
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 1

Graph Stream Sketch: Summarizing Graph
Streams with High Speed and Accuracy

Xiangyang Gou, Lei Zou, Chenxingyu Zhao and Tong Yang

Abstract—A graph stream is a continuous sequence of data items, in which each item indicates an edge, including its two endpoints
and edge weight. It forms a dynamic graph that changes with every item. Graph streams play important roles in cyber security, social
networks, cloud troubleshooting systems and more. Due to the vast volume and high update speed of graph streams, traditional data
structures for graph storage such as the adjacency matrix and the adjacency list are no longer sufficient. However, prior art of graph
stream summarization either supports limited kinds of queries or suffers from poor accuracy of query results. In this paper, we propose
a novel Graph Stream Sketch (GSS for short) to summarize the graph streams, which has linear space cost O(|E|) (E is the edge set
of the graph) and high update speed, and supports most kinds of queries over graph streams with controllable errors. Experimental
results show that our solution is up to 142 times faster than the adjacency list when processing updates in graph streams, and its
memory consumption is as small as 30% of the adjacency list. Though error is introduced as a trade off in our solution, both theoretical
analysis and experiment results confirm that such error is small and controllable. The relative error is below 10−2 in edge weight query,
and the precision is above 90% is 1-hop precursor/successor queries.

Index Terms—graph, data stream, sketch, approximate query

✦

1 INTRODUCTION

IN the era of big data, data streams propose new chal-
lenges to existing systems. Furthermore, the traditional

data stream is modeled as a sequence of isolated items, and
the connections between these items are rarely considered.
However, in many data stream applications, the connec-
tions often play important roles in data analysis, such as
finding malicious attacks in network traffic data, mining
news spreading paths among social networks. In these cases
the data are organized as graph streams. A graph stream is
an unbounded sequence of items, in which each item is
denoted as (

−→
s, d;w; t), where

−→
s, d represents an edge from

nodes s to d, w is the edge weight and t is the times-
tamp. These data items together form a streaming graph that
changes continuously. Note that, for ease of presentation,
we use the terms “graph stream” and “streaming graph”
interchangeably in this paper. Below we discuss an example
to demonstrate the usefulness of streaming graphs.
Use case 1: Network traffic. The network traffic can be seen
as a large streaming graph, where each edge indicates the
communication between two IP addresses. With the arrival
of packets in the network, the network traffic graph changes

• Xiangyang Gou is with Peking University, China.
E-mail: gxy1995@pku.edu.cn

• Lei Zou is with Peking University, Beijing Institute of Big Data Research
and National Engineering Laboratory for Big Data Analysis Technology
and Application (PKU), China.
E-mail:zoulei@pku.edu.cn

• Chenxingyu Zhao is with Peking University, China.
E-mail: dkzcxy@pku.edu.cn

• Tong Yang is with Peking University, China.
E-mail: yangtongemail@gmail.com

• This work was supported by NSFC under grant 61932001 and
U20A20174. The corresponding author of this work is Lei Zou
(zoulei@pku.edu.cn).

rapidly and constantly. In the network traffic graph, various
kinds of queries are needed, like performing node queries
to find malicious attackers, or subgraph queries to locate
certain topology structures in the dynamic network.
Use case 2: Social networks. In a social network, interactions
among users form a streaming graph. Edges between differ-
ent nodes are weighted by the frequencies of interactions. In
such a graph, queries like finding the potential friends of a
user and tracking the spreading path of a piece of news are
often needed.

Many real-world streaming graphs have large sizes
and high throughput. For example, in large ISP or data
centers[1], there could be millions of packets every second.
The large volume and high dynamicity make it hard to store
the whole graph stream efficiently with traditional data
structures, such as adjacency lists or adjacency matrices.
Considering the above graph streaming applications, there
are two requirements for designing a new data structure :
(1) linear space cost; and (2) high update speed. There have
been works for graph summarization based on grouping
nodes or edges with similar neighborhood, like [2], [3], but
they either do not support updates or have a low update
speed. Approximate data structures for traditional data
streams, like CM sketch[4] and other sketches [5], [6] can
also be considered, but they support limited query types. In
recent years, data structures for approximate graph stream
summarization with high speed are also proposed, like TCM
[7] and gMatrix [8]. But their accuracy is quite low. More
related work is discussed in Section 2.

In this paper, we design a novel data structure–Graph
Stream Sketch (GSS for short) to support most kinds of
queries over streaming graphs with controllable errors in
query results. Both theoretical analysis and experiment re-
sults show that the accuracy of our method outperforms
state-of-the-arts by orders of magnitude.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2

1.1 Our Solution
In this paper, we propose an approximate data structure
(GSS) for graph streams with linear memory usage, high
update speed and high accuracy. Moreover, GSS supports
most kinds of graph queries and algorithms.

Like TCM, GSS uses a hash function H(·) to compress
a streaming graph G into a smaller one Gh, named a graph
sketch. Each node v in G is hashed to H(v). Nodes in G with
the same hash value are condensed into one node in Gh,
and the edges connected to them are also aggregated. An
example of the graph stream G and the graph sketch Gh can
be referred in Figures 1 and 2, respectively. The compression
ratio can be controlled by the hash range of H(·) (denoted
as M). Obviously, the higher the compression ratio is, the
lower the accuracy is.

TCM uses the adjacency matrix to store the graph sketch.
However, the adjacency matrix is far from memory efficient
when storing large sparse graphs. Its memory usage is
O(|V |2), where |V | is the number of nodes. In order to
control the memory usage, TCM has to heavily compress
the streaming graph, resulting into low accuracy.

In GSS, we design a novel data structure to store the
graph sketch, which combines fingerprints and hash ad-
dresses to distinguish nodes and edges. Compared to the
adjacency matrix, it has higher memory efficiency and can
store a larger graph sketch with the same space. It also
achieves high update speed. We further propose a technique
called square hashing, which makes the data structure more
compact and improves both space and time efficiency.

Note that GSS is designed to support various kinds of
queries upon the streaming graph, thus we propose three
query primitives based on GSS. They are edge query, 1-hop
successor query and 1-hop precursor query. In Section 7,
we propose several variants which improve the efficiency of
these query primitives, especially the successor query and
the precursor query.

To summarize, we made the following contributions:

1) We propose GSS, a novel data structure for graph
stream summarization. It has small memory usage,
high update speed, and supports most kinds of
queries over streaming graphs.

2) We propose a technique called square hashing. It
helps to compact the data structure of GSS, which
improves update speed and reduces memory cost.

3) We define three graph query primitives supported
by GSS. Almost all algorithms for graphs can be
implemented with these primitives. In order to
further improve these query primitives, especially
the successor query and the precursor query, we
propose several improved versions of GSS.

4) We conduct theoretical analysis and extensive ex-
periments to evaluate the performance of GSS,
which show that GSS outperforms state-of-the-art
in terms of query accuracy and system throughput.

2 RELATED WORK

Graph summarization and graph sketches have been inves-
tigated for years. They can be divided into three kinds:

The first kind summarizes the graph by grouping nodes
and edges with similar neighborhood. For example, Fan

et.al. [2] propose query-specific functions to group equiv-
alence nodes, so that the compressed graph can answer
specific queries without loss. Raghavan et.al. [9] propose a
2-level compressed representation of web graphs based on
grouping small sets of web pages. Riondato et.al. [10] build
connection between graph summarization and geometric
clustering problems, and propose a lossy group-based graph
summarization algorithm with accuracy guarantee. How-
ever, most of these works do not support dynamic graphs.
Though a small part of algorithms in this kind support
incremental summarizing, they still have a low speed due
to the high cost of discovering similar nodes or edges.
In Section 8.6, we compare the state-of-the-art incremental
graph summarization method, MoSSo [3] with our work,
and the result shows that it is up to 103 times slower.

The second kind summarizes the graph by selectively
extracting edges and nodes. These algorithms only keep
essential data to provide approximations of certain graph
metrics, like sparsifiers for edge cut approximation and
spanners for node distance approximation. For example,
Peleg et.al. [11] build a k-spanner where the estimated node
distance is within k times of the true value. And Spielman
et.al. [12] build sparsifiers by sampling edges according to
their effective resistance. Recent work has extended this
kind to graph streams, like estimating maximum match-
ing size [13], building sparsifiers and spanners [14], [15]
and maintaining dense subgraphs [16] in graph streams.
However, these algorithms can only answer typical kinds
of queries, as a large fraction of graph data is lost.

The third kind encodes the graph in bit level, like
reordering edges [17] and bipartite minimum logarithmic
arrangement [18], but they do not support graph updates.

More graph summarization algorithms can be referred
in [19]. Besta et.al. [20] also propose a programming model
that can combine different graph summarization methods.

There are some other works which aim to support cer-
tain kinds of continuous queries like triangle counting or
subgraph matching [21], [22], [23], and systems which aim
to provide high query performance while supporting graph
updates, like [24], [25], [26], [27], [28]. They are built upon
traditional graph storage structures like adjacency lists, and
focus on query strategies. On the other hand, we aim to
design a new graph storage structure which is more suitable
for high-throughput graph streams. Therefore, we position
our work as a competitor of the adjacency list rather than
these works. As will be discussed in Section 8.6, we exper-
imentally compare our algorithm GSS with the adjacency
list. The results show that the memory usage of GSS is only
30% ∼ 50% of the adjacency list, and the update speed of
GSS is up to 142 times higher than the adjacency list. This
confirms the superiority of GSS in storing high-throughput,
large-volume graph streams. More related work about sys-
tems and query algorithms upon streaming graphs can be
referred in [29], [30], [31].

Multiple variants of the graph stream models are also
proposed. For example, semi-streaming model [32] allows
algorithms to process the graph data in multiple passes. This
model suits the situation where large static graphs are stored
on the disk. Algorithms can scan the graph multiple times
from the disk, but cannot store it in memory. On the other
hand, we define graph streams as sequences of edges arriv-

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 3

ing from data sources like internet, and we can only process
them in one scan. Other variants include W-stream model
[33] which allows stream manipulations across passes and
stream-sort model [34] which allows stream sorting passes.

Data stream summarization has been another hot topic
for years. Related work usually uses hash-based method to
build compact data structures like counter arrays or bit ar-
rays to summarize the data stream and provide approximate
support to certain kinds of queries, like the CM sketch[4],
the CU sketch[35] and so on [36], [5], [6].

In our paper, we follow the idea of applying techniques
of data stream summarization to graph streams. We de-
fine the graph stream summarization problem as designing
a data structure with linear memory usage, high update
speed, and provides graph query primitives to support
various kinds of graph queries. In this scenario, TCM [7]
is the state-of-the-art for graph stream summarization. It
uses a hash function H(·) to compress the streaming graph
G = (V,E) into a smaller graph sketch Gh. For each node
v in G, TCM maps it to node H(v) in Gh. For each edge
e =

−→
s, d in G, TCM maps it to edge

−−−−−−−→
H(s), H(d) in Gh. The

weight of an edge in Gh is an aggregation of the weight of all
edges mapped to it. Then TCM uses an adjacency matrix to
represent the graph sketch. When the memory is sufficient,
we can also build multiple sketches with different hash
functions, and report the most accurate value in queries.

If we represent the size of the value range of H(·) with
M , we need to build an M ×M adjacency matrix. To satisfy
the demand on memory usage, the size of the matrix, M ×
M has to be within O(|E|), which means M ≪ |V | for
a sparse streaming graph. This means the graph sketch is
much smaller than G, leading to heavy hash collisions and
poor accuracy in TCM. Following works include [8], [37],
[38] which extend TCM to labeled graphs or heavy hitter
queries, but the problem of poor accuracy still remains.

3 PROBLEM DEFINITION

Definition 1. Graph Stream: A graph stream is an
unbounded time evolving sequence of items S =

{e1, e2, e3......en}, where each item ei = (
−→
s, d; t;w) indi-

cates a directed edge 1 from node s to node d, with wight
w. The timepoint ti is also referred as the timestamp of
ei. Thus, the edge streaming sequence S forms a directed
graph G = (V,E) that changes with the arrival of every
item ei, where V and E denote the set of nodes and
the set of edges in the graph, respectively. We call G a
streaming graph for convenience.

In a graph stream S, an edge
−→
s, d may appear multiple

times with different timestamps. The weight of such an edge
in the streaming graph G is SUM of weight of all these
occurrences. In the majority of the paper, we suppose that
the weight of each item, w, is a positive number. It means
the stream only inserts edges but does not remove them.
This insertion-only model applies to scenarios like network
monitoring (IP as nodes and communications as edges) and
social network monitoring (user as nodes and interactions as
edges). GSS can be used to summarize data arriving in such

1. The approach in this paper can be easily extended to handle
undirected graphs.

streams in a period like days or weeks. In Section 5.2.1, we
will further extend GSS to streams with negative weight and
edge deletions. We also discuss how to handle graph with
edge labels in Appendix C of the supplementary materials.

Fig. 1. An example of the graph stream

Example 1. An example of the graph stream, S, and the
corresponding streaming graph G are both shown in
Figure. 1. If an edge appears multiple times, the weight
of these occurrences is added up as stated above.

In practice, G is usually a large, sparse and high speed
dynamic graph. The large volume and high dynamicity
make it hard to store graph streams using traditional data
structures such as adjacency lists and adjacency matrices.
The large space cost of O(|V |2) rules out the possibility
of using the adjacency matrix to represent a large sparse
graph. On the other hand, the adjacency list has O(|E|)
memory cost, which is acceptable. However, the time cost of
updating is O(|V |), as we have to search for the edge first,
in order to determine if we should add a new edge, or just
modify the weight of an existing edge. This is unacceptable
due to the high speed of the graph stream.

The goal of our study is to design a linear space cost data
structure with efficient update algorithm over high speed
graph streams and support to various kinds of queries. To
meet that goal, we allow some approximate query results
but with small and controllable errors. However, prior solu-
tions for graph summarization / data stream summariza-
tion / graph stream summarization suffer from different
problems, like low update speed or even cannot update [2],
[3], limited query types [4], [39] or low accuracy [7], [8].
Therefore, in this paper, we design a novel graph stream
summarization strategy.

Formally, we define our graph stream summarization prob-
lem as follows.

Definition 2. Graph Stream Summarization: Given a
streaming graph G = (V,E), the graph stream summariza-
tion problem is to design a compact data structure DS
to represent the streaming graph, where the following
conditions hold:

1) The space cost of DS is O(|E|);
2) DS changes with each new arriving data item in

the streaming graph and the time complexity of
updating DS should be as small as possible;

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 4

3) DS supports various queries over the streaming
graph G with small and controllable errors.

In order to support various kinds of graph queries, we
define three graph query primitives.
Definition 3. Graph Query Primitives: Given a graph

G(V,E), the three graph query primitives are:

• Edge Query: given an edge e =
−→
s, d, return its weight

w(e) if it exists in the graph and return −1 if not.
• 1-hop Successor Query: given a node v, return a set

of nodes that are 1-hop reachable from v, and return
{−1} if there is no such node;

• 1-hop Precursor Query: given a node v, return a set
of nodes that can reach node v in 1-hop, and return
{−1} if there is no such node.

With these primitives, we can retrieve all information in
the streaming graph. Connection of nodes can be retrieved
by 1-hop successor queries and 1-hop precursor queries. The
weight of the edges can be retrieved by edge queries. There-
fore, all kinds of queries and algorithms can be supported
with these primitives. The notations used in this paper are
shown in Appendix A of the supplementary materials.

4 GSS: BASIC VERSION

In this section, we describe a conceptually simple scheme to
help to illustrate intuition and benefit of our approach. The
full approach, presented in Section 5, is designed with more
optimizations. To produce a graph stream summarization,
we first design a graph sketch Gh = (Vh, Eh) for the
streaming graph G, which is a smaller graph generated by
compressing G with hash functions.

We choose a hash function H(·) with value range [0,M),
and then Gh is generated as follows:

1) Initialization: Initially, Vh = ∅, and Eh = ∅.
2) Edge Insertion: For each edge e =

−→
s, d in E with

weight w, we compute hash values H(s) and H(d).
If either node H(s) or H(d) is not in Vh yet, we
insert it into Vh. Then we set H(e) =

−−−−−−−→
H(s), H(d). If

H(e) is not in Eh, we insert H(e) into Eh and set its
weight w(H(e)) = w. If H(e) is in Eh already, we
add w to the weight.

Gh is empty at the beginning and expands with every data
item in the graph stream. We can store ⟨H(v), v⟩ pairs with a
hash table to make this mapping procedure reversible. This
needs O|V | additional memory, as |V | ⩽ |E|, the overall
memory requirement is still within O(|E|).
Example 2. A graph sketch Gh for the streaming graph G

in Figure 1 is shown in Figure 2. The value range of the
hash function H(·) is [0, 32). In the example, nodes c and
g are mapped to the same node with ID 5 in Gh. In Gh,
the weight of edge

−→
2, 5 is 6, which is the summary of the

weight of edge −→a, c and edge −→a, g in G.

Obviously, the size of the value range of the map func-
tion H(·), which we represent with M , will influence the
size of the graph sketch. The generated graph sketch is
always no larger than the original streaming graph, as the
map function is a many-to-one map. The smaller M is,

Fig. 2. An example of the graph sketch

the smaller the graph sketch will become. Theoretically,
when M = σ × |V |, where |V | is the number of nodes
in the streaming graph, the generated graph sketch will
have (1 − e−

1
σ)σ|V | nodes. We can control the size of the

graph sketch by setting different M . We also transform the
original node IDs, which may be long strings, to integers
with log(M) bits with the map function. It helps us to save
space when storing the graph sketch.

However, it should be noted that when M becomes
smaller, we will have a higher probability to get a wrong
answer in queries, especially 1-hop successor query and 1-
hop precursor query. In Appendix B of the supplementary
materials, we demonstrate the theoretical results of the
relationship between M and the accuracy of the query
primitives with figures. The result shows that M has to be
much larger than |V | to get high accuracy in 1-hop successor
/ precursor queries.

TCM resorts to an adjacency matrix to represent Gh. In
this case, the matrix width m equals to M , i.e, the value
range of the map function. To keep the memory usage
within O(|E|) (Condition 1 in Definition 2), m must be less
than

√
|E|, that means m = M <

√
|E| ≪ |V | for a sparse

streaming graph. Large quantities of nodes will collide with
each other, leading to low accuracy. Our theoretical analysis
in Section 6.1 and experiments in Section 8 confirm this.

Fig. 3. An example of the basic version of data structure

Considering the above limitations, we design a novel
data structure for graph stream summarization, called GSS.
Definition 4. GSS: Given a streaming graph G = (V,E),

we have a hash function H(·) with value range [0,M)
to map each node v in graph G to node H(v) in graph
sketch Gh. Then we use the following data structure to
represent the graph sketch Gh:

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 5

1) GSS consists of a size m × m adjacency matrix X
and an adjacency list buffer B for left-over edges.

2) For each node H(v) in sketch graph Gh, we define
an address h(v)(0 ⩽ h(v) < m) and a fingerprint
f(v)(0 ⩽ f(v) < F) where M = m× F and h(v) =

⌊H(v)
F ⌋, f(v) = H(v)%F .

3) Each edge
−−−−−−−→
H(s), H(d) in the graph sketch Gh is

mapped to a bucket in the row h(s), column h(d)
of the matrix X . We record ⟨f(s), f(d)⟩ and w in the
corresponding bucket of the matrix, where w is the
edge weight and f(s), f(d) are fingerprints of the
two endpoints.

4) Adjacency list buffer B records all left-over edges in
Gh, whose expected positions in the matrix X have
been occupied by previous inserted edges.

When implementing a GSS for a graph stream, in order to
satisfy the O(|E|) memory cost requirement, we usually set
m = α ×

√
|E|, where α should be a constant approximate

to 1. To achieve high accuracy, we set M ≫ |V |. This can
be achieved by setting a large F , in other words, using long
fingerprints. When the memory is not sufficient, we can also
set smaller M with smaller m and F , but this will decrease
the accuracy.
Example 3. The basic version of GSS to store Gh in Figure 2

is shown in Figure 3. Here we set F = 8. The nodes in the
original streaming graph and their corresponding H(v),
h(v) and f(v) are shown in the table. In this example,
edge

−−→
2, 10 and edge

−−→
5, 18 in Gh are stored in the buffer

because of collisions with other edges.

In GSS, we store edges with different source nodes in
Gh in one row of the matrix, because the graph is sparse
and each node is usually connected to very few edges. We
can use fingerprints to distinguish them. It is similar in
columns. This idea of combining addresses and fingerprints
to distinguish different items is known as quotienting [40]
and is widely used in hash-based structures. Fingerprints
also help us to distinguish edges when they are mapped into
the same bucket. This enables us to apply a map function
with a much larger value range, and generate a much larger
graph sketch with the same matrix size as TCM.

5 GSS: AN OPTIMIZED VERSION

As we know, GSS has two parts: a size m×m matrix X and
an adjacency list buffer B for left-over edges. Obviously, we
only need O(1) time to insert an edge into X , but linear
time O(|B|) if the edge must go to the buffer B, where
|B| represents the number of all left-over edges. Therefore,
|B| influences both the memory and the time cost. In this
section, we design a solution, namely square hashing, to
reduce |B|. Then we further propose several improvements
to increase the update speed.

5.1 Square Hashing
In the basic version, an edge is pushed into buffer B if its
mapped position in the matrix X has been occupied. The
most intuitive solution is to find another bucket for it. We
further notice the highly skewed degree distribution in real-
world graphs, in which node degrees usually follow the

power-law distribution. In other words, a few nodes have
very high degrees, while most nodes have small degrees.
Consider a node v that has A out-going edges in the graph
sketch Gh. For a m × m adjacency matrix X in GSS (see
Definition 4), there are at least A −m edges that should be
inserted into buffer B, as these A edges must be mapped to
the same row (in X) due to the same source vertex v. These
high degree nodes lead to crowded rows and result in most
of the left-over edges. On the other hand, many other rows
are uncrowded. We have the same observation for columns
of matrix X . Is it possible to make use of unoccupied positions
in uncrowded rows / columns? It is the motivation of our first
technique, called square hashing.

For each node with ID H(v) = ⟨h(v), f(v)⟩ in Gh, we
compute a sequence of hash addresses {hi(v)|1 ⩽ i ⩽

r}, (0 ⩽ hi(v) < m) for it. Edge
−−−−−−−→
H(s), H(d) is stored in the

first empty bucket among the r × r buckets with addresses

{⟨his(s), hid(d)⟩|(1 ⩽ is ⩽ r, 1 ⩽ id ⩽ r)}

where his(s) is the row index and hid(d) is the column
index. We call these buckets mapped buckets for convenience.
Note that we consider row-first layout when selecting the
first empty bucket.

The following issue is how to generate a good hash
address sequence {hi(v)|1 ≤ i ≤ r} for a vertex v. There
are two requirements:

MIndependent: For two nodes v1 and v2, we use Pr to
represent the probability that ∀1 ≤ i ≤ r, hi(v1) = hi(v2).
Then we have Pr =

∏r
i=1 Pr(hi(v1) = hi(v2)). In other

words, the randomness of each address in the sequence will
not be influenced by others. This requirement will help to
maximize the chance that an edge finds an empty bucket
among the r × r mapped buckets.

MReversible: Given a bucket in row R and column C and
the content in it, we are able to recover the representation of
the edge e in the graph sketch Gh:

−−−−−−−→
H(s), H(d), where e is

the edge in that bucket. This property is needed in the 1-hop
successor query and the 1-hop precursor query. As in these
queries, we need to check the potential buckets to see if they
contain edges connected to the queried node v and retrieve
the other end point in each qualified bucket.

To meet the above requirements, we propose to use
linear congruence method [41] to generate a sequence of r
random values {qi(v)|1 ⩽ i ⩽ r} with f(v) as seeds. We
call this sequence the linear congruential (LR) sequence for
convenience. The linear congruence method is as following:
select a timer a, small prime b and a module p, then{

q1(v) = (a× f(v) + b)%p

qi(v) = (a× qi−1(v) + b)%p, (2 ⩽ i ⩽ r)
(1)

By choosing a, b and p carefully, we can make sure the
cycle of the sequence we generate is much larger than r,
and there will be no repetitive numbers in the sequence
[41]. Then we generate a sequence of hash addresses as
following:

{hi(v)|hi(v) = (h(v) + qi(v))%m, 1 ⩽ i ⩽ r} (2)

When storing edge
−−−−−−−→
H(s), H(d) in the matrix, besides

storing the pair of fingerprints and the edge weight, we also

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 6

store an index pair ⟨is, id⟩, supposing that the bucket has
an address ⟨his(s), hid(d)⟩. As the length of the sequence,
r, is small, the length of each index will be less than 4 bits.
Therefore storing such a pair will cost little.

Note that the hash sequence {qi(v)|1 ⩽ i ⩽ r} generated
by the linear congruence method are both independent and
reversible. The independence property has been proved in
[41]. We show how to recover the original hash value H(v)
based on the f(v), hi(v) and the index i as follows. First, we
compute the LR sequence {qi(v)} with f(v) following equa-
tion 1. Second, we use equation (h(v) + qi(v))%m = hi(v)
to compute the original hash address h(v). As h(v) < m,
the equation has a unique solution. At last we use H(v) =
h(v) × F + f(v) to compute H(v). Given a bucket in
the matrix, the fingerprint pair ⟨f(s), f(d)⟩ and the index
pair ⟨is, id⟩ are all stored in it, and we have his(s) = R,
hid(d) = C , where R and C are the row index and the
column index of the bucket in the matrix, respectively.
Therefore we can retrieve both H(s) and H(d) as above.

Fig. 4. An example of the modified version of data structure

Example 4. An example of the modified version is shown in
Figure. 4. In the matrix we store Gh in Figure. 2, which
is a graph sketch of G in Figure 1. In this example we
set F = 8, m = 4, r = 2, and the equation in the linger
congruence method is{

q1(v) = (5× f(v) + 3)%8

qi(v) = (5× qi−1(v) + 3)%8, (2 ⩽ i ⩽ r)
(3)

Compared to the basic version, in the modified version
all edges are stored in the matrix, and the number of
memory accesses we need to find an edge in the matrix
is within 22 = 4. In fact in the example we only need one
memory access to find most edges, and 2 for a few ones.

We illustrate four basic operators in GSS as follows.
Edge Updating: When a new item (

−→
s, d; t;w) comes in

the graph stream S, we map it to edge
−−−−−−−→
H(s), H(d) in the

graph sketch Gh with weight w. Then we compute two
hash address sequences {hi(s)} and {hi(d)} and check the
r2 mapped buckets with addresses {⟨hi(s), hj(d)⟩|1 ⩽ i ⩽
r, 1 ⩽ j ⩽ r} one by one. For a bucket in row his(s)
and column hid(d), if it is empty, we store the fingerprint
pair ⟨f(s), f(d)⟩, the index pair ⟨is, id⟩ and weight w in
it, and end the procedure. If it is not empty, we check
the fingerprint pair ⟨f(s′), f(d′)⟩ and the index pair ⟨i′s, i′d⟩
stored in the bucket. If the fingerprint pair and the index
pair are both equal to the corresponding pairs of the inserted
edge

−−−−−−−→
H(s), H(d), we add w to the weight in it, and end

the procedure. Otherwise it means this bucket has been
occupied by another edge, and we consider other hash
addresses following the hash sequence. If all r2 buckets have
been occupied, we store edge

−−−−−−−→
H(s), H(d) with weight w in

the buffer B.
Graph Query Primitives: The three graph query primi-

tives are supported as follows:
Edge Query: When querying an edge e =

−→
s, d, we map

it to edge
−−−−−−−→
H(s), H(d) in the graph sketch, and use square

hashing method to find the r2 mapped buckets and check
them one by one. Once we find a bucket in row his(s)
and column hid(d) which contains the fingerprint pair
⟨f(s), f(d)⟩ and the index pair ⟨is, id⟩, we return its weight
as the result. If we find no result in the r2 buckets, we search
the buffer for edge

−−−−−−−→
H(s), H(d) and return its weight. If we

still cannot find it, we return −1.
1-hop Successor Query: To find the 1-hop successors of a

node v, we map it to node H(v) in Gh. Then we compute
its hash address sequence according to H(v), and check the
r rows with index {hi(v)|1 ⩽ i ⩽ r}. If a bucket in row
his(v), column C contains fingerprint pair ⟨f(v), f(u)⟩ and
index pair ⟨is, id⟩, where f(u) is any integer in range [0, F)
and id is any integer in range [1, r], we use f(u), id and C
to compute H(u) as stated above. Then we add H(u) to the
1-hop successor set SS. After searching the r rows, we also
need to check the buffer to see if there are any edges with
source node H(v) and add their destination nodes to SS.
We return −1 if we find no result. Otherwise we obtain the
original node ID from SS by accessing the hash table which
stores ⟨H(v), v⟩.

1-hop Precursor Query: To answer an 1-hop precursor
query, we have the analogue operations with 1-hop succes-
sor query if we switch the columns and the rows in the
matrix X . The details are omitted due to space limit.

After applying square hashing, the edges with source
node H(v) in Gh are on longer stored in a single row, but
spread over r rows with addresses {hi(v)|1 ⩽ i ⩽ r}.
Similarly, edges with destination node H(v) are stored in
r different columns. These rows or columns are shared by
edges with different source nodes or destination nodes. The
higher degree a node has, the more buckets its edges may
take. This eases congestion brought by the skewed node
degree distribution. Moreover, as each edge has multiple
mapped buckets, it has a higher probability to find an empty
one. Obviously, square hashing will reduce the number of
left-over edges.

5.2 More Optimizations

5.2.1 Dealing with edge deletion

In this section, we extend GSS to graph streams with edge
deletions. We suppose the weight w in each item (

−→
s, d; t;w)

in the graph stream can be negative, which means to delete
a former item. When the weight of an edge in the streaming
graph is decreased to 0. It is deleted. 2 In this case the update
operator becomes as follows:

2. directly removing an edge e =
−→
s, d is equal to receiving an item

(
−→
s, d; t;−w(e)) where w(e) in the weight of e in current streaming

graph

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 7

Update with edge deletion: When a new item (
−→
s, d; t;w)

comes in the graph stream S, we map it to edge
−−−−−−−→
H(s), H(d)

in the graph sketch Gh. Then we find the r2 mapped buckets
and check them one by one. If we find a mapped bucket with
fingerprint pair and index pair equal to the corresponding
pairs of

−−−−−−−→
H(s), H(d), we add w to the weight in it. If the

weight becomes 0, we clear this bucket. If we find no
mapped bucket with matched fingerprint pair and index
pair, we further check the buffer for

−−−−−−−→
H(s), H(d). If we find

it in the buffer, we add w to its weight, and remove the edge
if its weight becomes 0. If we can neither find this edge in
the mapped bucket or the buffer, we insert it into the first
empty mapped bucket. If there is no empty mapped bucket,
we add it into the buffer.

Notice that different from update operator in Section
5.1. When we meet an empty mapped bucket, we cannot
directly insert

−−−−−−−→
H(s), H(d) into the bucket and end the

update procedure. Because
−−−−−−−→
H(s), H(d) may have arrived

before, but at that time, this bucket is occupied by another
edge, which is deleted later. Thus

−−−−−−−→
H(s), H(d) may be stored

in latter mapped buckets or the buffer. Therefore, we have
to check all the mapped buckets and the buffer to find out
if
−−−−−−−→
H(s), H(d) has arrived or not. As a result, when dealing

with deletion, the update speed of GSS will become lower.
But with the mapped bucket sampling technique described
in the following section, the decrement is not large. We
evaluate the update speed of GSS both with and without
deletion in Section 8.6.

5.2.2 Mapped Buckets Sampling
In the modified version of GSS, each edge has r2 mapped
buckets. In the worst case of an updating, we may need
to check all r2 mapped buckets. We can use a sampling
technique to decrease the time cost. Instead of check all the
r2 buckets, we select k buckets as a sample from the mapped
buckets. We call these buckets candidate buckets for short.
For each edge we only check these k buckets in updates
and queries, and the operations are the same as above. The
method to select these k buckets for an edge e is also a
linear congruence method, with the sum of the source node
fingerprint and the destination node fingerprint as seed.

5.2.3 Multiple Rooms
We can separate each bucket in the matrix into l segments,
and each segment contains an edge. We call each segment a
room for convenience. When performing the basic operators,
we use the same process as above to find the buckets we
need to check, and search all the rooms in them to find
qualified edges or empty rooms. Compared to enlarging the
matrix and select more candidate buckets, access to adjacent
rooms in a bucket is more cache-friendly. The multi-room
schema is also fully utilized when implementing GSS in
hardwares like FPGA, as will be discussed in details in
Section 7.3.

6 ANALYSIS

6.1 Accuracy Analysis
Recall that GSS uses two steps to summarize a graph stream.
In the first step, it uses a hash function H(·) to compress the

original streaming graph G into a graph sketch Gh. In the
second step, it stores the graph sketch with a novel data
structure. In the following sections, we will first prove that
the second step has no error. Then we will analyze the error
brought by the first step

First we prove that the storage of the graph sketch
Gh in the data structure of GSS is accurate. As the buffer
is an adjacency list that stores edges in Gh accurately, we
only need to check the matrix. We need to prove that each
occupied bucket of the matrix is uniquely possessed by one
edge

−−−−−−−→
H(s), H(d) in Gh. In other words, we need to prove

the following theorem:
Theorem 1. With the position and the content of a bucket in

the matrix of GSS, we can get a unique solution about
the ID of the stored edge.

As discussed in Section 5.1, given the position and
content of a bucket, we can recover a unique edge ID−−−−−−−→
H(s), H(d). The recovery procedure is discussed in detail
in Section 5.1, we omit it here to save space. When there are
multiple rooms in a bucket, though they share the same
position, they have different fingerprint pairs and index
pairs. We will not mix them up in queries. Therefore, the
storage of the graph sketch Gh is accurate.

Second, we analyze the error in the procedure of map-
ping G to Gh. We use P̄ (e1, e2) to represent the probability
of the following event:
Definition 5. Edge Collision: An edge collision between

streaming graph edge e1 and e2 means H(e1) = H(e2)
in the graph sketch Gh.

If e1 and e2 share no endpoints, we have P̄ (e1, e2) = 1
M2 .

Otherwise, if they have the same source / destination node,
we have P̄ (e1, e2) = 1

M , because they will collide if their
destination / source nodes have the same hash value.

Next, we will analyze the accuracy of the query primi-
tives with this probability.

For edge query, if the queried edge collides with other
edges, the query result will be larger than the true value. We
use Adj(e) to denote set of edges that share one endpoint
with e, and the sum of their weight is WAdj(e). E denotes
edges in the streaming graph G, but excluds e if e is in the
streaming graph. Note that the queried edge may not exist
in the streaming graph, and in this case the result of edge
query is −1. Then E − Adj(e) denotes the edges that share
no endpoints with e, we use WE−Adj(e) to represent sum
of their weight. The query result is correct if and only if all
other edges does not collide with e. For edges in Adj(e), the
probability that all of them do not collide with e is

Pr1 = (1− 1

M
)
|Adj(e)|

= e−
|Adj(e)|

M (4)

For edges in E −Adj(e), the probability that all of them do
not collide with e is

Pr2 = (1− 1

M2
)
|E−Adj(e)|

= e−
|E−Adj(e)|

M2 (5)

The correct rate of edge query is

CorrectRate(e) = Pr1 × Pr2 = e−
|E|+(M−1)×|Adj(e)|

M2 (6)

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 8

The expected error of edge query, namely the difference
between the queried result and the true value, is the sum of
weight of all edges that collide with e. which is

Error(e) =
WAdj(e)

M
+

WE−Adj(e)

M2
(7)

For 1-hop successor query, we use Suc(v) to represent
the successors of the query node v, and use Pre(u) to
represents the precursor set of a node u. Because the true
successors will definitely be reported, the potential error is
including false successors. The successor query result of v is
correct only if for each node u in V − Suc(v), edge −→v, u is
correctly reported as not existent. This probability is:

CorrectRatesuc(v) =
∏

u∈V−Suc(v)

CorrectRate(−→v, u)

=
∏

u∈V−Suc(v)

e−
|E|+(M−1)×|Adj(−−→u,v)|

M2

≈ e−
[|E|+(M−1)×(|Suc(v)|+ |E|

|V |)]×(|V |−|Suc(v)|)

M2

(8)

The precision of the 1-hop successor query, namely the
ratio of the true successors against the reported successors,
is

Precisionsuc(v) =
|Suc(v)|

|Suc(v)|+ FalseSuc(v)
(9)

where FalseSuc(v) represent the number of false succes-
sors, and the expected value is :

FalseSuc(v) =
∑

u∈V−Suc(v)

(1− CorrectRate(−→v, u))

=
∑

u∈V−Suc(v)

(1− e−
|E|+(M−1)×(|Suc(v)|+|Pre(u)|)

M2)
(10)

The 1-hop precursor query is similar to 1-hop successor
query. We only need to exchange the Suc(·) and Pre(·)
function in the formula. From the formulas we can see that
the larger M is, the higher the accuracy is. In GSS we have
M = m × F , where m is the width of the matrix, and F
is the maximum size of the fingerprints. For a matrix with
m = 1000 and 16-bit fingerprint, M can be as larger as
65536000, This guarantees the accuracy. On the other hand,
in TCM the accuracy analysis is the same as GSS, but we
have M = m. This lead to the difference in accuracy.

6.2 Buffer Size Analysis

After all the improvements, the buffer in GSS is very small.
The mathematical expression of the buffer size is very
complicated and is influenced by many details of the graph.
Therefore we give an expression of the probability that a
new edge e becomes a left-over edge, which means inserted
into the buffer, as a measurement. We use E to denote edges
already in the streaming graph before e arrives. The number
of edges in E is denoted as |E| = N for simplicity of
presentation in the following analysis. Adj(e) denotes edges
that have common source node or common destination node
with e. We suppose |Adj(e)| = D for simplicity. The width
of the matrix is m, and each bucket in the matrix has l

rooms. For each node we compute a hash address sequence
with length r. For each edge we choose k candidate buckets
among the r2 mapped buckets.

For each candidate bucket of e, as the edges in E−Adj(e)
are randomly inserted into the matrix with area m2, the
probability that there are a1 non-adjacent edges inserted into
it is:

p1(a1) =

(
N −D

a1

)
× (

1

m2
)
a1

× (1− 1

m2
)
N−D−a1

=

(
N −D

a1

)
× (

1

m2
)
a1

× e−
N−D−a1

m2

(11)

As the D adjacent edges in Adj(e) are randomly inserted
in an area of r ×m (r length-m rows mapped by the source
node of e or r length-m columns mapped by the destination
node of e), the probability that there are a2 adjacent edges
inserted into this bucket is:

p2(a2) =

(
D

a2

)
× (

1

r ×m
)
a2

× (1− 1

r ×m
)
D−a2

=

(
D

a2

)
× (

1

r ×m
)
a2

× e−
D−a2
r×m

(12)

The probability that there are already n edges inserted into
this bucket is:

p(n) =
n∑

a=0

p1(a)× p2(n− a) (13)

The probability that there are less than l edges inserted into
this bucket is:

Pr =
l−1∑
n=0

p(n)

=
l−1∑
n=0

n∑
a=0

p1(a)× p2(n− a)

=
l−1∑
n=0

n∑
a=0

(
N−D

a

)(
D

n−a

)
(
1

m2
)
a

(
1

rm
)
n−a

e−(N−D−a

m2 +D−n+a
rm)

(14)
This is also the lower bound that the bucket is still available
for e. The probability that e can not be inserted into the
matrix is the probability that all the k candidate buckets are
not available, which is:

P = (1− Pr)k (15)

Notice that this is an upper bound as we ignore collisions
in the map procedure from G to Gh. In Appendix B of
the supplementary materials, we demonstrate the curve of
left-over probability. According to the figure, the left-over
probability is below 1% in most times.

6.3 Time and Memory Cost Analysis
In this section, we analyze the space cost of GSS and the time
cost of primitives. The memory cost of GSS is O(|Eh|+ |B|),
where |Eh| is the number of edges in the graph sketch Gh

and |B| is the size of buffer, which are both below O(E).
When we use a hash table to store the original node IDs, ad-
ditional O(|V |) memory is needed, but the overall memory

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 9

cost is still O(|E|). The update time cost is O(k + |B|
|Eh| |B|),

where k is the number of sampled buckets. When an edge
is stored in the matrix, we only need to check at most k
candidate buckets, which takes O(k) time. Each edge has
probability |B|

|Eh| to be stored in the buffer. When it is stored
in the buffer, the update takes additional O(|B|) time, as the
buffer is an adjacency list. From the analysis in Section 6.2,
we know that the buffer size |B| is very small. Therefore the
time cost of this part is also small.

The time cost of queries is based on the algorithms
we use. We consider the time cost of the primitives as an
evaluation. The time cost of the edge query primitive is the
same as the update, and the time cost of the 1-hop successor
query and 1-hop precursor query is O(rm + |B|) in GSS,
where m is the width of the matrix and r is the length of
the hash address sequence. Because we have to scan r rows
/ columns and the buffer to find all successors / precursors
of a node. In Section 7, we will propose more improvements
and decrease the time cost of 1-hop successor query and
1-hop precursor query to O(mr + |B|).

7 ACCELERATING QUERY PRIMITIVES

Although GSS has achieved high update speed and small
memory usage, it still has performance issues. During suc-
cessor query and precursor query, we need to scan the
mapped rows or columns of a node, which is time consum-
ing. In order to decrease the cost, we propose an improve-
ment on the layout of the matrix. We partition the matrix
of GSS into multiple blocks, and the improved version is
called blocked GSS. Details will be discussed in Section 7.1.
Based on the blocked version, we propose two directions of
accelerating: GSS with node bitmaps in Section 7.2 and GSS
implemented with FPGA (Field Programmable Gate Array)
in Section 7.3.

7.1 Blocked GSS

 !(")

 #(")

 $(")

 !(%) #(%) $(%)

Mapped bucket Block

Fig. 5. The Matrix of blocked GSS

In the blocked version of GSS, we divide the matrix into
r × r blocks. These blocks are organized as r rows and
r columns, as shown in Figure 5. In order to distinguish
the rows / columns of blocks with the rows / columns of
buckets in each block, we represent the block row with BR
and block column with BC .

For each node H(v) in the graph sketch, we generate an
address list {hi(v)|1 ⩽ i ⩽ r} for it with the same procedure

as Equation 1 and 2. The only difference is that the value
range of the addresses is [0, m

r) rather than [0,m). For each

edge
−−−−−−−→
H(s), H(d) in the graph sketch, we map it to r × r

mapped buckets, one in each block. In the block of BR is
and BC id (1 ⩽ is ⩽ r, 1 ⩽ id ⩽ r), the mapped bucket
is located in row his(s) and column hid(d). Then we select
candidate buckets from the mapped buckets and store the
edge in the first empty candidate bucket. If all candidate
buckets are occupied, it is stored in the buffer.

Compared to non-partition version, there are also some
other differences in blocked GSS. When storing an edge,
we only store the fingerprint pair and the edge weight. The
index pair is not needed. Because the location of the block
implies the indexes ⟨is, id⟩. However, in order to keep the
value range M of the map function H(·) not changed, the
fingerprint has to be log(r) bits longer, as the range of the
hash address is r time smaller. Therefore the memory usage
does not change compared to the non-partition version.

7.2 Node bitmap

As stated above, most nodes in the graph have low degrees.
Their neighbors are stored in only a few blocks, and we
can record these blocks to narrow the search area in the 1-
hop successor / precursor query. For the 1-hop successor
query, we can use a bitmap to record whether a block stores
successors of a node. For each node H(v) in the graph
sketch, we assign a bitmap with r × r bits. The ith bit is set
to 1 if the block in BR i/r and BC i%r stores the successors
of H(v). Otherwise it is set to 0. It is the similar in the 1-hop
precursor query. The bitmaps can be stored in the same hash
table which stores the node IDs. Each node has 2 × r2 bits
more memory usage as a cost. We call GSS with such node
bitmaps GSSnb. With these bitmaps , we can only check the
blocks whose corresponding bits are 1 in the 1-hop successor
/ precursor query, which omits lots of unnecessary scan.

We also propose an alternative solution which uses less
memory, but also achieves less speed improvement. In this
solution, we use two r-bit bitmaps for each node in suc-
cessor query, corresponding to the block rows and block
columns, respectively. If an out edge of node H(v) in the
graph sketch is inserted in BR i and BC j, we set the ith bit
of the first bitmap and the jth bit of the second bitmap to 1.
In the 1-hop successor query, we check a block in BR i and
BC j if and only if both the ith bit of the first bitmap and
the jth bit of the second bitmap are 1. It is similar for the
1-hop precursor query. We call GSS with such short bitmaps
GSSsb for short. In GSSsb, we cannot know exactly which
block contains neighbors of a node, thus may perform some
vain scans. The speed of the 1-hop successor / precursor
query primitive will be 2-3 times slower than GSSnb, as
will be shown in Section 8.7.

Though GSSnb and GSSsb has higher query speed com-
pare to original GSS, they do not support edge deletions.
We cannot find out when to reset a bit in the node bitmap
to 0, as we cannot determine when a block, or block row
/ column does not contain neighbors of a node any more.
In the next section, we will propose another acceleration
solution, which supports deletion.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 10

7.3 Acceleration with FPGA
FPGA (Field Programmable Gate Array) plays an important
role in hardware acceleration because of its high parallelism
and low energy consumption. The matrix structure of GSS
has high fitness with FPGA. We can use FPGA to accelerate
the query primitives of GSS. An FPGA acceleration board
is composed of a chip and multiple memory banks. Each
memory bank has multiple ports connected with the chip,
allowing memory access in parallel. Nowadays, the global
memory provided by the memory banks can be as large as
64 GB, which is capable to store sketches of large graphs.

When implementing GSS on FPGA (we call it GSS-FPGA
for short), we map edges in the graph stream into edges in
the graph sketch with an encoder on the CPU host. We place
the matrix of GSS in the global memory of FPGA, and the
buffer is placed on CPU, as the adjacency lists cannot be
accelerated by parallelism or pipeline. Update and query in
the matrix are performed with kernels on the FPGA chip.
We separate blocks of the matrix among multiple memory
banks. Each block is bounded with an independent port, so
that we can access these blocks in parallel. As the number
of ports is limited, we can not divide the matrix into a large
number of blocks. In order to keep a high loading rate in
the matrix, we enlarge each bucket into multiple rooms as a
compensation. Using multiple rooms also helps to make full
use of the port width. Because the port width is 512-bit, we
can fetch multiple adjacent rooms in one memory access.

In GSS-FPGA, all primitives can benefit from the par-
allelism. In the 1-hop successor / precursor query, we can
scan different blocks in parallel, and in each block, buckets
in the mapped row / column can be checked in pipeline.
Therefore, we can achieve high speed without the cost of
storing bitmaps. The time cost of the 1-hop successor / pre-
cursor query is reduced to O(mr + |B|). In update and edge
query, the mapped buckets of an edge can also be checked
in parallel. Especially, in the edge query primitive, multiple
queries can be processed in pipeline, which leads to much
higher throughput compared with CPU implementation. On
the other hand, in the update primitive, the read of mapped
buckets and write back of them after updates induce read-
write lock, which prevents the update primitive from being
fully pipelined. Due to the low frequency of FPGA, the
update primitive is slower than CPU implementation. But
we can still achieve a speed of 1.7 million updates per
second, as shown in Section 8.7. Notice that because we can
scan all the mapped buckets in parallel, we do not need to
select candidate buckets in GSS-FPGA.

8 EXPERIMENTAL EVALUATION

In this section, we show our experimental studies of GSS.
In Section 8.4, we evaluate the accuracy of GSS in three
graph query primitives and compare it with TCM. In Section
8.5, we evaluate the buffersize of GSS. In Section 8.6, we
compare the update speed and memory usage of GSS with
TCM, adjacency lists and an incremental lossless graph
summarization method MoSSo [3]. In Section 8.7, we further
evaluate the optimizations proposed in Section 7. At last, we
evaluate the performance of GSS in graph analytic mission
Single Source Shortest Path (SSSP) in Section 8.8. In the sup-
plementary materials D, we present experiments on other

compound queries like triangle counting, reachability query
and subgraph matching. All experiments are performed on
a server with dual 18-core CPUs (Intel Xeon CPU E5-2697
@2.3 GHz, 2 threads per core) and 192 GB DRAM memory,
running CentOS. All algorithms including GSS and TCM
are implemented in C++. The codes are open sourced [42].
The code for MoSSo is provided by the original authors at
http://dmlab.kaist.ac.kr/mosso/.

8.1 Datasets

1)lkml-reply3.The first dataset is a collection of communi-
cation records in the network of the Linux kernel mailing
list. It contains 63399 email addresses (nodes) and 1096440
communication records (edges). 2)networkflow. The second
dataset is a collection of network packets downloaded from
a backbone router. It contains 445440480 communication
records (edges) concerning 2601005 different IP addresses
(nodes). 3)Twitter4.The third dataset is a network contains
Twitter follow data based on a snapshot taken in 2009. Each
node represents a user and each directed edge indicates that
a user follows another user. The original dataset is a static
dataset with no duplication, and it contains 52, 579, 682
nodes and 1, 963, 263, 821 edges. The highest node degree
in this dataset reaches 3, 691, 240. We randomly generate
duplication for its edges with zipf distribution. The du-
plicated dataset contains 3, 720, 775, 389 edges. For all the
three datasets, edges are weighted by their frequencies in
the dataset. We feed edges to the data structure in random
orders to simulate graph streams.

8.2 Metrics

Average Relative Error (ARE): ARE measures the accuracy
of reported weight in edge queries and reported distance
of node pairs in SSSP. Given a query q, the relative error is
defined as: RE(q) =

∣∣∣ ˆf(q)
f(q) − 1

∣∣∣ . f(q) and ˆf(q) are the real
answer and the estimated value of q. When giving a query
set, the average relative error (ARE) is measured by averaging
the relative error over all queries in it. A more accurate data
structure has smaller ARE.

Average Precision: We use average precision as the
evaluation metric in 1-hop successor / precursor queries.
Given such a query q, we use SS to represent the accurate
set of 1-hop successors / precursors of the queried node,
and ŜS to represent the set we get by q. As TCM and
GSS have only false positives, which means SS ⊆ ŜS, we
define the precision of q as Precision(q) = |SS|

|ŜS| . Average
precision of a query set is the average value of the precision
of all queries in it. A more accurate data structure has higher
Average Precision

Compression Ratio: It measures the effectiveness of
graph compression, defined as 1 - (memory usage after
compression)/(original memory usage with adjacency lists).

Buffer Percentage: It measures buffer size of GSS. Buffer
percentage is defined as the number of edges in the buffer
divided by the total number of edges in the graph stream.

3. http://konect.uni-koblenz.de/networks/lkml-reply
4. http://konect.cc/networks/twitter mpi/

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 11

8.3 Experiments settings
In experiments, we implement two kinds of GSS with differ-
ent fingerprint sizes: 12 bits and 16 bits, and vary the matrix
size. We use f to represent the fingerprint size. We apply
all improvements to GSS, and the parameters are as follows.
Each bucket in the matrix contains l = 8 rooms. For lkml-
reply and networkflow, the length of the address sequences
is r = 8, and the number of candidate buckets for each edge
is k = 4. For Twitter which is highly skewed, we set r = 16
and k = 8. As for TCM, we apply 4 graph sketches to
improve its accuracy. Its memory usage is 8 times larger
than GSS in lkml-reply and networkflow, and the same as
GSS in Twitter (due to short of memory). The hash tables
used in TCM and GSS to store ⟨H(v), v⟩, namely hash value
- original ID pairs are classic hash tables with linked lists to
address hash collisions. IDs with the same hash value are
organized as a linked list in the same key-value pair.

8.4 Experiments on Query Primitives
In this section, we evaluate the accuracy of GSS in the 3
graph query primitives. Figure 6, Figure 7, and Figure 8
show ARE of edge queries and average precision of 1-hop
precursor / successor queries respectively. We only show
the result of Twitter in 1-hop precursor / successor queries
due to space limitation. The edge query set contains all
edges in the graph stream, and the 1-hop precursor / suc-
cessor query set contains all nodes in the graph stream. The
x-axis of the figures is the matrix width of GSS with f = 16.
The other two data structures have the same memory usage
(or 8 times memory usage for TCM in lkml-reply and
networkflow). The results show that GSS performs much
better in supporting these query primitives than TCM. In
fact the precision of 1-hop precursor / successor queries of
TCM in a dataset as large as Twitter is nearly 0. On the other
hand, with 16-bit fingerprint GSS can always get ARE below
10−2 in edge queries and average precision beyond 90% in
1-hop precursor / successor queries.

8.5 Experiments on Buffer Size
In this section, we evaluate the buffer size of GSS(f = 16).
Figure 9 shows the buffer percentage in Twitter. The five
curves in the figure represent 1) GSS without square hashing
(no-SH). 2) GSS with square hashing and k = 2/4/8 candi-
date buckets. The x-axis is the width of the matrix. From
the curves, we can see that square hashing significantly
decreases the buffer size. With the increment of candidate
bucket number k, the buffer size also decreases, but the gap
shrinks as the matrix size grows. Besides, with k ⩾ 4 and
matrix width lager than 18000, the buffer size is smaller than
2%. Thus in most updates we do not need to use the buffer.

8.6 Memory and Speed Evaluation
In this section we evaluate the memory usage and update
speed of GSS. We compare the update speed of GSS, TCM,
adjacency lists and the state-of-the-art incremental lossless
graph summarization method MoSSo in Table 1. We com-
pare the memory usage of GSS and adjacency lists, and the
result is shown in Table 2. We also compare the compression
ration of MoSSo and GSS in Table 3.

TABLE 1
Update Speed (Mops)

Data Structure lkml-reply networkflow Twitter
GSS 5.1 5.67 1.58
GSS(with deletion) 5 3.93 1.04
TCM 1.4 0.03 TLE
TCM(without hash
table)

6.2 6.1 2.7

Adjacency Lists
(Successor)

0.43 1.7 0.03

Adjacency Lists
(Precursor)

0.33 0.04 TLE

MoSSo 0.012 0.005 TLE

For GSS we set the matrix width to be 200 in lkml-reply,
1200 in networkflow, and 18000 in Twitter. The fingerprint
length is 16, and other parameters are the same as above.
Former experiments show that GSS achieves nearly accurate
query results with these parameters. TCM uses 8 times
memory compared to GSS in lkml-reply and networkflow,
and the same memory as GSS in Twitter. Both GSS and TCM
use hash tables to store the original node IDs, but we also
present the speed of TCM without hash table. For MoSSo,
the parameters are set according to the recommendation of
the authors (escape probability set to 0.3 and number of
samples set to 120), details can be referred in [3]. As MoSSo
does not support duplicate edges and directed graphs, we
remove the edge duplication and edge direction in the three
datasets for MoSSo. For adjacency lists, in order to support
both the successor query and the precursor query, 2 sets
of lists are needed for each graph. The first set stores the
successor lists, and the second set stores the precursor lists.
In Table 1, we show both the update speeds of the successor
lists and the precursor lists. In Table 2. The memory usage
is the sum of both sets of lists.

Table 1 shows the update speed of the algorithms. The
algorithms are accelerated with -O2 option of GCC. In each
dataset, we insert all the edges into the data structure and
calculate the average speed. The unit we use is Million
Operations per Second (Mops). If an algorithm cannot finish
processing the dataset in 48 hours, the result is marked as
Time Limit Exceeded (TLE).

From the table, we can see that GSS always achieve an
update speed over 1Mops. The update speed is lower in
Twitter. Because this dataset is so large that even if only
1% ∼ 2% edges are stored in the buffer, updating them
still has a high cost and brings decrement in speed. We
also evaluate the speed of GSS with edge deletions. We
insert all the edges in each dataset into GSS twice, with
positive weight at the first time and negative weight at the
second time. GSS processes these deletion-included updates
with update method discussed in Section 5.2.1, and we
compute the average speed. As discussed above, the speed
will have a decrement with deletion, as we have to scan all
the candidate buckets and the buffer in each update. But its
speed is still higher than other algorithms.

TCM has a sharp decrement in speed with the graph size
growing. Because for large graphs, the map range of TCM
is limited while the node set is large, resulting into a lot of
node IDs mapped to the same hash value. In each update

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 12

150 200 250 300 350 400 450 500
Width

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

E
dg

e
Q

ue
ry

A
R

E

GSS(f=12)
GSS(f=16)
TCM(8*memory)

(a) lkml-reply

1000 1100 1200 1300 1400 1500
Width

.
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

E
dg

e
Q

ue
ry

A
R

E

GSS(f=12)
GSS(f=16)
TCM(8*memory)

(b) networkflow

15000 16000 17000 18000 19000 20000
Width

0
1
2
3
4
5
6

E
dg

e
Q

ue
ry

A
R

E

GSS(f=12)
GSS(f=16)
TCM

(c) Twitter
Fig. 6. Average Relative Error of Edge Queries

15000 16000 17000 18000 19000 20000
Width

.
0.0
0.2
0.4
0.6
0.8
1.0

A
ve

ra
ge

Pr
ec

is
io

n

GSS(f=12)
GSS(f=16)
TCM

Fig. 7. Average Precision of 1-hop Precursor Queries

15000 16000 17000 18000 19000 20000
Width

.
0.0
0.2
0.4
0.6
0.8
1.0

A
ve

ra
ge

Pr
ec

is
io

n

GSS(f=12)
GSS(f=16)
TCM

Fig. 8. Average Precision of 1-hop Successor Queries

of the hash table, we have to scan a long ID list attached
to the same hash value. It leads to low update speed. As
a comparison, we also present the update speed of TCM
without storing node IDs with hash tables. We can find
that in the case its update speed is comparable to GSS. But
without the hash table it cannot support queries requiring
node IDs like the 1-hop successor query.

The adjacency list is sensitive to the skewness. Its update
speed varies in different datasets. Even for the same dataset,
the update speed of the successor list and the precursor list
may also have a large difference. And in large graphs like
Twitter, the update speed is below 0.03Mops.

As MoSSo has to analyse the graph topology to find
nodes with similar neighborhood, its update speed is below
0.01Mops in most times, which cannot meet the demand of
high throughput of graph streams.

Table 2 shows the memory usage of GSS and adjacency
lists. We do not show the memory usage of TCM, as in
experiments it is set according to the memory usage of GSS.
From the table we can see that the memory usage of GSS
is 30% ∼ 50% of the adjacency lists. This memory usage

TABLE 2
Memory Usage(MB)

Data Structure lkml-reply networkflow Twitter
GSS 3.36 161 2.6× 104

GSSsb 3.41 166 2.62× 104

GSSnb 3.79 202 2.97× 104

Adjacency Lists 8.76 353 6.47× 104

15000 16000 17000 18000 19000 20000
Width

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

B
uf

fe
rP

er
ce

nt
ag

e

GSS(k=2)
GSS(k=4)
GSS(k=8)
GSS(-)

Fig. 9. Buffer Percentage of GSS

TABLE 3
Compression Ratio

Data Structure lkml-reply networkflow Twitter
GSS 61.6% 54.4% 59.7%
MoSSo 17.4% 45.5% TLE

includes the memory used by the hash table which stores the
original node IDs. The memory usage of GSSnb and GSSsb

is also shown in the table, we can see that GSSnb needs 25%
additional memory at most compared to the original GSS,
while GSSsb barely needs any additional memory.

Because MoSSo can only support undirected graphs, we
have to remove edge directions for it in all three datasets.
After that the streaming graphs become much smaller (as
edge

−→
s, d and

−→
d, s will be combined). Therefore we do not

directly compare the memory usage of MoSSo with GSS.
We compare their compression ratio in Table 3 instead. From
the table we can see that though GSS has small errors, but
its compression ratio is higher than MoSSo, and its update
speed is also much higher (Table 1).

8.7 Experiment of Optimizations

In this section, we evaluate the effect of optimizations
proposed in Section 7. We evaluate the speed of four prim-
itives, update, edge query, 1-hop successor query and 1-
hop precursor query of GSS with different optimizations,
and the result is shown in Table 4. The unit of speed is
Million Operations per Second (Mops). The dataset we use

TABLE 4
Speed of Different Versions of GSS (Mops)

Data
Structure

Update Edge
Query

Successor
Query

Precursor
Query

GSS 5.1 4.9 0.06 0.04
GSSnb 4.3 5.5 0.36 0.32
GSSsb 4.8 5.7 0.19 0.17
GSS-FPGA 1.7 9.6 0.31 0.24

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 13

TABLE 5
ARE of GSS in SSSP

lkml-reply networkflow Twitter
4.28× 10−4 1.97× 10−3 5.83× 10−3

TABLE 6
Execution Time of SSSP (Seconds)

Data Structure lkml-reply networkflow Twitter
GSS 0.1 7.68× 10−3 1.36× 104

Adjacency Lists 0.057 1.56× 10−3 975

in experiments is lkml-reply. Parameters for 3 versions of
GSS on CPU are the same as Section 8.6. On the other
hand, GSS-FPGA is implemented on FPGA board Xilinx
u280. The board has 32 HBM memory banks, with totally
8GB memory. The matrix of GSS is split into 9 blocks,
separated on 9 independent memory banks for parallelism.
Each bucket of the matrix has 8 rooms. The total memory
usage of the matrix is the same as the CPU versions. From
Table 4. We can see that the original GSS has the lowest
speed in successor and precursor queries. For GSSnb or
GSSsb, the update speed and the edge query speed is
similar with the original version, but the successor query
and the precursor query are 6 ∼ 8 and 3.2 ∼ 4.25 times
faster than the original version. When implemented on
FPGA, the update speed of GSS decreases due to the low
frequency of FPGA. However, as the edge query is fully
pipelined, the speed is more than 1.68 times higher than
the CPU implementations. Both the successor query and the
precursor query have a speed competitive with the speed of
the optimized GSS on CPU. Besides, GSS-FPGA can support
deletions without decrement in update speed, while GSSnb

and GSSsb do not support edge deletions.

8.8 Experiment of SSSP
In this section we evaluate the performance of GSS in graph
analytic mission Single Source Shorted Path (SSSP). In lkml-
reply and networkflow, we use nodes with top-100 degrees
as source nodes and carry out SSSP computation 100 times.
In Twitter, we use nodes with top-10 degrees as source nodes
and carry out SSSP computation 10 times, as the graph
is large and SSSP computing in it is time consuming. The
SSSP computation is carried out with Dijkstra algorithm. We
compute the Average Relative Error (ARE) of the estimated
distance between each node in the graph and the source
node. We present the result in Table 5. The result shows
that GSS always has an ARE below 1%. We also show the
average execution time of SSSP with adjacency lists and GSS
in Table 6 (GSSnb is used). Due to the matrix structure, GSS
has a lower speed in topology queries. It has to scan rows
or columns in the matrix to get successors / precursors.
But GSS can still finish SSSP, which has a time complexity
of O(|E|log(|V |)), in graph as large as billions of edges
(Twitter) in about 4 hours. We believe the drawback in
query speed is a necessary cost of high update speed and
small memory usage. GSS is suitable for situations where
the demand on update speed and memory consumption is
the major concern, like network measurement in routers.

9 CONCLUSION

Graph stream summarization is a problem rising in many
fields. However, as far as we know, there is no prior work
with high update speed, small memory usage and high
accuracy. In this paper, we propose graph stream summa-
rization data structure Graph Stream Sketch (GSS). It has
O(|E|) memory usage and high update speed. It supports
most graph queries and has accuracy higher than state-
of-the-art by magnitudes. Both mathematical analysis and
experiment results confirm the superiority of our work.

REFERENCES

[1] S. Guha and A. McGregor, “Graph synopses, sketches, and
streams: A survey,” PVLDB, vol. 5, no. 12, pp. 2030–2031, 2012.

[2] W. Fan, J. Li, X. Wang, and Y. Wu, “Query preserving graph
compression,” in SIGMOD, pp. 157–168, ACM, 2012.

[3] J. Ko, Y. Kook, and K. Shin, “Incremental lossless graph summa-
rization,” in Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp. 317–327,
2020.

[4] G. Cormode and S. Muthukrishnan, “An improved data stream
summary: The count-min sketch and its applications,” in Latin
American Symposium on Theoretical Informatics, pp. 29–38, 2004.

[5] P. Roy, A. Khan, and G. Alonso, “Augmented sketch: Faster and
more accurate stream processing,” in SIGMOD, pp. 1449–1463,
ACM, 2016.

[6] D. Thomas, R. Bordawekar, C. C. Aggarwal, and S. Y. Philip, “On
efficient query processing of stream counts on the cell processor,”
in ICDE, pp. 748–759, IEEE, 2009.

[7] N. Tang, Q. Chen, and P. Mitra, “Graph stream summarization:
From big bang to big crunch,” in SIGMOD, pp. 1481–1496, 2016.

[8] A. Khan and C. Aggarwal, “Query-friendly compression of graph
streams,” in IEEE/ACM International Conference on Advances in
Social Networks Analysis and Mining, pp. 130–137, 2016.

[9] S. Raghavan and H. Garcia-Molina, “Representing web graphs,”
in ICDE, pp. 405–416, IEEE, 2003.

[10] M. Riondato, D. Garcı́a-Soriano, and F. Bonchi, “Graph sum-
marization with quality guarantees,” Data mining and knowledge
discovery, vol. 31, no. 2, pp. 314–349, 2017.

[11] D. Peleg and A. A. Schäffer, “Graph spanners,” Journal of graph
theory, vol. 13, no. 1, pp. 99–116, 1989.

[12] D. A. Spielman and N. Srivastava, “Graph sparsification by effec-
tive resistances,” SIAM Journal on Computing, vol. 40, no. 6, 2011.

[13] S. Assadi, S. Khanna, and Y. Li, “On estimating maximum match-
ing size in graph streams,” in Proceedings of the Twenty-Eighth
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1723–
1742, SIAM, 2017.

[14] M. Kapralov, A. Mousavifar, C. Musco, C. Musco, N. Nouri, A. Sid-
ford, and J. Tardos, “Fast and space efficient spectral sparsification
in dynamic streams,” in Proceedings of the Fourteenth Annual ACM-
SIAM Symposium on Discrete Algorithms, pp. 1814–1833, SIAM,
2020.

[15] K. J. Ahn, S. Guha, and A. McGregor, “Graph sketches: spar-
sification, spanners, and subgraphs,” in Proceedings of the 31st
ACM SIGMOD-SIGACT-SIGAI symposium on Principles of Database
Systems, pp. 5–14, 2012.

[16] S. Bhattacharya, M. Henzinger, D. Nanongkai, and C. Tsourakakis,
“Space-and time-efficient algorithm for maintaining dense sub-
graphs on one-pass dynamic streams,” in Proceedings of the forty-
seventh annual ACM symposium on Theory of computing, pp. 173–182,
2015.

[17] O. Goonetilleke, D. Koutra, T. Sellis, and K. Liao, “Edge labeling
schemes for graph data,” in Proceedings of the 29th International
Conference on Scientific and Statistical Database Management, pp. 1–
12, 2017.

[18] L. Dhulipala, I. Kabiljo, B. Karrer, G. Ottaviano, S. Pupyrev, and
A. Shalita, “Compressing graphs and indexes with recursive graph
bisection,” in Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 1535–1544,
2016.

[19] Y. Liu, T. Safavi, A. Dighe, and D. Koutra, “Graph summarization
methods and applications: A survey,” ACM Computing Surveys
(CSUR), vol. 51, no. 3, pp. 1–34, 2018.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 14

[20] M. Besta, S. Weber, L. Gianinazzi, R. Gerstenberger, A. Ivanov,
Y. Oltchik, and T. Hoefler, “Slim graph: Practical lossy graph
compression for approximate graph processing, storage, and ana-
lytics,” in Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, pp. 1–25, 2019.

[21] J. Gao, C. Zhou, J. Zhou, and J. X. Yu, “Continuous pattern
detection over billion-edge graph using distributed framework,”
in IEEE ICDE, 2014.

[22] C. Wang and L. Chen, “Continuous subgraph pattern search over
graph streams,” in IEEE ICDE, 2009.

[23] C. Song, T. Ge, C. Chen, and J. Wang, “Event pattern matching
over graph streams,” PVLDB, vol. 8, no. 4, 2014.

[24] K. Vora, R. Gupta, and G. Xu, “Kickstarter: Fast and accurate
computations on streaming graphs via trimmed approximations,”
in Proceedings of the twenty-second international conference on archi-
tectural support for programming languages and operating systems,
pp. 237–251, 2017.

[25] G. Feng, Z. Ma, D. Li, S. Chen, X. Zhu, W. Han, and W. Chen,
“Risgraph: A real-time streaming system for evolving graphs to
support sub-millisecond per-update analysis at millions ops/s,”
in Proceedings of the 2021 International Conference on Management of
Data, pp. 513–527, 2021.

[26] R. Cheng, J. Hong, A. Kyrola, Y. Miao, X. Weng, M. Wu, F. Yang,
L. Zhou, F. Zhao, and E. Chen, “Kineograph: taking the pulse of a
fast-changing and connected world,” in Proceedings of the 7th ACM
european conference on Computer Systems, pp. 85–98, 2012.

[27] P. Kumar and H. H. Huang, “Graphone: A data store for real-time
analytics on evolving graphs,” ACM Transactions on Storage (TOS),
vol. 15, no. 4, pp. 1–40, 2020.

[28] M. Winter, D. Mlakar, R. Zayer, H.-P. Seidel, and M. Steinberger,
“faimgraph: high performance management of fully-dynamic
graphs under tight memory constraints on the gpu,” in SC18:
International Conference for High Performance Computing, Networking,
Storage and Analysis, pp. 754–766, IEEE, 2018.

[29] M. Besta, M. Fischer, V. Kalavri, M. Kapralov, and T. Hoefler,
“Practice of streaming processing of dynamic graphs: Concepts,
models, and systems,” IEEE Transactions on Parallel and Distributed
Systems, 2021.

[30] T. C. O’connell, “A survey of graph algorithms under extended
streaming models of computation,” in Fundamental Problems in
Computing, pp. 455–476, Springer, 2009.

[31] C. Aggarwal and K. Subbian, “Evolutionary network analysis: A
survey,” ACM Computing Surveys (CSUR), vol. 47, no. 1, pp. 1–36,
2014.

[32] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and J. Zhang, “On
graph problems in a semi-streaming model,” Theoretical Computer
Science, vol. 348, no. 2-3, pp. 207–216, 2005.

[33] C. Demetrescu, I. Finocchi, and A. Ribichini, “Trading off space
for passes in graph streaming problems,” ACM Transactions on
Algorithms (TALG), vol. 6, no. 1, pp. 1–17, 2009.

[34] G. Aggarwal, M. Datar, S. Rajagopalan, and M. Ruhl, “On the
streaming model augmented with a sorting primitive,” in 45th An-
nual IEEE Symposium on Foundations of Computer Science, pp. 540–
549, IEEE, 2004.

[35] C. Estan and G. Varghese, “New directions in traffic measurement
and accounting: Focusing on the elephants, ignoring the mice,”
ACM TOCS, vol. 21, no. 3, pp. 270–313, 2003.

[36] M. Datar, A. Gionis, P. Indyk, and R. Motwani, “Maintaining
stream statistics over sliding windows,” SIAM journal on comput-
ing, vol. 31, no. 6, pp. 1794–1813, 2002.

[37] C. Song and T. Ge, “Labeled graph sketches,” in 2018 IEEE 34th
International Conference on Data Engineering (ICDE), pp. 1312–1315,
IEEE, 2018.

[38] M. S. Hassan, B. Ribeiro, and W. G. Aref, “Sbg-sketch: a self-
balanced sketch for labeled-graph stream summarization,” in Pro-
ceedings of the 30th International Conference on Scientific and Statistical
Database Management, pp. 1–12, 2018.

[39] P. Zhao, C. C. Aggarwal, and M. Wang, “gsketch: on query
estimation in graph streams,” PVLDB, vol. 5, no. 3, pp. 193–204,
2011.

[40] D. E. Knuth, “Sorting and searching,” 1973.

[41] P. L’Ecuyer, “Tables of linear congruential generators of differ-
ent sizes and good lattice structure,” Mathematics of Computation,
vol. 68, no. 225, pp. 249–260, 1999.

[42] “Source code of gss and tcm.” https://github.com/Puppy95/
Graph-Stream-Sketch.

[43] L. D. Stefani, A. Epasto, M. Riondato, and E. Upfal, “Tri-
est:counting local and global triangles in fully-dynamic streams
with fixed memory size,” in ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 825–834, 2016.

[44] S. Choudhury, L. Holder, G. Chin, K. Agarwal, and J. Feo, “A
selectivity based approach to continuous pattern detection in
streaming graphs,” Computer Science, vol. 93, no. 8, pp. 939–945,
2015.

Xiangyang Gou is a Ph.D. student in the School
of Electronic Engineering and Computer Sci-
ence of Peking University, advised by Lei Zou.
His research interests include data structures
and algorithms in graph streams.

Lei Zou is a professor in Wangxuan Institute of
Computer Technology of Peking University. He
is also a faculty member in Big Data Center of
Peking University. His research interests include
graph databases and semantic data manage-
ment.

Chenxingyu Zhao received the bachelor’s de-
gree from Peking University, advised by Tong
Yang. He is currently a Ph.D. student at the CSE,
University of Washington, advised by Arvind Kr-
ishnamurthy. He works on networking and sys-
tems, with a focus on programmable networks
and disaggregated storage.

Tong Yang received the Ph.D. degree in com-
puter science from Tsinghua University in 2013.
He visited the Institute of Computing Technol-
ogy, Chinese Academy of Sciences (CAS). He
is currently an Associate Professor with the De-
partment of Computer Science, Peking Univer-
sity. His research interests include network mea-
surements, sketches, IP lookups, Bloom filters,
sketches, and KV stores.

https://github.com/Puppy95/Graph-Stream-Sketch
https://github.com/Puppy95/Graph-Stream-Sketch

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 1

SUPPLEMENTARY MATERIALS

APPENDIX A
NOTATION TABLE

TABLE 7
Notation Table

Notation Meaning
S = {e1, e2,en} The Graph stream S
G = (V,E) Streaming graph with edge set E ,node

set V
N = |E| Number of edges in the streaming

graph
Gh = (Vh, Eh) Graph sketch with edge set Eh, node set

Vh

e =
−→
s, d The edge e from node s to node d

H(·) The map function from G to Gh

M The size of value range of function H(·)
H(v) The graph sketch node mapped by node

v

H(e) =
−−−−−−−→
H(s), H(d) The graph sketch edge mapped by edge

e =
−→
s, d

f(v) Fingerprint of node v
F Size of the value range of fingerprints
h(v) Hash address of node v
X Matrix of GSS
B Buffer of GSS
m Width of the matrix
r Length of the hash address sequence
{hi(v)|1 ⩽ i ⩽ r} Hash address sequence of node v
{qi(v)|1 ⩽ i ⩽ r} LR sequence of node v
k Number of candidate buckets for each

edge.
l Number of rooms in each bucket
Adj(e) Set of adjacent edges of an edge e
D = |Adj(e)| Number of adjacent edges of an edge e
Suc(v) Set of 1-hop successors of node v
Pre(v) Set of 1-hop precursors of node v

APPENDIX B
FIGURES OF MATHEMATICAL ANALYSIS

Figure 10 demonstrates the theoretical results of the relation-
ship between M and the accuracy of the query primitives in
dataset lkml-reply (datails of the dataset can be found in
Section 8.1). The results are computed according to analysis
in Section 6.1. In the figure of the edge query, d1 and d2
represent the out degree of the source node and the in
degree of the destination node of the queried edge. In the
figure of the 1-hop successor / precursor query, dout and din
represents the out degree and in degree of the queried node.
The figure shows that we have to use a large M to achieve
high accuracy in the query primitives. According to Figure
10, only when M

|V | > 200, the correct rate is larger than 80%

in 1-hop successor / precursor queries. When M
|V | ≤ 1, the

correct rate falls down to nearly 0.
Figure 11 shows the curve of the left over probability. It

is drawn according to the analysis in Section 6.2. We set
the matrix width m = 1000, the hash address sequence
length r = 16, the number of candidate bucket k = 16,
and each bucket has l = 2 rooms. From the figure we can

see that after inserting 1.5M edges into the matrix, an edge
with D = 15K still has less than 0.003 probability to be left
over. In real world datasets, there are very few high degree
nodes, therefore D is usually much smaller, leading to a
much lowerer left over rate.

APPENDIX C
GSS FOR LABELED GRAPH

In some applications, edges in the graph stream have labels.
Compared to numerical weight, a label usually stands for
the edge category. For example, in social networks, an
edge label may indicates the relationship between users,
like “friend” or “follow”. Accoridng to our method, when
mapping a streaming graph G into the graph sketch Gh,
multiple edges may be combined into a single one, as
discussed in Section 4. The weight of the combined edges
can be aggregated, but edge labels cannot be accumulated.
We propose two methods to handle edge labels in our GSS.

1) One-hot encoding: If the number of distinct edge
labels is small, we can use one-hot code to represent
edge labels. We index the labels with numbers, and
use an integer β(e) to encode the label of an edge e.
If e is marked with the ith label, we set the ith bit of
β(e) to 1. Otherwise the bit is 0. When combining
multiple edges in mapping, we apply bitwise OR to
combine the edge label codes.

2) Using label list: In some applications, there are
many kinds of edge labels, such as some open-
domain RDF graphs. In this case, one-hot encoding
will be too memory consuming. We may store the
multiple tags of an edge with a linked list. For an
edge e in the graph sketch, we tag it with all the
edge labels that mapped to it. If e has multiple
labels, we store these labels with a linked list, and
only place the head of the list in the matrix.

In Appendix D.2 of the supplementary material, we use
the label list to store the labeled graph and carried out
subgraph matching experiments.

APPENDIX D
EXTRA EXPERIMENTS

D.1 Experiments on Reachability Query
Reachability query is implemented with a series of 1-hop
successor queries. And we use it as an evaluation of the
accuracy of query primitives. Figure 12 shows the true neg-
ative recall of reachability query in Twitter. The reachability
query set Q contains 100 unreachable pairs of nodes which
are randomly generated from the graph (as both TCM and
GSS has no false negatives, they can always correctly answer
queries of reachable pairs). We define the percentage of
queries which are correctly reported as not reachable as true
negative recall. From the figure we can see that GSS with
16-bit fingerprint can get a true negative recall of 100%,
while TCM can barely get any true negative answer. The
true negative recall of GSS with 12-bit fingerprint is around
70%, and slightly grows with the width of the matrix.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2

M/|V|
ln(d

1+d
2)

C
or

re
ct
 R

at
e

(a) Edge Query

M/|V|
ln(d

out)

C
or

re
ct
 R

at
e

(b) 1-hop Successor Query

M/|V|
ln(d

in)

C
or

re
ct

 R
at

e

(c) 1-hop Precursor Query
Fig. 10. Influence of M on Accuracy

Fig. 11. The probability that an edge is left-over

1600 1800
Width

0.0
0.2
0.4
0.6
0.8
1.0

.

Tr
ue

N
eg

at
iv

e
R

ec
al

l GSS(f=12)
GSS(f=16)
TCM

.

Fig. 12. True Negative Recall of Reachability Queries

2.5 3.0 3.5 4.0 4.5 5.0
Memory(MB)

0.000

0.005

0.010

0.015

0.020

R
el

at
iv

e
E

rr
or

GSS
TRIEST

Fig. 13. Triangle count in lkml-reply

D.2 Experiment on Other Compound Queries
We compare GSS with state-of-the-art task specific algo-
rithms on triangle counting and subgraph matching in this
Section. We compare GSS with TRIÈST [43] in triangle
counting with the same memory in lkml-reply. We use rel-
ative error between the reported results and the true value
as evaluation metric. TRIÈST does not support duplicate

edges. Therefore we unique the edges in the dataset for
it. The results are shown in Figure 13. The results show
that they achieve similarly high accuracy with relative error
less than 1%. We compare GSS with SJ-tree[44] in subgraph
matching. As SJ-tree is an accurate algorithm and needs a lot
of memory to continuously monitor query result, we set the
memory usage of GSS to its 1

10 . We use VF2 algorithm when
querying in GSS, other algorithms can also be used. We use
networkflow dataset and search for subgraphs in windows
of the graph stream. Each edge in the graph is labeled by
the ports and protocol of the communication it represents.
We carry out experiment with 5 window sizes, and for each
window size, we randomly select 5 windows in the stream.
In each window, we generate 4 kinds of subgraphs with 6,
9, 12 and 15 edges and 5 instances in each kind by random
walk. We use the correct rate as evaluation metrics, which
means the percentage of correct matches in the 100 matches
for each window size. Experimental results are shown in
Figure 14. We can see that GSS has nearly 100% correct rate.
It should be noted that both TRIÈST an SJ-tree have a much
lower throughput (less than 2 × 105 edges per second) in
order to achieve continuous query on the specific problem.
While GSS summarizes the graph with much higher speed
(over 5 × 106 edges per second), supporting various kinds
of queries, but needs additional processing in queries. The
time complexity of queries depending on the algorithm we
use. Technically, they are designed for different application
scenarios. We carry out this experiment only to show the
capability of GSS in supporting these compound queries.

10000 20000 30000 40000 50000
Windowsize

0.85

0.90

0.95

1.00

1.05

1.10

C
or

re
ct

R
at

e

GSS
SJtree

Fig. 14. Subgraph matching in networkflow

	Introduction
	Our Solution

	Related Work
	Problem Definition
	GSS: Basic Version
	GSS: An Optimized Version
	Square Hashing
	More Optimizations
	Dealing with edge deletion
	Mapped Buckets Sampling
	Multiple Rooms

	Analysis
	Accuracy Analysis
	Buffer Size Analysis
	Time and Memory Cost Analysis

	Accelerating Query Primitives
	Blocked GSS
	Node bitmap
	Acceleration with FPGA

	Experimental Evaluation
	Datasets
	Metrics
	Experiments settings
	Experiments on Query Primitives
	Experiments on Buffer Size
	Memory and Speed Evaluation
	Experiment of Optimizations
	Experiment of SSSP

	Conclusion
	References
	Biographies
	Xiangyang Gou
	Lei Zou
	Chenxingyu Zhao
	Tong Yang

	Appendix A: Notation table
	Appendix B: Figures of Mathematical Analysis
	Appendix C: GSS for labeled graph
	Appendix D: Extra Experiments
	Experiments on Reachability Query
	Experiment on Other Compound Queries

