the offline performance gap is not significant,

which can be tolerated considering the advantage of MPC in

online query performance. Due to the introduction of disjoint-

set forest, we reduce both space and time cost in MPC

partitioning. However, METIS runs out of memory in large

graphs such as Bio2RDF.

On the other hand, the loading time depends on the size

balance among different partitions and the replication ratios.

Since MPC also considers balancing the partiton sizes, the

loading time of MPC is not much worse than others.

2) Scalability Test: We evaluate MPC’s data scalability by
varying the RDF graph sizes from 100 million triples to 10
billion triples in LUBM and WatDiv in Fig. 9 and Fig. 10. In

Fig. 10, we report the query time of 14 LUBM queries and

the average query time of 1000 sample generated queries in

WatDiv. The results confirm that MPC partitioning is scalable

in large graphs. Generally, as the size of RDF graph increases,

the partitioning times and the response times increase as well.

202

Authorized licensed use limited to: Peking University. Downloaded on October 13,2022 at 08:07:54 UTC from IEEE Xplore. Restrictions apply.

100M 1B 10B
101

102

103

D
at
a
P
ar
ti
ti
o
n
in
g
T
im
e
(i
n
m
in
)

(a) LUBM

100M 1B 10B

101

102

103

D
at
a
P
ar
ti
ti
o
n
in
g
T
im
e
(i
n
m
in
)

(b) WatDiv

Fig. 9. Scalability Test of Offline Performance

LQ1 LQ2 LQ3 LQ4 LQ5 LQ6 LQ7 LQ8 LQ9 LQ10 LQ11 LQ12 LQ13 LQ14

102
103
104
105
106
107

Q
u
er
y
R
es
p
o
n
se
T
im
e
(i
n
m
s)

100M
1B
10B

(a) LUBM

100M 1B 10B

103

104

A
v
er
ag
e
Q
u
er
y
R
es
p
o
n
se
T
im
e
(i
n
m
s)

(b) WatDiv

Fig. 10. Scalability Test of Online Performance

However, the rates of increase are slow, and the offline and

online performance are scalable with graph size.

3) Partitioning-agnostic System Experiments: In this ex-

periment, we LUBM and YAGO2 to evaluate MPC on our

previous work gStoreD [28], [29]. gStoreD is a partitioning-

agnostic system, and any vertex-disjoint partitioning method

can be used. We compare the three vertex-disjoint partition-

ing methods, MPC, Subject_Hash and METIS, on gStoreD.

Since star queries are always IEQs over different partitioning

schemes and the query evaluation times of star queries are

quite similar, we only compare the performance of non-

star benchmark queries, i.e. LQ2, LQ6, LQ7, LQ8, LQ9

and LQ12 in LUBM and all queries in YAGO2. Fig. 11

shows that fewer crossing properties in MPC often result in

crossing matches, which indicates fewer local partial matches

in gStoreD, so the running time over MPC is always the

smallest among the three partitioning schemes.

4) Effectiveness of Our Approximate Greedy Algorithm: In
this experiment, we compare our greedy algorithm (Algorithm

1) with a baseline that computes the exact optimal set of

internal properties (denoted as MPC-Exact), to experimentally

show the approximation ratio of our greedy algorithm. Since

MPC partitioning is NP-complete, MPC-Exact can only run

over LUBM, which only contains 18 properties. Table VII
shows the experimental results.

The experimental results show that the greedy approxima-

tion results in the addition of only one more crossing property

LQ2 LQ6 LQ7 LQ8 LQ9 LQ12

0

0.5

1

1.5
·105

Q
u
er
y
R
es
p
o
n
se
T
im
e
(i
n
m
s)

MPC
Subject_Hash
METIS

(a) LUBM

Y Q1 Y Q2 Y Q3 Y Q4

102

103

104

105

106

107

Q
u
er
y
R
es
p
o
n
se
T
im
e
(i
n
m
s)

MPC
Subject_Hash
METIS

(b) YAGO2

Fig. 11. Online Performance Using gStoreD

on LUBM. There are many domains in LUBM and different

domains are connected through some specific properties. It

is not hard for the greedy algorithm to avoid selecting the

properties across different domains as internal, since selecting

them can connect different domains which result in a large

WCC (i.e., a large selecting internal property cost in Definition

4.2). Most real RDF graphs often cover much more domains

than LUBM, so we believe that the partitioning results of the

greedy approximation can be sufficiently close to the optimal

one across a wide range of graphs.

TABLE VII
COMPARISON OF OUR APPROXIMATE GREEDY ALGORITHM AND EXACT

ALGORITHM ON LUBM

|Lcross| |Ec| Partitioning Time
(in minutes)

MPC 5 29,971,560 12
MPC-Exact 4 19,767,453 16

VII. CONCLUSIONS AND FUTURE WORK

We propose a new RDF graph partitioning scheme, called

minimum property-cut (MPC), to minimize inter-partition joins
in distributed SPARQL query execution. MPC first selects

some internal properties and coarsens the RDF graph to a

much smaller graph. The coarsened graph is partitioned and

this partitioning is projected to the original RDF graph. The

first step of the method is NP-complete; therefore, we propose

a greedy heuristic using disjoint-set forest data structure to

find an approximate solution. The queries that cannot com-

pletely avoid inter-partition joins are partitioned into a set

of independently executable subqueries before the final result

is computed. Our experiments reveal that at least 60% test

queries are independently executable in MPC on both synthetic

and real RDF graphs, which causes MPC to outperform

existing partitioning approaches.

MPC can be further extended to property graphs, but its

superiority in those graphs may not be as high as in RDF

graphs. Real RDF graphs are often sparse and have a large

number of properties. Furthermore, most properties cover a

small number of edges. MPC is designed to exploit these

characteristics. Suitability of MPC over property graphs with

different characteristics require further study.

Acknowledgement. The corresponding author is Lei Zou,
and the work is supported by National Key R&D Program

of China (2020AAA0105200), NSFC under grants 61932001,

61961130390, U20A20174, 62172146 and 62172157. M. T.

Özsu’s research is supported by Natural Sciences and Engi-

neering Research Council (NSERC) of Canada.

203

Authorized licensed use limited to: Peking University. Downloaded on October 13,2022 at 08:07:54 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] D. J. Abadi, A. Marcus, S. Madden, and K. Hollenbach. SW-Store:
a Vertically Partitioned DBMS for Semantic Web Data Management.
VLDB J., 18(2):385–406, 2009.

[2] I. Abdelaziz, R. Harbi, Z. Khayyat, and P. Kalnis. A Survey and
Experimental Comparison of Distributed SPARQL Engines for Very
Large RDF Data. PVLDB, 10(13):2049–2060, 2017.

[3] R. Al-Harbi, I. Abdelaziz, P. Kalnis, N. Mamoulis, Y. Ebrahim, and
M. Sahli. Accelerating sparql queries by exploiting hash-based locality
and adaptive partitioning. VLDB J., 25(3):355–380, 2016.

[4] G. Aluç, O. Hartig, M. T. Özsu, and K. Daudjee. Diversified Stress
Testing of RDF Data Management Systems. In Proc. ISWC, pages 197–
212, 2014.

[5] A. Davoudian, L. Chen, H. Tu, and M. Liu. A workload-adaptive
streaming partitioner for distributed graph stores. Data Sci. Eng.,
6(2):163–179, 2021.

[6] S. Dumbrava, A. Bonifati, A. N. R. Diaz, and R. Vuillemot. Approximate
Querying on Property Graphs. In SUM, volume 11940 of Lecture Notes
in Computer Science, pages 250–265. Springer, 2019.

[7] M. Dumontier, A. Callahan, J. Cruz-Toledo, P. Ansell, V. Emonet,
F. Belleau, and A. Droit. Bio2RDF Release 3: A Larger Connected
Network of Linked Data for the Life Sciences. In Proc. ISWC-PD,
page 401–404, 2014.

[8] M. L. Fredman and M. E. Saks. The Cell Probe Complexity of Dynamic
Data Structures. In Proc. STOC, pages 345–354, 1989.

[9] L. Galárraga, K. Hose, and R. Schenkel. Partout: a distributed engine for
efficient RDF processing. In Proc. WWW (Companion Volume), pages
267–268, 2014.

[10] Z. Galil and G. F. Italiano. Data Structures and Algorithms for Disjoint
Set Union Problems. ACM Comput. Surv., 23(3):319–344, 1991.

[11] F. Goasdoué, Z. Kaoudi, I. Manolescu, J. Quiané-Ruiz, and S. Zam-
petakis. CliqueSquare: Flat Plans for Massively Parallel RDF Queries.
In Proc. ICDE, pages 771–782, 2015.

[12] Y. Guo, Z. Pan, and J. Heflin. LUBM: A Benchmark for OWL
Knowledge Base Systems. Web Semantic, 3(2–3):158–182, Oct. 2005.

[13] S. Gurajada, S. Seufert, I. Miliaraki, and M. Theobald. TriAD: A Dis-
tributed Shared-Nothing RDF Engine based on Asynchronous Message
Passing. In Proc. SIGMOD Conference, pages 289–300, 2014.

[14] J. Hoffart, F. M. Suchanek, K. Berberich, and G. Weikum. YAGO2:
A spatially and temporally enhanced knowledge base from Wikipedia.
Artif. Intell., 194:28–61, 2013.

[15] K. Hose and R. Schenkel. WARP: Workload-aware replication and
partitioning for RDF. In Proc. ICDE Workshops, pages 1–6, 2013.

[16] J. Huang, D. J. Abadi, and K. Ren. Scalable SPARQL Querying of
Large RDF Graphs. PVLDB, 4(11):1123–1134, 2011.

[17] M. F. Husain, J. P. McGlothlin, M. M. Masud, L. R. Khan, and B. M.
Thuraisingham. Heuristics-based query processing for large RDF graphs
using cloud computing. TKDE, 23(9):1312–1327, 2011.

[18] Z. Kaoudi and I. Manolescu. RDF in the Clouds: A Survey. VLDB J.,
24(1):67–91, 2015.

[19] Z. Kaoudi, I. Manolescu, and S. Zampetakis. Cloud-Based RDF Data
Management. Morgan & Claypool Publishers, USA, 2020.

[20] G. Karypis and V. Kumar. A fast and high quality multilevel scheme
for partitioning irregular graphs. SIAM J. Sci. Comput., 20(1):359–392,
Dec. 1998.

[21] K. Lee and L. Liu. Scaling Queries over Big RDF Graphs with Semantic
Hash Partitioning. PVLDB, 6(14):1894–1905, 2013.

[22] K. Lee, L. Liu, Y. Tang, Q. Zhang, and Y. Zhou. Efficient and
Customizable Data Partitioning Framework for Distributed Big RDF
Data Processing in the Cloud. In Proc. CLOUD, pages 327–334, 2013.

[23] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N.
Mendes, S. Hellmann, M. Morsey, P. van Kleef, S. Auer, and C. Bizer.
DBpedia - A Large-scale, Multilingual Knowledge Base Extracted from
Wikipedia. Semantic Web, 6(2):167–195, 2015.

[24] A. Madkour, A. M. Aly, and W. G. Aref. WORQ: Workload-Driven
RDF Query Processing. In Proc. ISWC, pages 583–599, 2018.

[25] M. T. Özsu. A Survey of RDF Data Management Systems. Frontiers
Comput. Sci., 10(3):418–432, 2016.

[26] P. Peng, L. Zou, L. Chen, and D. Zhao. Query Workload-based RDF
Graph Fragmentation and Allocation. In Proc. EDBT, pages 377–388,
2016.

[27] P. Peng, L. Zou, L. Chen, and D. Zhao. Adaptive Distributed RDF
Graph Fragmentation and Allocation based on Query Workload. TKDE,
31(4):670–685, 2019.

[28] P. Peng, L. Zou, and R. Guan. Accelerating Partial Evaluation in
Distributed SPARQL Query Evaluation. In Proc. ICDE, pages 112–
123, Macao, China, 2019. IEEE.

[29] P. Peng, L. Zou, M. T. Özsu, L. Chen, and D. Zhao. Processing SPARQL
Queries over Distributed RDF Graphs. VLDB J., 25(2):243–268, 2016.

[30] M. Saleem, M. I. Ali, A. Hogan, Q. Mehmood, and A. N. Ngomo. LSQ:
The Linked SPARQL Queries Dataset. In Proc. ISWC, pages 261–269,
2015.

[31] A. Schätzle, M. Przyjaciel-Zablocki, S. Skilevic, and G. Lausen. S2RDF:
RDF Querying with SPARQL on Spark. PVLDB, 9(10):804–815, 2016.

[32] G. M. Slota, S. Rajamanickam, K. D. Devine, and K. Madduri. Par-
titioning Trillion-Edge Graphs in Minutes. In IPDPS, pages 646–655.
IEEE Computer Society, 2017.

[33] C. Stadler, J. Lehmann, K. Höffner, and S. Auer. LinkedGeoData: A
Core for a Web of Spatial Open Data. Semantic Web, 3(4):333–354,
2012.

[34] C. Stadler, G. Sejdiu, D. Graux, and J. Lehmann. Sparklify: A Scalable
Software Component for Efficient Evaluation of SPARQL Queries over
Distributed RDF Datasets. In Proc. ISWC, pages 293–308, 2019.

[35] L. Wang, Y. Xiao, B. Shao, and H. Wang. How to Partition a Billion-
Node Graph. In ICDE, pages 568–579, Chicago, IL, USA, 2014. IEEE
Computer Society.

[36] B. Wu, Y. Zhou, H. Jin, and A. Deshpande. Parallel SPARQL Query
Optimization. In Proc. ICDE, pages 547–558, 2017.

[37] M. Wylot and P. Mauroux. DiploCloud: Efficient and Scalable Manage-
ment of RDF Data in the Cloud. TKDE, 28(3):659–674, 2016.

[38] L. Zeng and L. Zou. Redesign of the gStore System. Frontiers Comput.
Sci., 12(4):623–641, 2018.

[39] X. Zhang, L. Chen, Y. Tong, and M. Wang. EAGRE: Towards Scalable
I/O Efficient SPARQL Query Evaluation on the Cloud. In Proc. ICDE,
pages 565–576, 2013.

[40] L. Zou, M. T. Özsu, L. Chen, X. Shen, R. Huang, and D. Zhao. gStore:
a Graph-based SPARQL Query Engine. VLDB J., 23(4):565–590, 2014.

204

Authorized licensed use limited to: Peking University. Downloaded on October 13,2022 at 08:07:54 UTC from IEEE Xplore. Restrictions apply.

