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Abstract
Natural Answer Generation on Knowledge Base (NAG-KB), which generates natural
answer sentences for the given question, has received much attention in recent years.
Compared with traditional QA systems, NAG could offer specific entities fluently and
naturally, which is more user-friendly in the real world. However, existing NAG systems
usually utilize simple retrieval and embedding mechanism, which is hard to tackle com-
plex questions. They suffer issues containing knowledge insufficiency, entity ambiguity, and
especially poor expressiveness during generation. To address these challenges, we propose
an improved knowledge extractor containing post disambiguation and simplifying strategy
to retrieve supporting graphs from KB, an masked-graph transformer to encode the sup-
porting graph, which introduce special vertex setting, communication path calculation and
mask mechanism. Moreover we design a multi-task training combining classification and
sequence decoding jointly. In summary, we propose a framework called G-NAG in this
paper, including a knowledge extractor, an incorporating encoder, and an multi-task genera-
tor. Experimental results on two complex QA datasets demonstrate the efficiency of G-NAG
compared with state-of-the-art NAG systems and transformer baselines.

Keywords Question answering · Natural answer generation · Graph attention network ·
Mask mechanism

This article belongs to the Topical Collection: Special Issue on Graph Data Management, Mining, and
Applications
Guest Editors: Xin Wang, Rui Zhang, and Young-Koo Lee

� Lei Zou
zoulei@pku.edu.cn

Xiangyu Li
xiangyu li@pku.edu.cn

Sen Hu
husen@pku.edu.cn

1 Peking University, Beijing, China
2 Ant Group, Beijing, China
3 ChongQing Research Institute of Big Data, Peking University, Beijing, China

Published online: 26 October 2021

World Wide Web (2022) 25:1403–1423

http://crossmark.crossref.org/dialog/?doi=10.1007/s11280-021-00932-0&domain=pdf
mailto: zoulei@pku.edu.cn
mailto: xiangyu_li@pku.edu.cn
mailto: husen@pku.edu.cn


1 Introduction

Natural Answer Generation on Knowledge Base (NAG-KB), which devotes to providing
fluent answers in the form of natural language sentences based on KB, has received much
attention in recent years. Compared with traditional question answering (QA) systems that
merely offer accurate Answer Semantic Units (ASU ) [11], NAG could satisfy users in real-
world scenarios where fluency is of strong demand.

Generally, the popular NAG framework consists of three modules, as shown in Figure 1-
a. Knowledge extractor recognizes the topic entity and retrieves its related triples from
the underlying KB. After Knowledge encoder representing these candidate triples and the
question as two sequences, Generator could generate the natural answer with an attention
mechanism. Existing NAG systems [6, 11, 32] have achieved some success focused on
simple question (only one entity or only one relation).

However, there are still many non-trivial issues due to linguistic complexity that the
above systems do not perform well. (1) In Knowledge extractor. On the one hand, existing
NAG systems recognize one topic entity and retrieve its one-hop neighbors related to the
question. When a question contains more entities and multi-hop relations, they may leave
out some critical entities. Take Q in Figure 1 as an example, the ASU Jason Statham
should be retrieved through 2-hops from the mentioned entities in question so that it may
be left by previous knowledge extractor with one-hop retrieval mechanism. On the other
hand, without considering the global structure in KB, the above systems do disambiguation
before retrieving triples. Thus, they may choose irrelevant entities far apart from others,
such as Paul Thomas Anderson which may be confused with the correct entity Paul
W.S. Anderson but unrelated to the question in Figure 1-a. (2) In Knowledge encoder.
Previous NAG systems encode triples as a sequence, such as a list by LSTM [11, 32] or
key-value structure by Memory Network [6], which is too simple to express complicated
semantic information. For the same example, triple-list or key-value could not represent the
topological structure of the supporting graph clearly, which is the key to generate answers
logically.

We focus on these challenges above and propose some novel solutions. (1) In Knowl-
edge extractor, we design a two-channel retrieval scheme to deal with simple and complex
QA conditions. Then we propose a novel extract mechanism containing multi-hop retrieval,

Figure 1 Natural Answer Generation process of an example question
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post disambiguation based on global structure and three-stage simplifying method based
on semantic similarity, as shown in Figure 1-b. The proposed mechanism solves the triple
missing problem, ambiguity and information redundancy (2) In Knowledge encoder. Since
graph neural network is proposed in Graph2Seq task like KB based summarization [14] and
achieves excellent performance, we propose a masked-graph transformer as encoder, which
has more capacity to encode complicated pair-wise relationships than the sequence struc-
ture. To fit the NAG problem, we introduce the communication path and special vertices to
capture global or variable information, respectively (to be discussed in Section 4.2). (3) In
Generator. To improve the accuracy of our system, we train question type classification task
with answer decoding jointly. We define two kinds of approach to distinguish KB questions
which will be discussed in Section 5.

In this paper, we propose a framework called G-NAG (Graph-based NAG) to imple-
ment the generation process, which also consists of three modules, as shown in Figure 1-b.
Compared with previous work, we enlarge the retrieval range before disambiguation and
then propose a simplifying strategy based on semantic similarity in Knowledge extractor.
Moreover, we replace the sequence encoder with a graph transformer considering commu-
nication path as well as global and variate vertices. Based on Wikimovie dataset [20]
and DBpedia, we reconstruct a QA dataset in movie domain aimed at multi-hop question
answering. Experimental results on the original Wikimovie and new dataset demonstrate
the efficiency of our model compared with state-of-the-art NAG systems and transformer
baselines.

We summarize our main contributions of this paper as follow:

– We design a generation framework G-NAG, which generates natural and logical answer
based on KB. To our knowledge, it is the first framework that aims at addressing
complex NAG problem.

– We present a novel knowledge extractor which distinguish different question channels,
enlarges retrieval range before disambiguation and simplifies triples based on global
information and semantic similarity to gain the supporting graph.

– We propose an masked-graph transformer to represent the supporting graph in QA
condition, which considers the communication path and captures global or variable
information by extra vertices.

– We design a multi-task training combining question type classification and answer
sentence decoding jointly, and propose two approach to distinguish question type in
KBQA.

– We implement experiments on two KBQA datasets in the movie domain. The results
demonstrate that G-NAG performs better compared with three groups of baselines,
especially in complex natural answer generation problems.

2 Question definition andmethodology framework

2.1 Question definition

In this section, we firstly introduce the notations employed in this paper and provide some
important definition.

Definition 1 NAG(Natural Answer Generation)
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Given a natural language question Q, its accurate Answer Semantic Units as ASU and
specific RDF knowledge base D. The knowledge triples in D are in the form 〈s, p, o〉,
where s, o are entity vertices (ent) and p is relation edge (rel). NAG aims at generating
target natural language answer which is denoted as A.

Specifically, we focus more on the question that only has one type of ASU , i.e., for a
question based on a movie domain knowledge base, the ASU maybe two actors but not an
actor and a writer.

Definition 2 Supporting graph
Given a specific RDF knowledge base D and a natural language question Q. If there exist

a sub-graph G having the same semantic meaning of Q, that is the ASU can in inferred by
G with the same reasoning process, we refer to G as supporting graph of G.

In G-NAG, the supporting graph is the output of Knowledge Extractor. Besides, there is
some pivotal intermediate results in different stage, we provides their definition and notation
following.

Initial retrieved graph In Knowledge Extractor, the initial graph retrieved by multi-hop
search is defined as a inter-connected graph set G = [Gi = (Vq, Vo, Ei)], where vertex
v ∈ Vq is mentioned in question, v ∈ Vo denotes other retrieved vertex, and Ei is a set
of relation edges that link vertices. After disambiguation and graph simplifying, the final
supporting graph is denoted as G.

Unlabeled graph In encoding section, G is converted to an unlabeled graph G′ = (V ′, P ′),
where V ′ is a set of all vertices and P ′ is a matrix describing communication path among
vertices.

2.2 Framework overview

2.3 Framework

Our G-NAG framework [15] consists of three modules: Knowledge Extractor, Incorporating
Encoder, and Generator. We depict an overview with a concrete example in Figure 2.

Figure 2 Natural Answer Generation process of an example question
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Knowledge Extractor: Given the question Q and underlying KB D, G-NAG distinguishes
between simple and complex conditions and maps each entity phrase to its candidate linking
vertices v ∈ Vq . For complex channel, employ k-hop retrieval and global-based ambiguity
as as illustrated in Figure 2 a-I and a-II. For another channel, only pass one-hop retrieval and
similarity-based ambiguity described in Section 3.1. Further, G-NAG removes redundant
vertices and edges by semantic similarity to acquire a simplified supporting graph G as
shown in Figure 2 a-III.

Incorporating Encoder: G-NAG propose Masked-Graph Transformer (to be discussed in
Section 4.2) to encode supporting graph obtained from Knowledge Extractor and fuse the
graph network outputs with question embedding (to be discussed in Section 4.3) to express
Q, so we regard it as an Incorporating Encoder, as shown in Figure 2-b. Besides, we define
a graph conversion operation to set special vertex and communication path.

Generator: G-NAG designs a multi-task training approach which combines sequence
prediction and question type classification. On the one hand, the Generator distinguishes
question type based on graph embedding. On the other hand, it predicts output word wt at
each time step t by generating from vocabulary or copying from supporting graph G and
question Q via a soft switch p. As illustrated in Figure 2-c, token with underline is copied
from question text, and the colored token is from the graph, while other ordinary words are
generated from the vocabulary.

3 knowledge extractor

We propose an improved knowledge extractor in this section to provide a more accurate
supporting graph. Specifically, we enlarge the extraction range by multi-hop retrieval before
entity disambiguation, then solve the ambiguity based on the global graph structure, and
simplify the graph by semantic similarity eventually.

3.1 Multi-hop retrieval

Given question Q and RDF KB D, we employ entity identification to acquire entity phrase
list E = [enti]. Then we map each entity phrase enti to its candidate linking vertices v ∈ Vq

in KB, while a entity phrase ent1 may be matched more than one vertex as a set, such as

.
To avoid unnecessary retrieving, a two-channel retrieval scheme is set up in G-NAG

system. Channels that solve simple problems have two opening conditions:

– List E has length 1 which means only one core entity existing in question.
– List E has length 2 and there is a triple in D that perfectly matches entities, namely

< s, p, o > corresponds to < ent1, rel, ent2 > while rel also appears in Q.

Simple questions assigned to this channel require only one hop retrieval. Then do ambiguity
and simplifying in one step based on sequence semantic similarity calculation as Eq. 2 to
obtain supporting graph G, where T denotes text label in each vertex that faces filtering.

For another channel which belongs to complex questions, allowing for the ambiguity
of phrase linking temporarily, we retrieve k-hop neighbors of each linking vertex to con-
struct a large graph. As some linking vertices are far apart in KB, the large graph could
be divided into a graph set G = [Gi = (Vq, Vo, Ei)] where Gi are unconnected to each
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other, Vq denotes linking vertices for entity phrase in question and Vo denotes the other ver-
tices retrieved. Factual questions usually have only a group of core multi-hop relationships,
that is, the distances between exact entities are all within a fixed number of hops, so target
entities are rarely distributed on two completely different graphs Gi .

3.2 Entity disambiguation

In this stage, G-NAG deals with the ambiguous vertices in Vq . To ensure the integrity of
the supporting graph, we remain at most M graphs in G with more linking entity phrases
(Assume n graphs cover all entity phrases and denote m as a parameter). Then considering
one of the remaining graphs Gi , we compute its cost motivated by [30] formulated as
follow:

M = max(m, n), CostGi
=

∑

(s,p,o)∈Gi

‖s + p − o‖2
2 (1)

Because of the cumulative effect of error, the candidate G with the minimum cost could be
selected with the strongest internal relevance.

Definition 3 Distance on graph for vertex
Given a supporting graph with ambiguous vertices and a

vertex v on G, where only containing one correct entity vertex.
The minimum-distance from v to is the shortest path between v and any vertex in .
And the distance on graph G for v is the minimum-distance sum within 1 to n.

Moreover, we propose a minimum-distance method to delete redundant linking vertices
in G for each entity phrase. Take in Figure 3-a as an example, we define
the shortest path (number of edges) between v1 and each vertex of as the minimum-
distance between v1 and . Then we rank vertices v in the same according to
the minimum-distance sum of v and other . Further, we only keep the vertex with the
minimum sum in each .

3.3 Graph simplifying

In this stage, G-NAG deletes redundant vertices in Vo. For each vertex v ∈ Vo in graph,
we keep it if there exists a communication path between two linking vertices vi , vj ∈ Vq

containing it. In other words, we remove v ∈ Vo only related to one entity phrase, which
means a weak correlation with Q. Here, we regard two vertices as isomorphic if they share
the same neighborhood and connect every common neighbor vertex with edges of the same
relation. Then we merge isomorphic vertices and concatenate their text attributions as one
vertex.

G-NAG further deletes redundant vertices in Vo using aggregated semantic similarities
based on word embedding [10]. For this step, we only consider the alternative vertex v ∈ Vo

that could be removed without affecting the connectivity of the graph. Specifically, for each
vertex, we concatenate triples containing it as a word sequence T , then use Word2Vec [19] to
compute string similarities between T and question Q following [25]. where, w represents
a word of the string, and the average is used as the aggregation functions. Finally, we keep
the top-k alternative vertices in Vo with a higher score.

Similarity(Q, T ) = Agg cos(wQ,wT ) (2)
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Different from existing NAG systems, which match triples with the question directly, G-
NAG performs multi-hop retrieval in entity-level without considering relation phrases, then
simplifies the graph based on semantic similarity. This strategy allows G-NAG to handle
implicit relations, where predicates are missed in question, more effectively.

4 Incorporating encoder

The encoder receives discrete inputs (question text and supporting graph defined before)
and encodes them into numerical representations jointly [3], to accomplish neural network
feeding. For the supporting graph input, we define the graph conversion operation contain-
ing extra vertices adding. Then we employ a novel Masked-Graph Transformer to update
the vertex representations by aggregating information from their neighbors. Then we learn
the question embedding based on the output of Masked-Graph Transformer by bi-LSTM.

4.1 Graph conversion

Inspired by [2, 14], we convert the extracted graph to an unlabeled bipartite graph. Specif-
ically, we replace each relation edge with two vertices, where one represents the forward
direction of the relation and the other represents the reverse. The key difference with the
above work is G-NAG introduces two extra vertices vv, vg to capture effective information.

Definition 4 Global Vertex and Variate Vertex
Given a Knowledge graph G related to a QA pair, while some vertices have been men-

tioned in question denoted as v ∈ Vq and the other have been not denoted as v ∈ Vo. Define
a extra vertex which is connected to v ∈ Vo as variate vertex. Then define another extra
vertex having edges to variate vertex and v ∈ Vq as global vertex.

Specifically, global vertex is set to update the global state following the reasoning per-
spective as humans, while variate vertex concerns more on retrieved vertices v ∈ Vo

especially ASU, which is of vital importance for the generation. If the question type is
known or can be extracted, the global vertex’s text label is the type recognized by knowl-
edge extractor, i.e., actor. Otherwise, the global vertex would has a wild-card as text label,
i.e., who, what, where, etc.

As shown in Figure 3-b, global vertex vg , which concentrates information via two men-
tioned vertices and the variate vertex by yellow edges, could reach all vertices in G′, while
variate vertex connects v ∈ Vo by blue edges. The conversion result is G′ = (V ′, P ′), where
V ′ is a vertex set and P ′ is a matrix storing communication path between every vertices-pair.

Figure 3 Example of minimum distance, graph conversion and communication path
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Take vertices pair v1, v2 as an example in Figure 3-c, a sequence of vertex text attribution
along the path from v1 to v2 expresses the communication path. Note we choose the short-
est path between vertices-pair (numbers of edges) and adopt embedding average when two
or more equal length paths exist.

During vertex embedding updating, the global vertex vector represents the whole sub-
graph embedding. When we take out it in ablation studies, we apply average function on all
vertexs to represent the sub-graph.

4.2 Masked-graph transformer

Motivation Our G-NAG deals with a Graph2Seq task that converts a knowledge graph
to a sentence, which is similar to the knowledge-based scientific summarization proposed
by [14]. Since graph encoder pay an important role in Graph2Seq task and GAT(Graph
Attention Network) successfully presents knowledge graph in many studies, i.e., the graph
Transformer called Graph Writer in [14], we design the Masked-Graph Transformer based
on GraphWriter. Here, we analyze the differences between our task and GraphWriter, which
is also challenges for knowledge encoding.

– In NAG, vertices of supporting graph could be divided into mentioned vertices v ∈ Vq

and other retrieved vertices v ∈ Vo, while the former linked by entity phrases extracted
directly from question but the latter may be ASU or supplementary information that
could be omitted.

– In NAG, there may be redundant vertices, although the knowledge extractor tries to
filter them out. While it is more like a translation problem in GraphWriter, so all vertices
are necessary for sentence decoding.

– There are closer relationships between entities than that of a summarization since the
supporting graph is for a specific question in NAG, not for a broad scientific topic.

In traditional Transformer, every two vertices are visible to each other, so it employ
self-attention calculation between every vertex pairs. While in GAT or Graph Transformer,
only one-hop neighbors are in the scope of calculation. Since we introduce communication
path into our graph encoder, we attempts to characterize finer-grained relationships between
vertices not limited to one-hop neighbors. However, consider every two vertices and their
communication means high time complexity and some unnecessary calculations. So we
propose masked mechanism motivated by GNNExplainer [33], that is for each vertex, the
other vertices in graph can be divided into visible vertices and masked vertices

Masked-graph transformer Therefore, we propose masked-graph transformer as follow-
ing, which introduces communication path and masked-mechanism. Specifically, we design
three methods based on the following definitions. One designs mask mechanism accord-
ing to the position of virtual vertexs, while the visibility between vertexs decides different
computational formula during embedding updating. The second is optimized on the basis
of the former, in which we set a learned parameter to control the masking degree. The
third approach designs another mask mechanism based on semantics of sub-graph, in
other words, semantically related vertexs are visible to each other. Following we give the
definition of communication path and mask mechanism in the first two methods.

Definition 5 Communication Path
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Given a knowledge graph G extracted from a RDF knowledge base D, every two vertex
vi and vj have at least one connected path. For one of them, arrange the text labels of the
vertex on the path as sequence p = [pi], that is communication path between vi and vj .

Definition 6 Masked Vertex
Given a knowledge graph G extracted from a RDF knowledge base D, For global vertex

as well as variate vertex, only one-hop neighbors are visible since these edge,having no
labels, are special. For vertices v ∈ Vq , the vertex over the whole supporting graph are
visible, while for vertices v ∈ Vo, other retrieved vertices v ∈ Vo are masked and other
question mentioned vertices v ∈ Vq are visible. Noticed one-hop neighbors are visible in
any case (Figure 4).

Based on Communication path and Masked vertex mechanism, we design the Masked-
Graph Transformer to encode supporting graph. We employ the common Transformer
architecture expressed in Figure 2b, which is composed of a stack of D = 6 identical layers.
each layer consists of a self-attention mechanism and feed-forward network, both around
by a residual connection.

Initially, the text attribution of vertices in G is embedded as V = [vi], vi ∈ Rd in a dense
continuous space using bi-LSTM, which would be the input of graph encoder. Same as the
typical transformer, each vertex has 3 vector representations q, k, v, which means query,
key, value respectively.

Then we acquire the vertex embedding by masked graph transformer algorithm proposed
following.

Finally, we adopt the conventional transform architecture, the final representation of ver-
tices is denoted as V D = [vD]. To present the support graph, we employ two methods of
average pooling and global vertex representation. The former adds a pooling layer to calcu-
late all vertices by average function, while the latter regard the global vertex’s embedding
as graph embedding.

4.2.1 Algorithm 1

Firstly, for visible vertex pair vi, vj in graph that has multi-hop relations, we encode their
communication path representation described following into d-size dimension space and
add it to vertex vj ’s k(key) vector for calculation. Then, we represent vi as the weighted
sum of all visible vertices’ v(value) vectors with the consideration of communication path,
formulated as follow:

v̂i = N‖
n=1

∑

j∈Vvisible

αn
ijW

n
V vj , where an

ij = exp((Wkkj + WRrij)�WQqi)∑
z∈V exp((Wkkz + WRriz)�WQqi)

(3)

Figure 4 Masked mechanism defined in supporting graph
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where ‖ represents concatenation, αn
ij is normalized attention coefficient computed by self-

attention mechanism per head, and Wn
V is transformation’s weight matrix of v(value). For

each attention function α, WK , WQ are transformation’s weight matrix of k (key) and q
(query), where rij denotes the embedded communication path between vi , vj and WR ∈
Rd∗d is a parameter matrix of r.

Secondly, we compute extra vertices’ representation over neighbor vertices without path
encoding respectively. As discussed before, we capture retrieved information by variate
vertex and obtain global state by global vertex, which allows graph transformer to better
articulate global patterns and ASU location. Since the edges around each extra vertex do not
represent real relation in KB, we only contextualize global and variate vertices’ representa-
tion by attending over their neighborhoods. As a result, these two vertices’ representations
are calculated attending over their neighborhoods in G′ formulated as follows. Here, Ng

denotes the neighborhoods of vg and the representation calculation of vv is the same as vg .

v̂g = N‖
n=1

∑

j∈Ng

αn
j Wn

V vj , where an
j = exp((Wkkg)�WQqi)∑

z∈Ng
exp((Wkkz)�WQqg)

(4)

4.2.2 Algorithm 2

Furthermore, we propose a soft switch information propagation control scheme based on
the same masking mechanism. When the mask mechanism is in effect, m1 is set to 0 so as
to block information spreading. Otherwise, m1 is learned during training. In this approach,
the transmission of information between vertexs is not simply divided into two categories,
but is controlled by a parameter that can be learned.

m1 = σ(Wqqa + bptr ) (5)

an
ij = exp((m1Wkkj + WRrij)ᵀWqqi)∑

z∈V exp((m1Wkkz + WRrij)ᵀWqqi)
(6)

4.2.3 Algorithm 3

In this method, we do not propose a new calculation formula, but adopt a different mask
mechanism. We use mask mechanism to distinguish different semantics, while only vertexs
semantically related are visible to each other. Take the answer sentence in figure 1 as an
example, vertices Death Race, Jason Statham, Paul w.s. Anderson, 2008 are visible to each
other, since these vertices together express a simple meaning ’Jason Statham and Paul W.S.
Anderson cooperate Death Race in 2008’.

Since the semantic relevancy is difficult to automatically annotate, we currently use
semi-automated manual labeling method to carry out experiments. Semi-automated man-
ual labeling means annotating typical cases by humans and applying to corresponding cases
which have the same structure. Noted in this method, we do not add extra vertex.

Communication path representation Given a communication path p = [pi] between two
vertices, we acquire d-sized corresponding embedding sequence s = [si] inspired by the
label sequence embedding procedure in [34]. Considering continuous or discrete repre-
sentations separately, we employ the LSTM method and self-attention method to calculate
representation vector rij .
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– LSTM method: encode the sequence s into vector r by LSTM units, that is using the
hidden state in last time step as r

– Self-attention method: use attention function as presented in Eq. 4 to acquire the repre-
sentation of s as hs = [hs

i ], then define a weight γ to calculate weighted sum of hs as
r:

γi = exp(ei)∑L
k=0 exp(ek)

, ei = v�tanh(Whs hs
i + b) (7)

where L denotes the length of communication path.

4.3 Question encoder

The question encoder transforms the question text into a vector representation and fuse it
with graph representations V D = [vD] to supplement semantic information in KG.

Hq = F(hq, V D) (8)

Firstly, token qi are fed into a single-layer bidirectional LSTM [12] one by one, pro-
ducing a sequence of concatenated encoder hidden states hqi . While hqi is expressed by

[−→hqi,
←−
hqL−i+1], which are encoded by a forward and a backward LSTM independently.

Then we employ a fusion function F based on matching rules to recognize related vertex
in supporting graph for each question token. For each token qi , we match it to the smallest
granularity vertex vD

i that contains qi and concatenate the vertex representation vD
i with

hqi . If there is no related vertex vD
i , concatenate qi with vector

−→
0 to maintain dimension.

So the encoder output list Hqi = [−→hqi,
←−
hqL−i+1, v

D
i ] after concatenation operation rep-

resents question tokens, which is stored for attention distribution calculation later. Beside,

the encoder state hqL = [−→
hqL,

←−
hq1] represents the whole question.

5 Generator

We propose an multi-task Generator combine a classification task and a sequence decoding
task, so as to improve the accuracy of our answer sentence. There is no doubt that question
type plays a decisive role in answer decoding since it influence the core topic generated.

5.1 Question type classification

We design two approach to distinguish question type based on common KBQA datasets.

– Domain-based: For some KB covered one specific domain, the topic of question are
usually clearly, such as actor, movie, writer, etc,. in movie dataset, or prices, material,
cost, etc,. in business domain.

– Speech-based: For some KB especially in open domain, there are a wide variety of
question type. So we propose to classify question into what, when, who, where, and so
on.

Corresponding to the two kinds of question type definition, we design recognizing strategy
as following.
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– Topic-based: This approach is aimed at specific domain KBQA datasets with fixed
topic, such as wikimovie which can be divided into 10 topics. We determine question
type by the ASU ’s topic, so this annotation method applies to topic-specific datasets
where the ASU is known.

– Cluster-based: This approach deals with specific domain KBQA datasets, where there
is no one-to-one correspondence between ASU and question type or ASU is unknown.
So we propose to classify question according to clustering algorithm.

– Keyword-based: This approach applies to open-domain datasets by recognize sentence
beginning word, such as what, when, who, and special keywords like the name of a
person or place.

In training stage, G-NAG classify the question type by a MLP layer based on the graph
embedding from Masked-Graph Transformer as shown in Figure 2. Usually, there are two
ways to acquire graph embedding from V D : vertex-based and pooling based, the former
set a global vertex connected to other vertices and updated with others, the latter employ a
average pooling function on all vertices.

5.2 Text decoder

G-NAG employ a LSTM to predict answer words yt in each time step. During training, it
accepts the previous outputs y<t = y1, y2, ..., yt−1, context vector ct and decoder hidden
state of the last step st−1 to update hidden state: st = f (yt−1, st−1, ct ). Meanwhile, we
apply the copy mechanism [7], to deal with some unknown or special words directly. Then
we describe the generation process in decoder at each time step as follow.

Firstly, initialize the decoder state s0 as global vertex representation. Then we acquire
the graph context vector cg by N-headed attention as follows.

cg = st + N‖
n=1

∑

i∈V

αn
i Wn

GvD
i , whereαi = exp((Wkki)�WQst )∑

z∈V exp((Wkkz)�WQst )
(9)

Similarly, the question context vector cq is computed attending over the question [1].
Then concatenate cg and cq as final context vector ct . Below, parameters Wh,Ws, b

∗ are
learned during training, and L indicates the length of question sequence.

cq =
L∑

j=1

βn
j hj , whereβj = exp(ej )∑L

k=0 exp(ek)
, ej = v�tanh(Whhj + Wsst + b∗) (10)

G-NAG model generates answer words both from vocabulary based on attention and
copying words via pointing. Therefore, we define a soft switch g within 0 to 1, which
chooses between predicting a vocabulary word by distribution Pv or copying a word via
attention distribution [αi, βj ]. Eventually, we acquire a final probability distribution over
the extend vocabulary as follows.

P(w) = gPcopy(w) + (1 − g)Pv(w), where g = sigmoid(W�
h ht + W�

s st + bg) (11)

Pcopy =
∑

j :wj =w
(αj + βj ) Pv = sof tmax(Wv1(Wv2[st , ct ] + b1) + b2) (12)

Besides, we minimize negative log-likelihood of the target word w∗
t for each time step, and

the overall loss is defined as their sum.

L = 1

T

∑T

t=0
(−logP (w∗

t )) (13)
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Table 1 Data statistics of dataset

Dataset Total movie
num

QA-pairs Avg length
of question

Avg length
of answer

Avg triples per QA-
pair

wikimovie* 6429 12037 17 14 4.7

multihop 13066 34472 15 15 5.5

6 Experiment

6.1 Datasets

Our model attempts to generate natural answers, especially for complex questions that con-
tain various relations between entities. To our knowledge, there is not an existing dataset
naturally fitted to this problem. Thus, we tailor the Wikimovie1 dataset [20] accord-
ing to our requirements as wikimovie*. Moreover, we reconstruct a multi-hop dataset
wikimovie-multihop from the Wikimovie and DBpedia by manual annotation.
The original Wikimovie dataset consists of simple question-ASU pairs, external KB and
natural sentences from Wikipedia about the movie, which covers 10 topics. To expand
knowledge, we search cast members’ related triples in DBpedia by DBpedia Lookup Service
. Statistics of the two datasets are available in Table 1.

wikimovie* Take each natural sentence in Wikimovie as an ideal answer, we search the
related triples in underlying KB and choose one o (object) among the triples as ASU . Then
let annotators generate the corresponding question, which contains the triple information
mentioned in the answer without variate and movie name as Example 1. We remove the
QA-pair if its ASU is not unique. Since each natural sentence in Wikimovie is around
one movie, the related graph is star-like and within 2-hops.

Example 1 Given the natural answer “Resident Evil is a 2013 English movie directed by
Paul Anderson and starring Li Bingbing”. One possible question is “What is the language
of the 2013 film by Paul Anderson and Li Bingbing”.

wikimovie-multihop We extract sub-graph randomly in underlying KB with limited size,
while the sub-graph should contain more than 2-hop relations between entities, but no more
than 4-hop for the longest path. Then for each sub-graph, we mask one vertex to be ASU

that is not in the border. Based on the sub-graph, let annotators generate QA pairs in natural
language sentences, while the question must be answerable and the answer should contain
all information without missing. Note that entities not essential for reasoning ASU could be
omitted or replaced, i.e., in 2008 replaced by in the same year in Section 1. After annotators
providing 460 QA pairs, we extend the dataset by replacing the sub-graph in underlying KB
with the same graph structure.

6.2 Evaluationmetrics

Automatic evaluation Refer to existing NAG systems [11, 32], we use ASU-acc to mea-
sure the accuracy of ASU . Following [5], we adopt some word-overlap based metrics

1http://fb.ai/babi
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(WBMs)2 including BLEU-4 [24], and METEOR [4] to measure the co-occurrences of
references and generated answers.

Manual evaluation The evaluation result of automatic metric a little one-sided, so we
design manual evaluation such as Fluency, Semantic and Syntax [21] employed on 100 gen-
erated samples. Annotator measure these index respectively by a score among 0-5, where
the higher the score, the better the evaluation. The Kappa coefficient for inter-annotator is
0.744, and the p-value for scores is less than 0.01.

Evaluation in knowledge extractor Precision ratio represents the proportion of accurate
vertices in all vertices of the sub-graph extracted. Recall ratio represents the proportion of
extracted vertices of the accurate sub-graph.

6.3 Comparisonmodels

We set up three groups of comparative experiments. Firstly, throughout existing researches
on the natural language answer generation problem, we compare our model (G-NAG) with
state-of-the-art NAG models from different perspectives.

– GenQA [32], a standard seq2seq model with attention using encoder-decoder structure.
It retrieves the best-matched triple by MLP and encodes it with the question encoded
by LSTM to generate a natural answer.

– COREQA [11], a similar structure to GenQA. Moreover, it retrieves more one-hop
triples and introduces the copy mechanism.

– HM-NAG [6], an improvement of COREQA. It encodes all related triples in key-value
structure without matching with the question and selects proper triples completely by
attention during generation.

Secondly, we compare several baselines containing GAT(Graph Attention Network) or
transformer. Since these models have no knowledge extractor module, we feed the same
simplified graph after converting as input.

– GraphWriter [14], a graph2seq model for summarization containing graph transformer
without variate vertex and communication path during the self-attention calculation.

– Tranformer [28], a sequence transformer proposed originally without graph structure.

Thirdly, we perform ablation studies to assess the impact of different components on the
G-NAG model performance.

– −w/o Question: Remove question encoder and maintain other module unchanged.
– −w/o Multi-task: Do not consider question type classification, that is only decode

answer sentence in Generator.

6.4 Implementation details

In knowledge extractor, we recognize entity phrases by StanfordCoreNLP tools, use
Word2Vec [19] with 300 dimension vectors trained on the EN-wiki dataset to initialize text
attribution for semantic similarity computation in Graph Simplifying stage, and employ
TransE to encode underlying KB. Besides, we retain the top-2 alternative vertices in Vo with

2WBMs are implemented in https://github.com/Maluuba/nlgeval.
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Table 2 Performances on dataset Wikimovie*

Model ASU-acc BLEU-4 Meteor Fluency Syntax Semantics

GenQA 0.6506 0.3421 0.3722 2.5 2.6 2.0

COREQA 0.6680 0.3792 0.3990 2.7 2.7 2.5

HM-NAG 0.6818 0.3879 0.4113 2.7 2.9 2.7

GraphWriter 0.8171 0.4282 0.4527 3.4 3.5 3.4

Transformer 0.7913 0.4014 0.4371 3.1 3.2 3.1

G-NAG 0.8601 0.4421 0.4828 3.4 3.6 3.7

−w/o Q 0.8201 0.4242 0.4490 3.1 3.3 3.3

−w/o M 0.8310 0.4417 0.4811 3.4 3.5 3.6

a higher score, and set k = 2, m = 3 in extractor module. We use topic-based method to clas-
sify question type and employ global vertex’s embedding as graph embedding for classifier.
The choice of parameters k will be explained in subsequent experiments

In experiments, G-NAG and baseline models are trained for about 40 epochs with the
learning rate as 0.03, where gradients are updated by Adam [13] learning rule. In both
datasets, we add word occurring more than 5 times into vocabulary and the state size of
word embedding and batch size are both set to 256. For the transformer, we set layer D as
6, attention heads as 4, following the setting in [14], and use a self-attention based method
to encode the communication path described in Section 4.2.

For question type, this dataset has 10 topic around movie and each question only has one
kind of answer type. Thus we use the original question type already reported before [20].

6.5 Result

6.5.1 NAG task experiment result

Table 2 shows the answer generation performance on the wikimovie* dataset, while G-
NAG performs better than NAG baselines3 both in the automatic or manual evaluation due
to the improved knowledge extractor. Meanwhile, G-NAG outperforms GraphWriter and
Transformer in ASU-acc, BLEU-4, and METEOR with stronger information express-ability
of masked-graph transformer. Compared with −w/o M, multi-task mechanism helps to
improve ASU-acc as the classification task limits answer’s topic (Table 3).

As for manual evaluation, both graph-based encoder systems generate more fluent natu-
ral answers with the same score in Fluency. Moreover, our G-NAG obtains a higher score
in Semantics as Masked-Graph Transformer express graph more fine-grained.

Table 4 shows the results when we apply different algorithm in graph encoder. Since
semi-automated manual annotation still requires high cost, and the mask mechanism based
on semantics is more applicable for multi-hop QA pairs, we do not apply algorithm 3 in this
dataset. Thus we can see that graph encoder using extra parameter performers better.

Next, we prove the best effectiveness of our model in wikimovie-multihop dataset
in Table 4, in which we apply the algorithm 2 for graph encoder. In comparison to G-
NAG, ASU-acc metrics of NAG baselines are unsatisfactory as they use one-hop triple

3Since different tailoring for the dataset, the result of HM-NAG is not the same as it reported
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Table 3 G-NAG Performances on dataset Wikimovie*

Model ASU-acc BLEU-4 Meteor Fluency Syntax Semantics

G − NAG1 0.8411 0.4274 0.4701 3.4 3.6 3.5

G − NAG2 0.8601 0.4421 0.4828 3.4 3.6 3.7

retrieval method, which solves multi-hop relations hardly in a complex situation. Based
on the same knowledge extractor, we see that G-NAG achieves higher ASU-acc than the
latter two groups of comparison models since both multi-task mechanism and variate vertex
setting can capture the ASU more correctly.

A comparison in manual evaluation between sequence-based knowledge representation,
such as NAG baselines or Transformer, and graph transformer-based framework proves the
express-ability of graph transformer. We analyze that sequence-based systems may miss
information during retrieving or generating stage, therefore the generated answers get a low
score. Further, as for graph transformer, G-NAG could generate more logical and perfect
answers than GraphWriter, which is reflected in BLEU-4 and Semantics metrics.

Table 5 shows the results by different algorithm applied in graph encoder. We can see
when the question require multi-hop relation to answer, the masked mechanism based on
semantics performers better.

As mentioned before, G-NAG can handle implicit relations in questions, which is a chal-
lenge to NAG but the common situation in daily life, i.e., Q in Figure 2. Thus, we select
the QA pairs in Wikimovie* where the questions have no obvious attribute or relational
predicates. As shown in Table 6, G-NAG performs better than NAG baselines as it extracts
triples depending more on the entity, not the relation, which is reflected in the decline value
of ASU-acc and BLEU-4 compared with Table 4. Moreover, G-NAG keeps retrieved ver-
tices as well as relation edges with higher scores in graph simplifying so as to identify these
implicit relations. Furthermore, we can see that although the automatic metrics have fallen,
the Fluency and Semantics of G-NAG stay essentially flat because of the ability of genera-
tor module. However, G-NAG may generate redundant information in this situation, which
will be discussed in the case study (Table 7).

Table 4 Performances on dataset Wikimovie-multihop

Model ASU-acc BLEU-4 Meteor Fluency Syntax Semantics

GenQA 0.3071 0.1608 0.2034 2.1 2.8 1.7

COREQA 0.4129 0.2011 0.2351 2.3 2.8 2.1

HM-NAG 0.4513 0.2106 0.2509 2.4 3.0 2.2

GraphWriter 0.7544 0.3322 0.3777 3.1 3.3 3.2

Transformer 0.7403 0.3078 0.3541 3.0 3.1 2.9

G − NAG3 0.7977 0.3424 0.4081 3.3 3.4 3.5

−w/o Q 0.7311 0.3121 0.3677 2.9 3.1 3.1

−w/o M 0.7826 0.3473 0.3919 3.2 3.4 3.3
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Table 5 G-NAG Performances on dataset Wikimovie − multihop

Model ASU-acc BLEU-4 Meteor Fluency Syntax Semantics

G − NAG1 0.7889 0.3470 0.3922 3.2 3.4 3.4

G − NAG2 0.7719 0.3498 0.3812 3.3 3.4 3.4

G − NAG3 0.7977 0.3424 0.4081 3.3 3.4 3.5

6.5.2 Additional experiments

To validate the effect of each strategy in Knowledge Extractor, we randomly choose 100
samples carried out extraction on the data step by step. As shown in Table 5, multi-hop
retrieval and post disambiguation increases the probability of finding the right answer ASU .
And graph simplifying reduce the vertex redundant obviously. In Table 5, simplifying-1
means the pruning operation based on connected path and simplifying-2 means the seman-
tic similarity-based strategy. Here, we measure the result directly in supporting graph not
containing the encoder and decoder structure.

Although disambiguation stage may reduce the precision due to the recognizing error,
it significantly reduces the recall metric, as well as the graph simplifying stage. To strike a
balance between accuracy and brevity, the combined extracting strategy is necessary.

Then we discuss the selection of neighbor hops. Consider that the size of the sub-graph
and the cost of calculation will increase significantly with the increasing of k, we focus on
k at 2 and 3. As shown in Table 5, the recall rate was maintained at a similar index after the
extractor steps. As for precision, the large number of redundant nodes makes simplification
difficult, so the larger k performers bad in this metric. In conclusion, the experiment results
reported before are carried out when k = 2 (Table 8).

6.6 Case study

Table 6 gives some outputs from our model, GraphWriter, and HM-NAG which performs
better than the other two NAG baselines. ASU and other entities in this table are marked as
bold and italics separately, while copy words marked as underline and superscript denotes
the dataset QA pairs from. Besides, we use (movie-1,movie-2) to denote mentioned movies
in the order that they appear in gold answers.

Table 6 Performances on implicit relation dataset Wikimovie

Model GenQA COREQA HM-NAG GraphWriter Transformer G-NAG

ASU-acc 0.5217
(-0.129)

0.5513
(-0.117)

0.5904
(-0.091)

0.7744
(-0.0430)

0.7502
(-0.041)

0.7911
(-0.038)

BLEU-4 0.2904
(-0.052)

0.3122
(-0.067)

0.3212
(-0.067)

0.3884
(-0.040)

0.3571
(-0.044)

0.4037
(-0.038)

Meteor 0.3317 0.3520 0.3688 0.4243 0.3914 0.4441

Fluency 2.3 2.6 2.6 3.4 3.0 3.4

Syntax 2.6 2.8 3.0 3.4 3.2 3.5

Semantics 1.8 2.2 2.3 3.2 2.7 3.5
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Table 7 Performances of Knowledge Extractor on 100 samples

Extract step one-hop multi-hop disambiguation simplifying-1 simplifying-2

recall k=2 27% 94% 90% 90% 88%

precision k=2 54% 22% 40% 53% 73%

recall k=3 27% 98% 92% 92% 89%

precision k=3 54% 14% 20% 37% 51%

In Case 1, though HM-NAG recognizes entities correctly, it fails to generate ASU and
accurate movie names because of triple missing. Meanwhile, because GraphWriter does not
consider path information in the attention calculation, it has not a comprehensive grasp of
graph structure to generate year in the right position. In Case 2, when the given question
contains implicit relations, it is hard for HM-NAG to recognize all accurate relations and
ASU . Moreover, even fed with a more accurate graph, GraphWriter misses the relation
reflected in gold answer by co-writer. As implicit relation affects the simplifying stage,
G-NAG obtains a supporting graph with more redundant entities while it generates extra
information as horror.

7 Related work

Our work belongs to the NAG task and draws inspiration from the related research fields.
In the early days, [18] create a pattern based system to solve NAG problem, which

retrieves triples related to the topic entity from KB so as to fills the commonly used message-
response patterns. To improve diversity, [11, 32] propose an end-to-end model, which
encodes question and related knowledge as a sequence. Further, [6] put these triples into
Key-Value memory proved effective by [20]. The above work provides a feasible frame-
work consists of retrieving and generating that is followed by G-NAG. However, limited
by the simple retrieval and sequence representation structure, these systems do not perform
well in complex questions, which stimulates us to make improvements.

To find alternative representation structure for NAG, we notice that converting graph to
sequence is wildly studied from different aspects. The above work proves that the graph is
an effective structure to encode complex information [16], which fits our requirements. As
for graph representation, the key idea is to learn a mapping to embed vertexs as points in
a low-dimensional vector space. Motivated by [14, 29, 34], we employ graph transformer
considering communication path to encode the supporting graph.

Since unknown or special words in source text may impede predicting, Copying based
on Attention has been proven extremely useful for a broad range of text generation tasks.
To judge where to copy from, Copynet [7] utilizes the soft attention distribution to produce
an output sequence containing elements from the input. This solution is applied to dialogue
system [7], NMT [8], summarization [22, 26], QA system [11], etc.

Multi-task Learning [23] leverage the information contained in multiple tasks simul-
taneously so it usually has better results than the single-task model. There are two ways
to combine tasks, one is setting different neural network layers correspond to differ-
ent sub-task [9, 27]. Another one is public-private mechanism in which all sub-tasks
own independent model and share a public model meanwhile [17]. And the third way is
Gated-mechanism, different modules share information by gate [31].
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Table 8 Example outputs of various systems versus Gold

Question∗ Do you remember the César-winner actress who appeared in

director Rupert Sanders’ and Drew Goddard’s film in the same year?

Knowledge (movie-1, release year, 2012), (movie-1, directed by, Rupert Sanders),

(movie-1, starred actor, ASU),(movie-2, release year, 2012),

(movie-2, directed by, Drew Goddard),(movie-2, starred actor,ASU)

HM-NAG César-winner Rupert Sanders worked with Rupert Sanders in the

film Snow White and the Huntsman, and Drew Goddard in the

film Bad Times at the El Royale in the same year .

GraphWriter César-winner Kristen Stewart worked with Rupert Sanders in the

film Snow White and the Huntsman in 2012, and Drew Goddard

in the film The Cabin in the Woods .

G-NAG César-winner Kristen Stewart worked with Rupert Sanders in the

film Snow White and the Huntsman, and Drew Goddard in the film

The Cabin in the Woods in 2012 .

Gold Yes, César-winner Kristen Stewart worked with Rupert Sanders

in the film Snow White and the Huntsman, as well as

Drew Goddard in The Cabin in the Woods in 2012 .

Questionmulti What is the release date of the animated movie by Kurt Frey and

Ben Stassen?

Knowledge (movie-1,directed by,Ben Stassen),(movie-1,written by,Ben Stassen)

, (movie-1, written by, Kurt Frey),(movie-1, release year, ASU)

HM-NAG Haunted Castle is a animated film written by writer Kurt Frey

and Ben Stassen .

GraphWriter Haunted Castle is a 2001 animated horror film written by writer

Kurt Frey and directed by Ben Stassen .

G-NAG Haunted Castle is a 2001 animated horror film written by writer

Kurt Frey and directed by co-writer Ben Stassen .

Gold Written by Kurt Frey and directed by co-writer Ben Stassen,

Haunted Castle is a 2001 animated film .

8 Conclusion and future work

In this paper, we propose a G-NAG framework based on graph neural network to address
the natural answer generation(NAG) problem. G-NAG pays more attention on complex
QA conditions and proposes a novel knowledge extractor and an incorporating encoder.
Specifically, it employs multi-hop retrieval before disambiguation and simplifying strategy
during knowledge extraction, mainly increases express-ability by designing Masked-Graph
Transformer to encode knowledge graph, and propose multi-task mechanism containing
question type classification and sentence decoding to improve generation ability. Exper-
imental results on two closed-domain datasets demonstrate that our model significantly
outperforms existing NAG models, and prove the effectiveness of Masked Graph Trans-
former and multi-task mechanism meanwhile. In the future, we expect G-NAG to find the
balance between enlarging retrieval range and controlling graph size. Moreover, we try to
solve the repetition problems by coverage model or other approaches.
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