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Abstract—The growing popularity of dynamic applications such as social networks provides a promising way to detect valuable

information in real time. These applications create high-speed data that can be easily modeled as streaming graph. Efficient analysis

over these data is of great significance. In this paper, we study the subgraph (isomorphism) search over streaming graph data that

obeys timing order constraints over the occurrence of edges in the stream. The sliding window model is employed to focus on the most

recent data. We propose an efficient solution to answer subgraph search, introduce optimizations to greatly reduce the space cost, and

design concurrency management to improve system throughput. Extensive experiments on real network traffic data and synthetic

social streaming data shows that our solution outperforms comparative ones by one order of magnitude with less space cost.

Index Terms—Streaming graphs, subgraph, timing order

Ç

1 INTRODUCTION

A recent development is the proliferation of high
throughput, dynamic graph-structured data in many

applications, such as social media streams and computer
network traffic data. Efficient analysis of streaming graphs of
this type is of great significance for tasks such as detecting
anomalous events (e.g., in Twitter) and detecting adversar-
ial activities in computer networks. Algorithms for various
types of workloads over streaming graphs have been inves-
tigated, such as subgraph search, path computation, and tri-
angle counting [1], as well as general navigational querying
[2]. Subgraph search is one of the most fundamental prob-
lems, especially subgraph isomorphism that provides an
exact topological structure constraint for the search.

In this paper, we study subgraph (isomorphism) search
over streaming graph data that obeys timing order con-
straints over the occurrence of edges in the stream. Specifi-
cally, in a query graph, there exist some timing order
constraints between different query edges specifying that
one edge in the match is required to come before (i.e., have
a smaller timestamp than) another one in the match. The
timing aspect of streaming data is important for queries

where sequential order between the query edges is signifi-
cant. The following examples demonstrate the usefulness of
subgraph (isomorphism) search with timing order con-
straints over streaming graph data.

Example 1. Cyber-attack pattern.
Fig. 1 demonstrates the pipeline of the information exfil-

tration attack pattern. A victim browses a compromised
website (at time t1), which leads to downloading malware
scripts (at time t2) that establish communication with the
botnet C&C server (at times t3 and t4). The victim registers
itself at the C&C server at time t3 and receives the command
from the C&C server at time t4. Finally, the victim executes
the command to send exfiltrated data back to C&C server at
time t5. Obviously, the time points in the above example fol-
low a strict timing order t1 < t2 < t3 < t4 < t5. Therefore,
an attack pattern is modelled as a graph pattern (Q) as well
as the timing order constraints over edges of Q. If we can
locate the pattern (based on the subgraph isomorphism
semantic) in the network traffic data, it is possible to iden-
tify the malware C&C Servers. US communications com-
pany Verizon has analyzed 100,000 security incidents over
the past decade that reveal that 90 percent of the incidents
fall into ten attack patterns [3], which can be described as
graph patterns.

Example 2. Credit-card-fraud pattern.
Fig. 2 presents a credit card fraud example over a series

transactions modeled by graph. A criminal tries to illegally
cash out money by conducting a phony deal together with a
merchant and a middleman. He first sets up a credit pay to
the merchant (t1); and when the merchant receives the real
payment from the bank (t2), he will transfer the money to a
middleman (t3) who will further transfer the money back to
the criminal (t4) to finish cashing out the money (middle-
man may have more than one account forming a transfer
path). This pattern (t1 < t2 < t3 < t4) can be easily mod-
eled as a query graph with timing order constraints.

Interactions of real world event patterns tends to happen
within a certain period of time. For example, cyber-attack
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pattern usually happen within minutes even seconds. We,
therefore, use sliding windows over the streaming graph to
focus the most recent data.

1.1 Related Work

Although subgraph search has been extensively studied in
literature [5], [6], [7], [8], [9], [10], most of these works focus
on static graphs. Ullman [5] proposes a well-known sub-
graph isomorphism algorithm that is based on a state-space
search approach; Cordella et al. [6] propose the VF2 algo-
rithm that employs several important pruning strategies
when searching for targeted subgraphs. Shang et al. [7]
employ filtering and verification strategy for subgraph iso-
morphism. They propose QI-sequence to greatly reduce
candidates from data graph before the verification phrase.
Han et al. [8] transfer each query graph into a tree where
they reduce duplicated subqueries to avoid redundant com-
putation. They also utilize the tree to retrieve candidates
from the data graph for further verification. Ren and Wang
[9] define four vertex relationships over a query graph to
reduce duplicate computation. Morari et al. [11] consider
subgraph pattern over distributed semantic graphs and
they apply multithreadling strategy to tolerate latency for
communications.

The research on continuous query processing over high-
speed streaming graph data is rather scarce. Fan et al. [12]
propose an incremental solution for subgraph isomorphism
based on repeated search over dynamic graph data, which
cannot utilize previously computed results when new data
come from the stream since they do not maintain any partial
result. To avoid the high overhead in building complicated
index, there is some work on approximate solution to sub-
graph isomorphism. Chen et al. [13] propose node-neighbor
tree data structure to search multiple graph streams; they
relax the exact match requirement and their solution needs
to conduct significant processing on the graph streams. The
input data that they consider is a sequence of small data
graphs, which is not our focus. Gao et al. [14] study continu-
ous subgraph search over a graph stream. They make spe-
cific assumptions over their query and their solution cannot
guarantee exact answers for subgraph isomorphism. Pacaci
et al. [2] propose an algorithm to answer navigational
queries using the Recursive Path Query (RPQ) model.

Mackey et al. [15] consider subgraph search with timing
order constraints. They require timing order in subgraph
pattern to be total order, i.e., full chronological order over
all edge. Also, they search the subgraph pattern only on
static temporal graph instead of streaming graphs. Song
et al. [16] is the first work to impose timing order constraint
in streaming graphs, but the query semantics is based on
graph simulation rather than subgraph isomorphism. The tech-
niques for the former cannot be applied to the latter, since

the semantics and, therefore, complexities are different. Fur-
thermore, Song et al. perform post-processing to handle the
timing constraints, i.e., finding all matches by ignoring the
timing order constraints, and then filtering out the false pos-
itives based on the timing order constraints, which misses
query optimization opportunities. Choudhury et al. [1] con-
sider subgraph (isomorphic) match over streaming graphs,
but this work ignores timing order constraints. They pro-
pose a subgraph join tree (SJ-tree) to maintain some inter-
mediate results, where the root contains answers for the
query while the other nodes store partial matches. This
approach suffers from large space usage due to maintaining
results. A similar work extends SJ-tree into distributed ver-
sion with visualization enhancement [17].

A similar topic to continuous subgraph search is complex
event processing (CEP) [18], which is a method of tracking
and analyzing streams of information about things that hap-
pen, and deriving a conclusion from them. Timing con-
strained subgraph search can be expressed as time-
constrained pattern in CEP. Each edge with a timestamp t
could be expressed as a single event (an interaction between
two objects, i.e., vertices) happening at t. Timing order
between different edges could be expressed as the chrono-
logical order between different events. However, CEP does
not consider the optimization strategy over graph structure
data. Our solution formally and precisely defines target
information requirement with subgraph and design optimi-
zation strategy over streaming graph to greatly improve the
performance.

There are also incremental models for continuous sub-
graph search [19] that follow the append-only model that
does not consider window and edge expiration. Designing
of a data structure and algorithm that only need to consider
incremental update is easier. However, computation over
outdated data is unnecessary and adds to the latency and a
mechanism to remove out-dated information (i.e., window
model) is necessary.

Due to the high arrival rate of streaming graph data and
the system’s high throughput requirement, a concurrent
computing (i.e., multi-threaded) algorithm is desirable –
even required. It is not trivial to extend a serial single-
threaded algorithm to a concurrent one, as it is necessary to
guarantee the consistency of concurrent execution over
streaming graphs.

1.2 Our Solution and Contributions

Our contributions are three-fold: (1) taking advantage of
“timing order constraints” to reduce the search space, (2)
compressing the space usage of intermediate results by

Fig. 1. Query example in network traffic (Taken from [1]).

Fig. 2. Credit card fraud in transactions (Taken from [4]).
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designing a trie-like data structure (called match-store tree
and match-store DAG) and (3) proposing a concurrent com-
putation framework with a fine-granularity locking strat-
egy. The following is a summary of our methods and
contributions:

Reducing Search Space. Considering the timing order con-
straints, we propose expansion list to avoid wasting time and
space on discardable partial matches. Informally, an intermedi-
ate result (partial match) M is called “discardable” if M can-
not be extended to a complete match of query Q no matter
which edges would come in the future. Obviously, these
should be pruned to improve the query performance. We
define a query class, called timing connected-query (TC-query
for short–see Definition 9) whose expansion list contains no
discardable partial matches. We decompose a non-TC-query
into a set of TC-queries and propose a two-step computation
framework (Section 3).

Compressing SpaceUsage.Thematerialization of intermediate
results inevitably increases space cost, which raises an inherent
challenge to handling massive-scale, high-speed streaming
graphs. We propose a trie variant data structure, called match-
store tree, to maintain partial matches, which reduces both the
space cost and the maintenance overhead without incurring
extra data access burden (Section 4). Also, we further optimize
MS-trees into amore condensedMS-DAG in Section 7.

Improving System Throughput. Existing works do not con-
sider concurrent execution of continuous queries over stream-
ing graphs. In a high-speed stream graphs, multiple edgesmay
come at the same time. A naive solution is to process each edge
one-at-a-time. In order to improve the throughput of the sys-
tem,we propose to compute these edges concurrently. Concur-
rent computing may lead to conflicts and inconsistent results,
which becomes even more challenging when different partial
matches are compressed together on their common parts. We
design a fine-granularity locking technique to guarantee the
consistency of the results (Section 5).

Experiments show that our solution outperforms com-
parative ones by one order of magnitude. Also, our concur-
rency design is of good speedup and the time performance
increase by more than three times.

2 PROBLEM DEFINITION

We list frequently-used notations in Table 1.

Definition 1 (Streaming Graph). A streaming graph G is a
constantly growing sequence of directed edges fs1, s2, ...sxg
where each si arrives at time ti (ti < tj when i < j). ti is also
referred to as the timestamp of si. Each edge si has two labelled
vertices and two edges are connected if and only if they share
one common endpoint.

For simplicity of presentation, we only consider vertex-
labelled graphs and ignore edge labels, although handling
the more general case is not more complicated.

An example of a streaming graph G is shown in Fig. 3.
Note that edge s1 has two endpoints e7 and f8, where ‘e’
and ‘f’ are vertex labels and the superscripts are vertex IDs
which we introduce to distinguish two vertices.

Definition 2 (Time-Based Sliding Window W ). Given
current time ti, a sliding window W defines a timespan
(ti � jW j; ti] with fixed duration jW j. All edges that occur in
this time window form a consecutive block over the edge
sequence.

Obviously, as time window W slides, some edges may
expire and some new edges may arrive.

Definition 3 (A Snapshot of a Streaming Graph). Given a
streaming graph G and a time window W at current time point
t, the current snapshot of G is a graph Gt ¼ ðVt;EtÞ where Et

is the set of edges that occur in W and Vt is the set of vertices
adjacent to edges in Et:

Et ¼ fsijti 2 ðt� jW j; t�g;Vt ¼ fuj uv�! 2 Et _ vu�! 2 Etg:

The snapshots of graph stream G at time t ¼ 8; 9; 10 for
jW j ¼ 9 are given in Fig. 4. At time t ¼ 10, edge s1 expires
since the time point of s1 is 1 and the timespan of time

TABLE 1
Frequently-Used Notations

Notation Definition and Description

G / Gt Streaming graph / Snapshot at time point t
Et / Vt Edge/Vertex set of Gt

Q / V ðQÞ /
EðQÞ

Continuous query / Query vertex set / Query
edge set

�i /si Query edge / Data edge at time ti
g A subgraph of some snapshot
uv�! The directed edge from vertex u to v
W Time windowW
� Timing order over query edges
Preqð�iÞ Prerequisite subquery of query edge �i
Pi TC-subquery
Liði > 0Þ Expansion list for TC-subquery Pi

L0 Expansion list for joining matches of all TC-
subqueries: {P1, P2,...,Pk}

Lj
i The jth item in expansion list Li

VðqÞ Matches of subquery q
DðqÞ Newmatches of subquery q
D A decomposition (set of TC-subqueries) of

query Q
InsðsÞ Insertion for incoming edge s
DelðsÞ Deletion for expired edge s
n / nji A node in a MS-tree / The jth node in the MS-

tree for Li

TCsubðQÞ The set of all TC-subqueries of query Q

Fig. 3. Graph stream G under time window of size 9.

Fig. 4. Graph stream under time windowW of size 9.
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window W is (1,10]. The expired edges are denoted with
dotted edges while newly added edges are in red.

Definition 4 (Query Graph). A query graph is a four-tuple Q
= (V ðQÞ, EðQÞ, L, �Þ, where V ðQÞ is a set of vertices in Q,
EðQÞ is a set of directed edges, L is a function that assigns a
label for each vertex in V ðQÞ, and � is a strict partial order
relation over EðQÞ, called the timing order. For �i, �j 2 EðQÞ,
�i � �j means that in a match g for Q where si matches �i and
sj matches �j (si, sj 2 g), timestamp of si should be less than
that of sj.

An example of query graph Q is presented in Fig. 5. Any
subgraph in the result must conform to the constraints on
both structure and timing orders.

Definition 5 (Time-Constrained Match). For a query Q
and a subgraph g in current snapshotGt formed by window W ,
g is a time-constrained match of Q if and only if there exists
a bijective function F from V ðQÞ to V ðgÞ such that the follow-
ing conditions hold:

1) Structure Constraint (Isomorphism)
� 8u 2 V ðQÞ; LðuÞ ¼ LðF ðuÞÞ.
� uv�! 2 EðQÞ , F ðuÞF ðvÞ������! 2 EðgÞ.

2) Timing Order Constraint
For any two edges ðui1ui2

���!Þ, ðuj1uj2
���!Þ 2 EðQÞ:

ðui1ui2
���!Þ � ðuj1uj2

���!Þ ) F ðui1ÞF ðui2Þ���������! � F ðuj1ÞF ðuj2Þ���������!
:

Hence, the problem in this paper is to find all time-constrained
matches of given queryQ over each snapshot of graph streamG

with window W . For simplicity, when the context is clear, we
always use “match” tomean “time-constrainedmatch”.

For example, the subgraph g induced by edges s1, s3, s4,
s5, s7 and s8 in Fig. 4a (highlighted by bold line) is not only
isomorphic to queryQ but also conforms to the timing order
constraints defined in Fig. 5b. Thus, g is a match of query Q
over stream G at time point t ¼ 8. At time point t ¼ 10, with
the deletion of edge s1, g expires.

Theorem 1. Subgraph isomorphism can be reduced to the pro-
posed problem in polynomial time and therefore, the proposed
problem is NP-hard.

Proofs of lemmas and theorems are presented in Appendix
A in the supplementary, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TKDE.2020.3035902.

3 A BASELINE METHOD

We propose a baseline solution that utilizes the timing
order in reducing the search space. We first define and
evaluate a class of queries (timing-connected query) in

Section 3.1; we then discuss how to answer an arbitrary
query in Section 3.2.

3.1 Timing-Connected Query

3.1.1 Intuition

A naive solution to executing a query Qwith timing order is
to run a classical subgraph isomorphism algorithm on each
snapshot Gi ði ¼ 1; . . . ;1Þ to first check the structure con-
straint followed by a check of the timing order constraint
among the matches. However, an incoming/expired edge
causes only a minor change between two consecutive snap-
shots Gi and Gi�1; thus, it is wasteful to re-run the subgraph
isomorphism algorithm from scratch on each snapshot.
Therefore, we maintain partial matches of subqueries in the
previous snapshots. Specifically, we only need to check
whether there exist some partial matches (in the previous
snapshots) that can join with an incoming edge s to form
new matches of query Q in the new snapshot Gi. Similarly,
we can delete all (partial) matches containing the expired
edges at the new timestamp. For example, consider the
query graph Q in Fig. 5. Assume that an incoming edge s

matches �1 at time point ti. If we save all partial matches for
subquery Qnf�1g, i.e., the subquery induced by edges f�2,
�3, �4, �5, �6g, at the previous time point ti�1 (i.e., Gi�1Þ, we
only need to join s with these partial matches to find new
subgraph matches of query Q.

Although materializing partial matches can accelerate
continuous subgraph query, this inevitably introduces con-
siderable maintenance overhead. For example, in SJ-tree [1],
each new coming edge s requires updating the partial
matches. In this section, we propose pruning discardable
edges (see Definition 6) by considering the timing order in
the query graph.

Definition 6 (Discardable Edge). For a query graph Q and a
streaming graph G, an incoming edge s is called a discardable
edge if s cannot be included in a complete match of Q, no mat-
ter what edges arrive in the future.

To better understand discardable edges, recall the
streaming graph G in Fig. 3. At time t6, an incoming edge s6

(only matching �1) is added to the current time window.
Consider the timing order constraints of query Q in Fig. 5,
which requires that edges matching �3 should come before
ones matching �1. However, there is no edge matching �3
before t6 in G. Therefore, it is impossible to generate a com-
plete match (of Q) consisting of edge s6 (matching �1) no
matter which edges come in the future. Thus, s6 is a dis-
cardable edge that can be filtered out safely. We design an
effective solution to determine if an incoming edge s is dis-
cardable. Before presenting our approach, we introduce an
important definition.

Definition 7 (Prerequisite Edge/Subquery). Given an edge
� in query graph Q, a set of prerequisite edges of � (denoted
as Preqð�ÞÞ are defined as follows:

Preqð�Þ ¼ f�0j�0 � �g [ f�g;

where ‘�’ denotes the timing order constraint as in Definition 4.
The subquery of Q induced by edges in Preqð�Þ is called a pre-
requisite subquery of � in queryQ.

Fig. 5. Running example query Q.
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Consider two edges �1 and �4 in query Q in Fig. 5. Prereq-
uisite subqueries Preqð�1Þ and Preqð�4Þ are both illustrated
in Fig. 6. The following lemma states the necessary and suf-
ficient condition to determine whether an edge s in stream-
ing graph G is discardable.

Lemma 1. An incoming edge s at time ti is NOT discardable if
and only if, inGti , there exists at least one query edge � (2 Q) such
that (1) the prerequisite subquery Preqð�Þ has at least one match g
(subgraph of Gti ) containing s; and (2) s matches � in the match
relation between g andPreqð�Þ. Otherwise, s isdiscardable.

Lemma 1 can be used to verify whether or not an incom-
ing edge s is discardable. The straightforward way requires
checking subgraph isomorphism between Preqð�Þ and Gi in
each snapshot graph, which is quite expensive. First,
Preqð�Þ may not be connected, even though query Q is con-
nected. For example, Preqð�1Þ is disconnected. Computing
subgraph isomorphism for disconnected queries will cause
a Cartesian product among candidate intermediate results
leading to lots of computation and huge space cost. Second,
some different prerequisite subqueries may share common
substructures, leading to common computation for different
prerequisite subqueries. It is inefficient to compute sub-
graph isomorphism from scratch for each edge.

For certain types of queries that we call timing-connected
query (Definition 9), it is easy to determine if an incoming
edge s is discardable. Therefore, we first focus on these
queries for which we design an efficient query evaluation
algorithm. We discuss non-TC-queries in Section 3.2.

We introduce the following concepts that will be used
when illustrating our algorithm. Consider a query Q and two
subqueries: Q1, Q2, assume that g1 (g2) is a time-constrained
match of Q1 (Q2) in the current snapshot. Let F1 and F2

denote the matching functions (Definition 5) from V ðQ1Þ and
V ðQ2Þ to V ðg1Þ and V ðg2Þ, respectively. We say that g1 is
compatible with g2 (denoted as g1 � g2) w.r.t Q1 and Q2 if and
only if g1 [ g2 is a time-constrained match of Q1 [ Q2 on
bijective match function F1 [ F2. Furthermore, let VðQ1Þ and
VðQ2Þ denote the set of matches of Q1 and Q2 in current
snapshot, respectively. We define a new join operation over

VðQ1Þ and VðQ2Þ, denoted as VðQ1Þ fflT VðQ2Þ, as follows:

VðQ1Þ fflT VðQ2 ¼ fg1 [ g2jg1 2 VðQ1Þ � g2 2 VðQ2Þg:

Note that when g1 � g2 and Q1 \ Q2 6¼ ;, F1 and F2 will

never map the same query vertex to different data vertices

since we require F1 [ F2 to be a bijective function.

3.1.2 TC-Query

Definition 8 (Prefix-Connected Sequence). Given a query
Q of k edges, a prefix-connected sequence of Q is a

permutation of all edges in Q: f�1, �2...,�kg such that 8j 2
½1; k�, the subquery induced by the first j edges in f�1g [ ::: [
f�jg is alwaysweakly connected.

Definition 9 (Timing-Connected Query). A query Q is
called a timing-connected query (TC-query, for short) if there
exists a prefix-connected sequence f�1, �2...,�kg of Q such that
8j 2 ½1; k� 1�, �j � �jþ1. We call the sequence f�1,...,�kg the
timing sequence of TC-query Q.

Recall the running example Q in Fig. 5, which is not a TC-
query. However, the subquery induced by edges f�6, �5, �4g
is a TC-query, since �6 � �5 � �4 and f�6g, f�6, �5g and f�6, �5,
�4g are all connected.

Given a TC-query Q with timing sequence f�1,...,�kg, the
prerequisite subquery Preqð�jÞ is exactly the subquery induced
by the first j edges in f�1, �2,...,�jg ðj 2 ½1; k�Þ. Preqð�jþ1Þ ¼
Preqð�jÞ [ fejþ1g and VðPreqð�jþ1ÞÞ ¼ VðPreqð�jÞÞfflT Vð�jþ1Þ,
where VðPreqð�jþ1ÞÞ denotes matches for prerequisite sub-
queryPreqð�jþ1Þ,Vð�jþ1Þ denotes thematching edges for �jþ1.

3.1.3 TC-Query Evaluation

We propose an effective data structure, called expansion list, to
evaluate a TC-query Q. An expansion list for TC-query (1) can
efficiently determine whether or not an incoming edge is dis-
cardable, and (2) can be efficiently maintained (which guaran-
tees the efficientmaintenance of the answers for TC-queryQ).

Definition 10 (Expansion List). Given a TC-query Q with
timing sequence f�1, �2,...,�kg, an expansion list L ¼
fL1; L2,...,Lkg over Q is defined as follows:

1) Each Li corresponds to
S i

j¼1ð�jÞ, i.e., Preqð�iÞ.
2) Each Li records Vð S i

j¼1ð�jÞÞ, i.e., a set of partial
matches (in the current snapshot) of prerequisite sub-
query Preqð�iÞ ði 2 ½1; k�Þ. We also use VðLiÞ to
denote the set of partial matches in Li.

Note that each item Lj corresponds to a distinct subquery
Preqð�jÞ and we may use the corresponding subquery to
denote an item when the context is clear.

The shaded nodes in Fig. 7 illustrate the prerequisite sub-
queries for a TC-query with timing sequence f�6, �5, �4g.
Since each node corresponds to a subquery Preqð�iÞ, we also
record the matches of Preqð�iÞ. The last item stores matches
of the TC-query in the current snapshot.

Maintaining the expansion list requires updating (par-
tial) matches associated with each item in the expansion list.
An incoming edge may result in insertion of new (partial)
matches into the expansion list while an expired edge may
lead to deletion of partial matches containing the expired
one. We will discuss these two cases separately.

Fig. 6. Example of prerequisite subquery.

Fig. 7. A TC-query f�6, �5, �4g and timing expansion list.
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Case 1: New Edge Arrival. For an incoming edge s, Theo-
rem 2 indicates the partial matches associated with the
expansion list that should be updated.

Theorem 2. Given a TC-query Q with the timing sequence f�1,
�2 ,..., �kg and the corresponding expansion list L ¼ fL1,
L2,...,Lkg. If an incoming edge s matches query edge �i in the
current time window, then only the matches of Li ðPreqð�iÞÞ
should be updated.

1) If i ¼ 1, s should be inserted into L1 as a new match of
Preqð�1Þ since Preqð�1Þ ¼ f�1g.

2) If i 6¼ 1 ^VðLi�1ÞfflT fsg 6¼ ;, then VðLi�1Þ fflT fsg
contains new matches of Preqð�iÞ to be inserted into
Li. VðLi�1Þ is the set of partial matches in Li�1.

Hence, for a TC-queryQ ¼ f�1, �2...,�kg and the expansion
list L ¼ fL1; L2,...,Lkg, the maintenance of L for an incoming
edge s can be done as follows:

1) if s matches no query edge, discard s;
2) if s matches �1, then add s into L1;
3) if s matches �i (i > 1), then compute VðLi�1Þ fflfsg.

T

If the join result is not empty, add all resulting (par-
tial) matches (of Preqð�iÞ) into Li.

The above process is codified in Lines 1-10 of Algorithm 1.
Note that an incoming edge s may match multiple query
edges; the above process is repeated for eachmatching edge �.
Newmatches that are inserted into the last item of the expan-
sion list are exactly the newmatches of TC-queryQ.

Algorithm 1. INSERT(s)

Input: s: incoming edge to be inserted
Input: Li ¼ fL1

i , L
2
i ; . . . ; L

jQij
i g: the expansion list for Qi

Input: L0 ¼ fL1
0, L2

0; . . . ; L
k
0g: the expansion list over

fQ1; Q2; . . . ; Qkg
1 for each query edge � that s matches do
2 Assume that � is the jth edge in TC-subquery Qi.
3 if j ¼¼ 1
4 Insert s into Lj

i

5 else
6 Let Dð�Þ ¼ fsg
7 READ(Lj�1

i ) // Read partial matches in Lj�1
i

8 DðLj
iÞ ¼ Dð�ÞfflT VðLj�1

i Þ
9 if DðLj

iÞ 6¼ ; then
10 Lj

iþ ¼ DðLj
iÞ // Insert DðLj

iÞ into Lj
i

11 if j ¼ jLij AND DðLj
iÞ 6¼ ; then

12 if i ¼ 1 then
13 Let DðLi

0Þ ¼ DðLj
iÞ

14 else
15 READ(Li�1

0 )
16 DðLi

0Þ ¼ DðLj
iÞffl

T
VðLi�1

0 Þ
17 Li

0þ ¼ DðLi
0Þ // Insert DðLi

0Þ into Li
0

18 while i < k AND DðLi
0Þ 6¼ ; do

19 READ(L
jLiþ1j
iþ1 ) // Read VðQiþ1Þ

20 DðLiþ1
0 Þ ¼ DðLi

0Þffl
T
VðLjLiþ1j

iþ1 Þ
21 Liþ1

0 þ ¼ DðLiþ1
0 Þ

22 iþþ
23 Report DðLk

0Þ (if not ;) as new matches of Q

Case 2: Edge Expiry. When an edge s expires, we can
remove all expired partial matches (containing s) in

expansion list L by scanning L1 to Lj where Lj is the right-
most item in Lwhich contains expired partial matches.

3.2 Answering Non-TC-Queries

We decompose a non-TC-query Q into a set of subqueries
D ¼ fQ1, Q2; :::Qkg, where each Qi is a TC-subquery, Q ¼S k

i¼1ðQkÞ and there is no common query edge between any
two TC-subqueries. We call D a TC decomposition of Q. The
example query Q is decomposed into fQ1; Q2; Q3g, as
shown in Fig. 8. Since each TC-subquery Qi can be effi-
ciently evaluated as described in the previous section, we
focus on how to join those matches of Qi (i ¼ 1; . . . ; k) into
matches of Q in the stream scenario.

For the sake of presentation, we assume that the decom-
position of query Q is given; decomposition is further
discussed in Section 6.1. We use Li ¼ fL1

1, L
2
i ,...,L

jEðQiÞj
i g

to denote the corresponding expansion list for each
TC-subquery Qi. Recall the definition of prefix-connected
sequence (Definition 8). We can find a permutation of D
whose prefix sequence always constitutes a weakly con-
nected subquery of Q as follows: we first randomly extract a
TC-subquery Q1 from D; and then we extract a second TC-
subquery Q2 who have common vertex with Q1 (Since Q is
weakly connected, we can always find such Q2); repeatedly,
we can always extract another TC-subquery from D who
have common vertex with some previously extracted TC-
subquery and finally form a prefix-connected permutation
of D. Without loss of generality, we assume that fQ1,
Q2,...,Qkg is a prefix-connected permutation of D where the
subquery induced by {Q1, Q2,..., Qi} is always weakly con-
nected (1 � i � k). Actually, the prefix-connected permuta-
tion corresponds to a join order, based on which, we can
obtain VðQÞ by joining matches of each Qi. Different join
orders lead to different intermediate result sizes, resulting
in different performance. We do not discuss join order selec-
tion in this paper due to space constraints; this is a well-
understood problem. We include our approach to the prob-
lem in Appendix D, available in the online supplemental
material. For this paper, we assume that the prefix-con-
nected sequenceD ¼ fQ1, Q2,...,Qkg is given.

For example, Fig. 8 illustrates a decomposition of query
Q (Q1, Q2, Q3). We obtain the matches of Q as VðQÞ ¼
VðQ1ÞfflT VðQ2Þ:::fflT VðQkÞ. As in TC-query, we can materi-
alize some intermediate join results to speed up online

Fig. 8. An TC decomposition of query Q.
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processing. According to the prefix-connected sequence
over Q, we can define the expansion list, denoted as L0 for
the entire query Q (similar to TC-query). For example, the
corresponding expansion list L0 ¼ fL1

0, L
2
0, L

3
0g (for query

Q) is given in Fig. 8. Each item Li
0 records the intermediate

join results Vð S i
x¼1Q

xÞ.

Algorithm 2. Join With Timing Order Constraints

Input: Query Q, subqueries Q1, Q2 (EðQ1Þ \ EðQ2Þ ¼ ;)
Input: VðQ1Þ: matches of Q1

Input: VðQ2Þ: matches of Q2

Output: VðQ1Þ fflT VðQ2Þ
1 Let J ¼ ;
2 for each g1 2 VðQ1Þ do
3 for each g2 2 VðQ2Þ do
4 F1 is the bijective function from V ðQ1Þ to V ðg1Þ
5 F2 is the bijective function from V ðQ2Þ to V ðg2Þ
6 if F1 [ F2 is bijective AND TimeCheck(g1; g2) then
7 J ¼ J [ fg1 [ g2g
8 RETURN J as VðQ1Þ fflT VðQ2Þ
9 Function (TimeCheck(g1; g2))
10 for Each u1v1

��! � u2v2
��! where u1v1

��! 2 EðQ1Þ and u2v2
��! 2 EðQ2Þ

do
11 Let ti, tj be the timestamps of edges ðF1ðu1Þ; F1ðv1ÞÞ and

ðF2ðu2Þ; F2ðv2ÞÞ, respectively
12 if ti > tj then
13 RETURN false
14 end function

Assume that an incoming edge s contributes to new
matches of TC-subquery Qi (denoted as DðLjLij

i Þ). If i > 1,

we let DðLi
0Þ ¼ DðLjLij

i Þ fflVðLi�1
0 Þ

T

(Line 16 in Algorithm 1).
If DðLi

0Þ 6¼ ; , we insert DðLi
0Þ into Li

0 as new matches of Li
0 .

Then, DðLi
0Þ fflT VðQiþ1Þ may not be empty and the join

results (if any) are new partial matches that should be
stored in Liþ1

0 (
S iþ1

x¼1ðQxÞ). Thus, we need to further per-

form DðLi
0Þ ffl

T
VðLjLiþ1j

iþ1 Þ to get new partial matches (denoted
as DðLiþ1

0 Þ) and insert them into Liþ1
0 as new matches ofS iþ1

x¼1ðQxÞ . We repeat the above process until no new par-
tial matches are created (Lines 18-22). Note that when par-
tial matches of different subqueries are joined, we verify
both structure and timing order constraints.

When an edge s expires where s matches � 2 Qi, we dis-
card all partial matches containing s in expansion list Li as
illustrated previously. If there are expired matches for Qi

(i.e., matches of Qi that contain s), then we also scan Li
0 to

Lk
0 to delete partial matches containing s.

3.3 Correctness Analysis

We discuss the correctness of our solution. Consider a queryQ
with decomposition {Q1, Q2; . . . ;Qk}. For deletion, when an
edge s expires, the expired partial matches are exactly those
containing s, hence our deletion strategy is obviously correct.
For insertion of incoming edge s, we need to figure out all new
partial matches resulting from s and insert them into corre-
sponding expansion lists. Consider the case when s matches �
which is the jth edge inQi. There are two keyparts to insertion:
updating Lx where 0 < x � k (Lines 6-10 in Algorithm 1) and
updating L0 (Lines 12-22 Algorithm 1). Specifically, for updat-
ing Lx where 0 < x � k, Theorem 2 tells us that we only need

to add new partial matches DðLj
iÞ ¼ fsgfflT VðLj�1

i Þ into Lj
i .

For updating L0, according to the construction of L0 in
Section 3.2, new partial matches for each Li0

0 (i � i0 � k) can

be computed by DðLi0
0 Þ ¼ DðLi0�1

0 ÞfflT VðLjLi0 j
i0 Þ. We can see

that the key to correctness of these two parts lies in how the

new join operationfflT guarantees the time-constrainedmatch
(Definition 5). We present the pseudocode for the new join
operation in Algorithm 2 andwe prove in Theorem 3 that the
new join operation guarantees the time-constrainedmatch.

Theorem 3. Given a query Q and two subqueries Q1, Q2

(EðQ1Þ \EðQ2Þ ¼ ;), consider g1 2 VðQ1Þ and g2 2 VðQ2Þ
where F1 and F2 are the matching functions (Definition 5)
from V ðQ1Þ and V ðQ2Þ to V ðg1Þ and V ðg2Þ, respectively. g1 [
g2 is a time-constrained match of Q1 [Q2 if and only if the fol-
lowing conditions hold:

1) F1 [ F2 is bijective
2) For each u1v1

��! � u2v2
��! where u1v1

��! 2 EðQ1Þ and u2v2
��! 2

EðQ2Þ, edge ðF1ðu1Þ; F1ðv1ÞÞ has a smaller timestamp
than that of edge ðF2ðu2Þ; F2ðv2ÞÞ.

4 MATCH-STORE TREE

We propose a tree data structure, called match-store tree
(MS-tree, for short), to reduce the space cost of storing par-
tial matches in an expansion list. Each tree corresponds to
an expansion list. We first formally define MS-tree and then
illustrate how to access partial matches in MS-tree for the
computation.

4.1 Match-Store Tree

Consider an expansion list L ¼ {L1, L2,...,Lk} over timing
sequence f�1, �2,...,�kg where Li stores all partial matches of
f�1, �2,...,�ig. For a match g of Li (1 � i � k), g can be natu-
rally presented in a sequential form: fs1, s2; ::; sig where g ¼S i

j¼1ðsjÞ and each si0 (1 � i0 � i) is a match of �i0 . Further-
more, g0 ¼ g n fsig ¼ fs1, s2; ::; si�1g, as a match of f�1,
�2,...,�i�1g, must be stored in Li�1. Recursively, there must
be g00 ¼ g0 n fsi�1g in Li�2. For example, see the expansion
list in Fig. 7. For partial match {s1, s3, s4} in item {�6, �5, �4},
there are matches {s1, s3} and {s1} in items {�6, �5} and {�6} of
the expansion list, respectively. These partial matches share
a prefix sequence. Therefore, we propose a trie variant data
structure to store the partial matches in the expansion list.

Definition 11 (Match-Store Tree). Given a TC-query Q with
timing sequence f�1; �2,...,�kg and the corresponding expansion
list L ¼ fL1; L2,...,Lkg, the Match-Store tree (MS-tree) M of
L is a trie variant built over all partial matches in L that are in
sequential form. Each node n of depth i (1 � i � k) in a
MS-tree denotes a match of �i and all nodes along the path from
the root to node n together constitute a match of f�1; �2,...,�ig.
Also, for each node n of a MS-tree, n records its parent node.
Nodes of the same depth are linked together in a doubly linked list.

For example, see the MS-tree for the expansion list for
subquery Q1 with the timing sequence {�6, �5, �4} in Fig. 9.
The three matches ({s1} for node {�6}, {s1, s3} for node {�6, �5}
and {s1, s3, s4} for node {�6, �5, �4 }) are stored only in a path
(s1 ! s3 ! s4) in the MS-tree. Furthermore, partial match
fs1, s3, s9g shares the same prefix path (s1 ! s3) with fs1,
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s3, s4g. Thus, MS-tree greatly reduces the space cost for
storing all matches by compressing the prefix. Apparently,
MS-tree can be seamlessly defined over the expansion list
for the decomposition of a non-TC-query. For example, the
MS-tree for expansion list fL1

0, L
2
0, L

3
0g for whole query Q

(see Fig. 8) is shown in Fig. 10. For convenience, we use Mi

to denote the MS-tree for Li (0 � i � k).

4.2 MS-Tree Accessibility

Given an expansion list L ¼ {L1; L2,...,Lk} over timing
sequence f�1; �2,...,�kg and an MS-tree M that stores all par-
tial matches in L, there are three operations that M needs to
provide for computation: (1) reading all matches for some
item Li, i.e., VðLiÞ; (2) inserting a new match into some item
Li; (3) deleting expired partial matches (i.e.,those containing
expired edge). These basic operations can be seamlessly
applied to the MS-tree of expansion list L0 over the decom-
position of a non-TC-query.

Reading Matches of Li. In a MS-tree, each i-length path
starting from the root indicates a match of Li, i.e.,
f�1; �2,...,�ig. We can obtain matches of Li by enumerating
nodes of depth i inM with the corresponding doubly linked
list, and for each node of depth i, we can easily backtrack
the i-length paths to get matches of Li. Apparently, the time
for reading partial matches in Li is OðjLijÞ where jLij
denotes the number of partial matches in Li.

Inserting a NewMatch ofLi. For a newmatch of f�1; �2,...,�ig:
g¼ fs1, s2,...,sigwhere each sj matches �j, we need to insert a
path froot ! s1 ! s2::: ! sig into MS-tree. According to
the insertion over expansion list, g must be obtained by

fs1; s2,...,si�1g fflT fsig and there must already be a path
froot ! s1 ! s2::: ! si�1g in MS-tree. Thus, we can just add
si as a child of node si�1 to finish inserting g. For example, to
insert a newmatch fs1, s3, s9g of f�6, �5, �4g, we only need to
expand the path froot ! s1 ! s3g by adding s9 as a child of
s3 (see Fig. 9). We can easily record node si�1 when we find

that fs1; s2,...,si�1g fflT fsig is not ;, thus inserting a match of
Li cost Oð1Þ time. We can see that our insertion strategy does
not need to wastefully access the whole path froot ! s1 !
s2::: ! si�1g as the usual insertion of trie.

Deleting Expired Partial Matches. When an edge s expires,
we need to delete all partial matches containing s. Nodes
corresponding to expired partial matches in MS-tree are
called expired nodes and we need to remove all expired
nodes. Assuming that s matches �i, nodes containing s are
exactly of depth i in M. These nodes, together with all their
descendants, are exactly the set of expired nodes in M
according to the Definition of MS-tree. We first remove all
expired nodes of depth i (i.e., nodes which contain s) from
the corresponding doubly linked list, we further remove
their children of depth iþ 1 from M. Recursively, we can

remove all expired nodes from MS-tree. Consider the
MS-tree in Fig. 9. When edge s1 (matching �6 in TC-query
f�6; �5; �4g) expires, we delete node s1 in the first level of
MS-tree, after which we further delete its descendant nodes
s3, s4 and s9 successively. When an edge expired, the time
cost for the deletion update is linear to the number of the
corresponding expired partial matches.

4.3 MS-tree and Trie

Although MS-tree is similar to trie, there are important dif-
ferences between them.

From the perspective of data structure: Each node n in MS-tree,
besides the links to n’s children, includes extra links to n’s par-
ent and siblings (doubly linked list). These extra links play an
important role in reading matches of subqueries and avoiding
inconsistency in the concurrent access overMS-tree (Section 5).

From the perspective of operation: All operations (search/
insertion/deletion) over trie always begin at the root, but
we often access MS-tree horizontally. Each level of MS-tree
is linked from the corresponding item in the expansion list.

For example in Fig. 10, when reading VðQ1 [Q2Þ, we begin
accessing from L2

0 (in the expansion list L0) and obtain all
matches VðQ1 [Q2Þ by enumerating all nodes at the 2-nd
level in the MS-tree with the corresponding doubly linked
list, and then for each such node, we can easily backtrack
the paths to the root to obtain the match of VðQ1 [Q2Þ.

5 CONCURRENCY MANAGEMENT

To achieve high performance, the proposed algorithms can
(and should) be executed in amulti-threadway. Sincemultiple
threads access the commondata structure (i.e., expansion lists)
concurrently, there is a need for concurrency management.
Concurrent computing over MS-tree is challenging since
many different partial matches share the same branches (pre-
fixes). We propose a fine-grained locking strategy to improve
the throughput of our solution with consistency guarantee.
We first introduce the locking strategy over the expansion list
without MS-tree in Sections 5.1 and 5.2 then illustrate how to
apply the locking strategy overMS-tree in Section 5.3.

5.1 Intuition

Consider the example query Q in Fig. 5, which is decom-
posed into three TC-subqueries Q1, Q2 and Q3 (see Fig. 8).
Fig. 8 demonstrates expansion list Li of each TC-subquery
Qi and the expansion list L0 for the entire query Q. Assume
that there are three incoming edges fs11; s12; s13g (see
Fig. 11) at consecutive time points. A conservative solution
for inserting these three edges is to process each edge
sequentially to avoid conflicts. However, as the following
analysis shows, processing them in parallel does not lead to

Fig. 9. MS-tree of expansion list L1 ¼ fL1
1, L

2
1, L

3
1g.

Fig. 10. MS-tree of expansion list L0 for {Q
1; Q2; Q3}.
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conflicts or wrong results. For convenience, insertion of an
incoming edge si is denoted as InsðsiÞ while deletion of an
expired edge sj is denoted asDelðsjÞ.

Fig. 11 illustrates the steps of handling each incoming
edge based on the discussion in Section 3. When s11 is
inserted (denoted as Insðs11Þ), s11 matches query edge �6
and since �6 is the first edge in TC-subquery Q1, we only
need to insert match fs11g into Vð�6Þ as the first item L1

1 of
expansion list L1 (i.e., operation INSERT(L1

1)). Similarly, han-
dling Insðs12Þ where s12 matches �3 requires one operation:
INSERT(L1

2) (inserting fs12g into Vð�3Þ). For Insðs13Þ where
s13 matches �2, we first insert s13 into L1

3 (INSERT(L1
3)) as a

new match of Q3 (see Fig. 8) and then we need to join fs13g
with VðQ1 [Q2Þ (READ(L2

0)) and insert join results into L3
0

(INSERT(L3
0)). Note that we consider the worst case in our

analysis, namely, we always assume that the join result is not
empty. Thus, to insert s13, we access the following expansion
list items: INSERT(L1

3), READ(L2
0) and INSERT(L3

0).

Fig. 11 shows that there is no common item to be
accessed between Insðs11Þ, Insðs12Þ and Insðs13Þ. Therefore,
they can be processed concurrently.

Let us consider an incoming edge s14 that matches f�4g,
which is the last edge in the timing sequence of TC-subquery
Q1. According to Algorithm 1, we need to read Vðf�6; �5gÞ
and join Vðf�6; �5gÞ with fs14g. Since �4 is the last edge in Q1,

ifVðf�6; �5gÞ fflT fs14g 6¼ ;, the join results are newmatches of
Q1, and will be inserted into L1

0. As discussed in Section 3.2,
we need to join these newmatches ofQ1 withVðQ2Þ resulting
in new matches of Q1 [Q2, which will be inserted into L2

0.
Finally, new matches of Q1 [Q2 will be further joined with
VðQ3Þ, after which new matches of Q1 [Q2 [Q3 will be
inserted intoL3

0. Thus, the series of operations to be conducted
for Insðs14Þ are as follows: READ(L2

1), INSERT(L3
1), READ

(L2
2), INSERT(L2

0), READ(L1
3), INSERT(L3

0). Obviously,
Insðs14Þ may conflict with Insðs13Þ since both of them will
conduct INSERT(L3

0) as indicated in Fig. 11. Thus, the concur-
rent execution requires a locking mechanism to guarantee the
consistency.

Definition 12 (Streaming Consistency). For a streaming
graph G with time window W and a query Q, the streaming
consistency requires that at each time point, answers of Q are
the same as the answers formed by executing insertion/deletion
in chronological order of edges.

Streaming consistency is different from serializability,
since the latter only requires the output of the concurrent

execution to be equivalent to some serial order of transac-
tion execution, while streaming consistency specifies that
the order must follow the timestamp order in G. For exam-
ple, a concurrent execution that executes Insðs14Þ followed
by Insðs13Þ would be serializable but would violate stream-
ing consistency.

5.2 Locking Mechanism and Schedule

We propose a locking mechanism to allow concurrent exe-
cution of the query execution algorithm while guaranteeing
streaming consistency. The two main operations in stream-
ing graphs, insertion of an incoming edge s (i.e., InsðsÞ)
and deletion of an expired edge s0 (i.e., Delðs0Þ), are mod-
eled as transactions. Each transaction has a timestamp that is
exactly the time when the corresponding operation hap-
pens. As discussed above, each edge insertion and deletion
consists of elementary operations over items of the expan-
sion lists, such as reading partial matches and inserting new
partial matches. As analyzed in Section 5.1, concurrent exe-
cution of these operations may lead to conflicts that need to
be guarded.

A naive solution is to lock all the expansion list items that
may be accessed before launching the corresponding trans-
action. Obviously, this approach will degrade the system’s
degree of concurrency (DOC). For example, Insðs13Þ and
Insðs14Þ conflict with each other only at items L1

3, L
2
0 and L3

0.
The first three elementary operations of Insðs13Þ and
Insðs14Þ can execute concurrently without causing any
inconsistency. Thus, a finer-granularity locking strategy is
desirable that allows higher DOC while guaranteeing
streaming consistency. For example, in Fig. 11, INSERTðL2

0Þ
in Insðs13Þ should be processed before the same operation
in Insðs14Þ to avoid inconsistency.

We execute each edge operation (inserting an incoming
edge or deleting an expired edge) by an independent thread
that is treated as a transaction, and there is a single main
thread to launch each transaction. Items in expansion lists
are regarded as “resources” over which threads conduct
READ/INSERT/DELETE operations. Locks are associated
with individual items in the expansion lists. An elementary
operation (such as INSERT(L1

3) in Insðs13Þ) accesses an item
if and only if it has the corresponding lock over the item.
The lock is released when the computation over Lj is fin-
ished. Note that deadlocks do not occur since each transac-
tion only locks at most one item at a time.

Main Thread. Main thread is responsible for launching
threads. Before launching a thread T , the main thread dis-
patches all lock requests of T to the lock wait-lists of the corre-
sponding items. Specifically, a lock request is a triple htID,
locktype, Lji indicating that thread tID requests a lock with
type locktype (shared – S, exclusive – X) over the corre-
sponding item Lj . For each item Lj in expansion lists, we
introduce a thread-safe wait-list consisting of all pending
locks over Lj sorted according to the timestamps of transac-
tions in the chronological order.

Since there is a single main thread, the lock request dis-
patch as well as thread launch is conducted in a serial way.
Hence, when a lock request of a thread is appended to wait-
list of an item Lj, then those lock requests of previous
threads for Lj must have been in the wait-list since previous

Fig. 11. Example of conflicts.
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threads have been launched, which guarantees that lock
requests in each wait-list are sorted in chronological
order. Although thread launch is conducted in a serial
way, once launched, all transaction threads are executed
concurrently.

Transaction Thread Execution.Concurrently processing inser-
tion/deletion follows the same steps as the sequential counter-
parts except for applying (releasing) locks before (after)
reading (READ) or writing (INSERT/DELETE) expansion list
items. Thus, in the remainder, we focus on discussing the lock
and unlock processes. Note that, in this part, we assume that
wematerialize the partialmatches (Vð	Þ) using the naive repre-
sentation (like Fig. 7) without MS-tree. The locking strategy
over MS-tree is more challenging that will be discussed in
Sections 5.3.

Consider a thread T that is going to access (READ/
INSERT/ DELETE) an item Lj. T can successfully obtain
the corresponding lock of Lj if and only if the following two
conditions hold: (1) the lock request of T is currently at the
head of the wait-list of Lj, and (2) the current lock status of
Lj is compatible with that of the request, namely, either Lj

is free or the lock over Lj and that T applies are both shared
locks. Otherwise, thread T will wait until it is woken up by
the thread that finishes computation on Lj.

Once T successfully locks item Lj, the corresponding
lock request is immediately removed from the wait-list of
Lj and T will conduct its computation over Lj. When the
computation is finished, thread T will release the lock and
then wake up the thread (if any) whose lock request over Lj

is currently at the head of the wait-list. Finally, thread T
will continue its remaining computations.

Theorem 4. The global schedule generated by the proposed lock-
ing mechanism is streaming consistent.

Algorithm 3. Parallel Processing Streaming Graphs

Input: Streaming graph G; Query Graph Q
Output: query results at each time point

1 for each time point ti do
2 if there is an incoming edge si then
3 if si does not match any edge in query Q then
4 CONTINUE
5 else
6 Let G be all lock requests for adding edge si

7 for each lock request in G do
8 /*DISPATCH lock requests*/
9 append it to the end of the corresponding wait-list;
10 CREATE a new thread over Ins(si) (Algorithm 1)
11 if there is an expired edge sj then
12 if sj does not match any edge in query Q then
13 CONTINUE
14 else
15 Let G be all lock requests for adding edge sj

16 for each lock request in G do
17 /*DISPATCH lock requests*/
18 append it to the end of the correspondingwaiting list;
19 CREATE a new thread for Del(sj)

5.3 Concurrent Access over MS-tree

Consider an expansion list fL1, L2,...,Lkg whose partial
matches are stored in MS-tree M. Each partial match of Li

(1 � i � k) exactly corresponds to a distinct node of depth i
in M. Thus, locking Li is equivalent to locking over all
nodes of depth i in M. Partial matches are not stored inde-
pendently in MS-tree, which may cause inconsistency when
concurrent accesses occur. For example, consider the
MS-tree in Fig. 9. Assuming that a thread T1 is reading par-
tial matches of f�6, �5g, T1 will backtrack from node n21 (i.e.,
s3) to read n11 (i.e., s1). Since T1 only locks L2

1, if another
thread T2 is deleting n11 at the same time, T2 and T1 will con-
flict. Therefore, we need to modify the deletion access strat-
egy over the MS-tree to guarantee streaming consistency as
follows.

Algorithm 4. Applies/Releases S/X-Lock

Input: An item Li and the corresponding wait-list
waitlistðLiÞ

Input: Current thread T
Output: T successfully applies/releases S/X-lock over Li

1 function (apply_S/X-lock())
2 while the lock request of T is not at the head of

waitlistðLiÞ OR the lock status of Li is exclusive do
3 thread waitðÞ
4 apply S/X-lock over Li

5 pop the head of waitlistðLiÞ
6 end function
7 function (release_S/X-lock())
8 release S/X-lock over Li

9 If waitlistðLiÞ is not empty, wake up the thread whose
lock request is at the head of waitlistðLiÞ

10 end function

Consider two threads T1 and T2 that are launched at time
t1 and time t2 (t1 < t2), respectively. Assuming that T1 is
currently accessing partial matches of Ld1 in M while T2 is
accessing partial matches of Ld2 , let’s discuss when inconsis-
tency can happen. There are three types of accesses that
each Ti can perform and there are three cases for node
depths d1 and d2 (d1 < d2; d1 ¼ d2 and d1 > d2). Thus, there
are total 3
 3
 3 ¼ 27 different cases to consider, but the
following theorem tells us that only two of these cases will
cause inconsistency in concurrent execution.

Theorem 5. Concurrent executions of T1 and T2 will violate
streaming consistency if and only if one of these two cases
occur:

1) d1 > d2, T1 reads partial matches of Ld1 and T2 deletes
partial matches of Ld2 . When T1 wants to read some
node n during the backtrack to find the corresponding
whole path, T2 has already deleted n, which causes the
inconsistency.

2) d1 > d2, T1 inserts partial match g ¼ fs1, s2,...,sd1g
of Ld1 and T2 deletes partial matches of Ld2 . When T1

wants to add sd1 as a child of sd1�1, T2 has deleted
sd1�1, which causes the inconsistency.

Theorem 5 shows that inconsistency is always due to a
thread T2 deleting expired nodes that a previous thread T1

wants to access without applying locks. However, if we
make T2 wait until previous thread T1 finishes its execution,
the degree of parallelism will certainly decrease. In fact, to
avoid inconsistency, we only need to make sure that the
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expired nodes that T2 wants to delete are invisible to threads
launched later than T2 while accessible to threads that are
launched earlier. We achieve this by slightly modifying the
deletion strategy over MS-tree with only negligible extra
time cost. Specifically, consider the thread T2 that deletes
partial matches of Ld2 , when T2 is going to delete expired
node nd2 of depth d2 in M, T2 does not “totally” remove nd2
from M. Instead, T2 “partially” removes nd2 as follows: (1)
T2 removes nd2 from the corresponding doubly linked list,
and (2) T2 disables the link from nd2 ’s parent to nd2 while the
link from nd2 to its parent remains.

Theorem 6. Parallel accesses with new deletion strategy over
MS-tree do not result in streaming inconsistency.

Our scheduling strategy over the MS-tree is different
from the traditional tree protocol [20]. The classical tree pro-
tocol only guarantees the conflict equivalence to some serial
schedule, and there is no guarantee for streaming consistency
that requires a special serial order.

6 DECOMPOSITION

We propose a cost model-guided TC decomposition of Q
based on the intuition that an incoming edge s should lead
to as few join operations as possible. Cost of join operations
varies in stream scenario and we focus on the expected
number of join operations to handle an incoming edge.
Finding the most appropriate cost function is a major
research issue in itself and outside the scope of this paper.
Due to space limitation, the discussion on the cost model
and why we prefer to a TC decomposition of size as small
as possible are presented in Appendix E, available in the
online supplemental material; we focus on how to compute
the target TC decomposition.

6.1 Decomposition Method

Given a queryQ, to find a TC decomposition of size as small
as possible, we first extract all possible TC-subqueries of Q,
denoted as TCsubðQÞ. For a TC-subquery Qi of timing
sequence f�1,...,�kg, any prefix of the timing sequence consti-
tutes a TC-subquery of Qj. Thus, we can compute TCsubðQÞ
by the following strategy: (1) We initialize TCsubðQÞ with
all single edges of Q since each single edge of Q is certainly
a TC-subquery of Q; (2) With all TC-subqueries of j edges,
we can compute all TC-subqueries of jþ 1 edges as follows:
for each TC-subquery Qi ¼ f�1,...,�jg with j edges, we find
all edges �x such that �j � �x. If �x have common vertex with

some �j0 ðj0 2 ½1; j�Þ, then we add f�1,...,�j, �xg into TCsubðQÞ
as a new TC-subquery of jþ 1 edges; (3) Repeat Step (2)
until there are no new TC-subqueries.

After computing TCsubðQÞ, we compute a subset D of
TCsubðQÞ as a TC decomposition of Q, where the subset car-
dinality jDj should be as small as possible. We use a greedy
algorithm to retrieve the desired TC-subqueries from
TCsubðQÞ. We always choose the TC-subquery of maximum
size from the remaining ones in TCsubðQÞ and there should
be no common edges between the newly chosen subquery
and those previously chosen ones.

Given a decomposition D ¼ fQ1; Q2; :::Qkg of query Q,
we need to determine a prefix-connected sequence over D,
which is in essence to select a join order. We provide a solu-
tion for this in Appendix D, available in the online supple-
mental material due to space limitations.

7 MATCH-STORE DAG

In this section,we proposeMatch-StoreDAG (MS-DAG) to fur-
ther reduce the space cost for storing partial matches. To illus-
trate our optimization more explicitly, we focus on how to
transfer thoseMS-trees into amuchmore condensedMS-DAG.

Consider a query Q and a TC Decomposition D ¼ {Q1,
Q2; . . . , Qk}. Let Li ¼ {L1

i , L
2
i , . . . , L

jQij
i } (i > 0) denote the

expansion list over TC-subquery Qi and L0 over {Q1, Q2; . . . ,
Qk}. Also, assume thatMi (0 � i � k) is the MS-tree for storing
partial matches in Li. We transfer theMS-trees into aMS-DAG
based on two important observations. We first illustrate these
two observations, based on which we will further discuss how
we conduct the transfer. Thenwe present the adjustment of the
corresponding algorithms and illustrate that there is no drop
on time efficiency after transferringMS-trees intoMS-DAG.

7.1 Merge M0 intoM1

7.1.1 Intuition

Observation 1. There is a one-to-onemappingbetweennodes
of depth jQ1j inM1 and that of depth 1 (first level) inM0.

In fact, according to our insertionmethod, once a newmatch g
ofQ1 is found, a new leaf node will be added inM1 and in the
meantime, we need to insert a new node (of depth 1) in M0

corresponding to g. For example, node n31 in Fig. 9 corresponds
to node n10 in Fig. 10while node n41 corresponds to node n20.

7.1.2 Transfer

Based on Observation 1, we can directly replace each node
of depth 1 in M0 with the corresponding leaf node in M1. In
other words, we can merge M0 into M1. We use M 0

1 to
denote the new M1. In the running example, the M 0

1 is pre-
sented in Fig. 12a and we can see that we merge M0 into M1

by replacing n10 with n31 while n20 with n41.

7.1.3 Algorithm Adjustment

Since M0 is merged into M1, we only need to consider how
to access (read/insert/delete) partial matches that were pre-
viously stored inM0 overM

0
1.

Theorem 7. Consider a node n of depth d in M0 and the corre-
sponding partial match g (i.e., the path from root to n constitute
g ). After merging M0 into M1, the partial match formed by the

Fig. 12. MS-treeM 0
1 formed by mergingM0 intoM1.
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path from the root of M 0
1 to n is exactly g, and the depth of n in

M 0
1 is jQ1j þ d� 1.

For example, n51 in M 0
1 (Fig. 12a) is exactly the node n30 in

M0 (Fig. 10). Depth of n51 is 3þ 1¼ 4 and the path {root !
n11 ! n21 ! n31 ! n51} exactly constitutes {s1, s3, s4, s7, s8} as a
match of Q1 [Q2. Thus, to read a partial match g that was
previously stored inM0 as node n, we can just still backtrack
from n in M 0

1 to get the whole path from the root to n: {root
! n1::: ! nx! n}. While, to insert g, according to our inser-
tion, nx must be already in M 0

1 and we need just to add n as
a child of nx. Also, with Theorem 7, we can see that deleting
n (when expired) can still be finished by removing the sub-
tree rooted in n. Hence, the way to access nodes of depth
not less than jQ1j inM 0

1 is almost the same as that overM0.

7.2 Virtual Node

7.2.1 Intuition

Observation 2. Consider a node n of depth jQ1j þ d (d > 0)
in M 0

1 and the corresponding partial match g ¼ fg1, g2, 	 	 	
gdþ1g for subquery Q1[	 	 	 [Qdþ1 where gi matches Qi

(1 � i � dþ 1). Then gdþ1 (the partial matches stored in n)
can be constituted by the branch from root of Mdþ1 to
some leaf node (of depth jQdþ1j).

For example, in Fig. 12a, partial match {s7, s8} in node n51 (of
depth 4) exactly corresponds to the branch from root to
node n22 ofM2 in Fig. 12b.

7.2.2 Transfer

Thus, for eachnode n ofM 0
1 whose depth is jQ1j þ d, we can just

replace the partial match stored in node n with a virtual node
pointing to the corresponding leaf node in Mdþ1. For example,
in Fig. 13, we use red dotted square to denote all virtual nodes.
We canfind that allMS-trees aremerged into aMS-DAG.

7.2.3 Algorithm Adjustment

We only need to consider the access of some new partial
match g for subquery Q1[	 	 	 [Qdþ1 (d > 0). According to
Observation 2, there is a branch froot ! n1 ! n2::: !
njQdþ1jg from root of Mdþ1 to leaf node njQdþ1j. We can hence
create a virtual node nx in Ldþ1

0 (of depth dþ 1 in M 0
1) and

mark a link from nx to njQdþ1j. When we access nx, we can
easily backtrack from node njQdþ1j in Mdþ1 to get partial
match g using the link. For example, in Fig. 13, for partial
match fs7; s8g (of Q1 [Q2), the corresponding branch in M2

is fn12 ! n2ng. We can see that there is a virtual node n51 with
link to n22. When we access n51, we can follow the link and

backtrack from node n22 to get partial match fs7; s8g. Appar-
ently, we need no adjustment for deletion operation since
we can just remove those related virtual nodes.

7.3 Analysis

We discuss the space improvement and time efficiency of
MS-DAG, as well as some possible issues that need to be
addressed for concurrent computation over it.

For space reduction, the improvement lies in reducing
space cost of partial matches in L0 (M0). Assume that the
number of partial matches in Li

0 (1 � i � k) is �i. Previous
space cost for M0 is Sk

j¼1ð�j �OðjQjjÞÞ. While, in MS-DAG,
the space cost for storing partial matches of L0 is Sk

j¼1ð�j �
Oð1ÞÞ, whereOð1Þ denotes a constant cost for pointers of vir-
tual nodes. We can see that the space cost is significantly
reduced.

There is no drop in the time efficiency for computation
(read, insertion and deletion) over MS-DAG compared that
over MS-trees. It is obvious that complexity of insertion and
deletion are the same as that over MS-trees according to our
method. The difference lies in reading partial matches in L0

(i.e., nodes whose depth is larger than jQ1j in M 0
1). Consider

a partial match g in Li
0, when reading g over MS-tree M0, we

need just directly access the corresponding node to read the
entire g, which costs OðjgjÞ (i.e.,OðOUTPUT Þ) time. For g
over MS-DAG, the corresponding (virtual) node only con-
tains a link to a leaf node in Mi, from which we backtrack to
get the entire g. In fact, the backtracking also costs only
OðjgjÞ time. For example, over MS-DAG, to access the corre-
sponding partial match of n51 (i.e. {s1, s3, s4, s7, s8}), we
need to backtrack from node n22 in M2 (Fig. 13) to get {s7,
s8}, and then further backtrack in M 0

1 from n51 to n31 (for s4),
n21 (for s3) and n11 (for s1). While inM0 (Fig. 10), we just need
to backtrack from n30 to n10 to get the partial match. The time
cost of both are linear in the size of partial matches and
hence no improvement in time happens.

7.4 Concurrent Consistency Guaranteed

We need only a trivial adjustment to what we present in
Section 5 for concurrent computation over MS-DAG. Since
insertion and deletion for partial matches stored in
MS-DAG are the same as that in MS-trees, we focus on the
reading partial matches and the corresponding possible con-
current computing issues. According to Theorem 5, we can
see that during the backtrack for reading partial matches, the
inconsistency could be caused by reading a node that has
already been removed and we design a new deletion method
to avoid inconsistency of this kind. Thus, for a node n in MS-
DAG, no inconsistency would happen if the backtrack is only
over n’s precedents. However, the backtracking from virtual
nodes in MS-DAG need further backtrack from some leaf
node of someMi. In fact, it is easy to see that the further back-
tracking is just symmetrical to that over precedents with
regard to consistency. Since the backtrack over precedents
will not cause inconsistency, the reading partial matches in
MS-DAGwill neither cause any inconsistency.

8 EXPERIMENTAL EVALUATION

We evaluate our solution against comparable approaches.
All methods are implemented in C++ and run on a CentOS

Fig. 13. MS-DAG and the corresponding virtual nodes.
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machine of 128G memory and two Intel(R) Xeon(R) E5-2640
2.6 GHz CPU. Codes are available at [21].

We use three datasets in our experiments: real-world net-
work traffic dataset, wiki-talk network dataset and synthetic
social stream benchmark. Due to space limits, the experi-
mental results over wiki-talk are presented in Appendix
C.1, available in the online supplemental material. The
anonymous network traffic data contains about 500 millions
communication records (edges) concerning about 2 million
IP addresses (vertices). Linked Stream Benchmark [22] is a
synthetic streaming social graph data on user’s traces and
posts information. This dataset contains 209,549,677 edges
and 37,231,144 vertices.

We generate 300 queries of different query sizes and
timing order for each dataset in our experiments. More
detail on query generation are available in Appendix F,
available in the online supplemental material. There are 5
different window sizes in our experiments: 10K, 20K,
30K, 40K and 50K where each unit of the window size is
the average time span between two consecutive arrivals of
data edges in the dataset.

8.1 Comparative Evaluation

Since none of the existing works support concurrent execu-
tion, all codes (including ours) are run as a single thread; the
evaluation of concurrency management is in Section 8.2. Our
method, denoted as Timing, is compared with a number of
related works. SJ-tree [1] is the closest work to ours. Since it
does not handle the timing order constraints, we verify
answers from SJ-tree posteriorly with the timing order con-
straints. IncMat [12] conducts static subgraph isomorphism
algorithm when update happens over streaming graph. We
apply three different state-of-the-art static subgraph isomor-
phism algorithms to IncMat, including QuickSI [7], TurboISO
[8], BoostISO [9]. These methods are conducted over the
affected area (see [12]) window by window. To evaluate the
effectiveness of MS-DAG, we also compare our approach
with a counterpart without MS-DAG (called Timing-IND)

where every partial match is stored independently. We also
compare our algorithm with previous version [23]. Due to
space limits, we evaluate our TC Decomposition strategy in
Appendix C.2, available in the online supplemental material.
Note that the reported latency is the average time to handle an
edge, i.e., edge insertion/deletion for updating answers.

8.1.1 Time Efficiency Comparison

Figs. 14 and 15 show that our method is clearly faster than
other approaches over different window sizes and query
sizes, respectively. The reason for the superior performance
of our method lies in two aspects. First, our method can filter
out lots of discardable partial matches based on the timing
order constraint. Second is the efficiency ofMS-DAGmainte-
nance algorithms. For example, the deletion algorithm is lin-
ear to the total number of expired partial matches; while in
SJ-tree, all partial matches need to be enumerated to find the
expired ones. SJ-tree needs to maintain lots of discardable
partial matches that can be filtered out by our approach. Fur-
thermore, SJ-tree needs post-processing for the timing order
constraint, which also increases running time. Also, Since
Timing-IND does not use MS-DAG to optimize the space
andmaintenance cost, it is not as good as Timing.We can see
that the time efficiency of Timing-Prev and Timing is the
same.

8.1.2 Space Efficiency Comparison

We compare the systems with respect to their space costs.
Since the streamingdata in the timewindow changes dynami-
cally, we use the average space cost in each time window as
the metric of comparison, as shown in Figs. 16 and 17. We can
see that both Timing-IND and Timing havemuch lower space
cost than comparative approaches. Our method is more effi-
cient on space than SJ-tree because SJ-tree does not reduce the
discardable partial matches, which wastes space. Ourmethod
only maintains partial matches without graph structure in the
timewindow. However, QuickSI, TurboISO and BoostISO need

Fig. 14. Latency over different window size.

Fig. 15. Latency over different query size.

Fig. 16. Space over different window size.

Fig. 17. Space over different query size.
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to maintain the graph structure (adjacent list) in eachwindow
to conduct search. Also, these comparative methods can not
reduce discardable edges that will never exist in any partial
match, which results inwasting space. Finally, we can see that
our method outperform previous version (Timing-Prev)
because of the proposed optimizations.

8.2 Concurrency Evaluation

We evaluate our concurrency technique in this section by
varying the number of threads running in parallel. We use
Timing-N to differentiate different settings of parallel threads
(N). We also implement, for comparison, a locking mecha-
nism that requires a thread to obtain all locks before it is
allowed to proceed (called All-locks-N). We present the
speedup over single thread execution in Figs. 18 and 19. We
can see that our locking strategy outperforms All-locks-N . As
the number of threads grows, the speedup of our locking
mechanism improves, while the speedup of All-locks-N
remains almost the same. Fig. 19 also shows that speedup of
our solution improves as the query size gets larger. In fact, the
larger the query size, the more items tend to be in the corre-
sponding expansion lists, which further reduces the possibil-
ity of contention. Fig. 20 presents speedup of our solution
over different number of threads for each window size.
Speedup over different window size show little difference.
Also, for each curve formed by increasing number of threads,
speedup grows significantly when there are less than 6
threads, while, once the thread number is more than 6,
speedup grows much slower. Locking mechanism over finer-
grained data unit (single partial match, for example) would
be an interesting futurework.

9 CONCLUSION

The proliferation of high throughput, dynamic graph-
structured data raises challenges for traditional graph data
management techniques. Thiswork studies subgraph isomor-
phism issueswith the timing order constraint over high-speed
streaming graphs. We propose an expansion list to efficiently

answer subgraph search and propose MS-tree to greatly
reduce the space cost.More importantly,we design effectively
concurrencymanagement in our computation to improve sys-
tem’s throughput. To the best of our knowledge, this is the
first work that studies concurrencymanagement on subgraph
matching over streaming graphs. Finally, we evaluate our
solution on both real and synthetic benchmark datasets.
Extensive experimental results confirm the superiority of our
approach comparedwith the state-of-the-arts subgraphmatch
algorithms on streaming graphs.
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