
DynGCN: A Dynamic Graph Convolutional
Network Based on Spatial-Temporal Modeling

Jing Li1, Yu Liu1, and Lei Zou1,2

1 Peking University, China
2 National Engineering Laboratory for Big Data Analysis Technology and

Application (PKU), China

Abstract. Representation learning on graphs has recently attracted a
lot of interest with graph convolutional networks (GCN) achieving state-
of-the-art performance in many graph mining tasks. However, most of
existing methods mainly focus on static graphs while ignoring the fact
that real-world graphs may be dynamic in nature. Although a few recent
studies have gone a step further to incorporate sequence modeling (e.g.,
RNN) with the GCN framework, they fail to capture the dynamism of
graph structural (i.e., spatial) information over time. In this paper, we
propose a Dynamic Graph Convolutional Network (DynGCN) that
performs spatial and temporal convolutions in an interleaving manner
along with a model adapting mechanism that updates model param-
eters to adapt to new graph snapshots. The model is able to extract
both structural dynamism and temporal dynamism on dynamic graphs.
We conduct extensive experiments on several real-world datasets for link
prediction and edge classification tasks. Results show that DynGCN out-
performs state-of-the-art methods.

Keywords: Dynamic graphs · GCN · Representation learning.

1 Introduction

Owing to the success of convolutional neural networks (CNN) in fields such as
computer vision, natural language processing and speech recognition, researchers
have showed a lot of interest in the topic of graph neural networks (GNN). How-
ever, compared with the Euclidean data structure of images, natural languages
and speech signals, graphs are non-Euclidean data which makes it unsuitable for
us to apply convolutions designed in CNN to graphs directly.

Therefore, graph convolutional networks (GCN) are specially designed to ex-
tract topological structures on graphs. They extend the concept of convolution
to graph domain by designing operations that aggregate neighborhood infor-
mation. Since topological structures and local information are extracted by the
graph convolution operation, GCN is a powerful architecture in graph repre-
sentation learning. Some existing studies [7, 9] have proved that GCN achieves
state-of-the-art performance in a lot of graph mining tasks such as node classi-
fication, edge classification, link prediction, clustering, etc.



2 J. Li et al.

It is worthwhile to further investigate that most of existing graph convolu-
tional networks are designed for static graphs. However, real-world graphs are
dynamic in nature with insertion/deletion of nodes and edges or changing of
properties all the time. For example, users of a financial network are constantly
trading with each other, users of a social network may develop friendship over
time and authors of a citation network are publishing new papers all the time,
thus resulting in the dynamism of these networks. Under these dynamic sce-
narios, it requires dynamic models that aim at capturing not only structural
information but also historical information on dynamic graphs.

A few recent studies have gone a step further by combining GCN with recur-
rent neural networks (RNN) since GCN is designed for structural information
extraction and RNN is designed for sequence modeling which makes them a
natural match in dynamic graph representation learning. Among them, some
models use GCN to aggregate neighborhood information and then feed the out-
put embeddings into RNN architectures to extract sequence information [11, 17].
While EvolveGCN [15] combines them in a different manner. It utilize RNN to
evolve GCN parameters which results in a dynamic evolving GCN model for ev-
ery snapshot along time axis. However, these existing works either model graph
dynamism only on node embeddings that lacks adaptive learning or on model
parameters that lacks structural dynamism extraction.

In this paper, we focus on both spatial and temporal dynamism on dynamic
graphs and propose a Dynamic Graph Convolutional Network (DynGCN)
that performs spatial-temporal convolutions in an interleaving manner with a
model adapting mechanism. We conduct several experiments for DynGCN model
on link prediction and edge classification tasks. DynGCN outperforms dynamic
graph convolution baselines.

Our main contributions can be summarized as follows:

– We propose DynGCN, a self-adapting, spatial-temporal graph convolutional
network that learns rich latent graph representations on dynamic graphs.

– We consider the problem of dynamic graph representation learning as a com-
bination of spatial dynamism and temporal dynamism where either spatial
or temporal dynamism is often ignored by existing methods.

– We give a comprehensive study for representation learning under extreme
class imbalance situations. Our model shows superiority in identifying mi-
nority class with preserving total accuracy which indicates the necessity of
spatial-temporal modeling.

– We conduct several experiments based on real-world scenarios. DynGCN
outperforms state-of-the-art baselines thus demonstrates the efficacy of Dyn-
GCN in learning rich and high-level representations.

The remainder of the paper is organized as follows: we present related works
for representation learning in section 2 and then give a detailed description of our
proposed DynGCN model in section 3. In order to prove the efficacy of DynGCN,
we show the experimental results and give a detailed analysis in section 4. Last
but not least, we conclude our work in section 5.



Dynamic Graph Convolutional Network 3

2 Related Work

2.1 Static Graph Representation Learning

Representation learning aims to learn node embeddings into low dimensional
vector space. A traditional way on static graphs is to perform Singular Vector
Decomposition (SVD) on the similarity matrix computed from the adjacency
matrix of the input graph [3, 14]. Despite their straightforward intuition, matrix
factorization-based algorithms require more scalability. Inspired by Word2Vec
[12] that maps words into low dimensional space, researchers developed some
random walk-based approaches(e.g., DeepWalk [16] and Node2Vec[6]) that per-
form random walks [13] over the input graph and then feed these paths (regraded
as sentences) into a SkipGram model [12] to learn node embeddings. What’s
more, with the success of deep learning, GNN has become an efficient tool in
static graph representation learning [4, 5, 7, 9, 18]. One typical idea among these
GNNs lies in graph convolution operation which adopts the concept of neighbor-
hood aggregation to extract structural information. Yet, all methods mentioned
above focus on static graphs and lack the ability to capture dynamism in some
applications where graphs may change dynamically.

2.2 Dynamic Graph Representation Learning

It is a straightforward idea to extend static methods to dynamic ones with extra
updating mechanism or sequence modeling architectures. Since GNN (e.g. GCN)
is designed for structural extraction and RNN (e.g. LSTM or GRU) is designed
for sequence modeling, it makes them a natural match to form a dynamic graph
neural network.

Seo et al. proposed two GCRN [17] architectures that naturally use GCN
to learn node embeddings and then feed them into LSTM to learn sequence
dynamism along time axis. The only difference between these two architectures
is that the second model uses a modified LSTM that replaces the Euclidean
2D convolution operator by graph convolution operator. Similarly, Manessia et
al. proposed WD-GCN/CD-GCN [11] to learn dynamic graph embeddings by
combining a modified LSTM and an extension of graph convolution operations
to learn long short-term dependencies together with graph structures. WD-GCN
takes as input a graph sequence while CD-GCN takes as input the corresponding
ordered sequence of vertex features.

Furthermore, GCN-GAN [10] models the temporal link prediction tasks in
weighted dynamic networks by combining GCN and RNN with generative ad-
versarial networks (GAN). They use GCN to capture topological characteristics
of each snapshot and employ LSTM to characterize the evolving features with
a GAN followed to generate the next snapshot thus to learn a more effective
representation. STAR [20] adds a dual attention mechanism on top of the GCN
and RNN architectures. On the other side, Aldo Pareja et al. models dynamism
is a different way, they proposed EvolveGCN [15] that employs RNN architec-
ture (e.g. GRU or LSTM) to evolve the GCN weight parameters along time
dimension to adapt models to graph dynamism.



4 J. Li et al.

Although these methods combine GCN with RNN from different aspects,
they model dynamism either on output node embeddings that lacks adaptive
learning or on the weight parameters that lacks the extraction of graph strctural
dynamism.

3 Method

3.1 Problem Definition

A graph is denoted as G = (V,E) where V is the set of vertices and E is the set of
edges. The adjacency matrix of graph G is denoted as A ∈ RN×N , where Ai,j = 1
if vi, vj ∈ V and (vi, vj) ∈ E otherwise Ai,j = 0. Given a graph G = (V,E),
graph representation learning is a mapping function f : V → Rd, where d� N .
The mapping function f embeds every node into low-dimensional space while
preserving original information at the same time, namely yv = f(v),∀v ∈ V .
The more similar two nodes are in the graph G, the closer their representation
vectors yu and yv are in the embedding space.

Dynamic graphs may be divided into two types according to the active
time type for an edge, either time instances or time intervals, which results
in continuous-time or discrete-time dynamic graphs [8, 19]. In our settings, we
formulate dynamic graphs under discrete time and define dynamic graph and
dynamic graph representation learning as follows:

Definition 1. (Dynamic Graph) A dynamic graph is denoted as a set of
graphs, i.e. G = {G1, G2, . . . , GT }, where each Gt = (Vt, Et) is a snapshot at
time step t, t ∈ {1, 2, . . . , T}. For graph Gt, t ∈ {1, 2, . . . , T}, the adjacency
matrix At ∈ RN×N is defined as follows: (At)i,j = 1 if (vt)i, (vt)j ∈ Vt and
((vt)i, (vt)j) ∈ Et, otherwise, (At)i,j = 0.

Definition 2. (Dynamic Graph representation learning) Dynamic graph
representation learning is to learn a set of mappings F = {f1, f2, . . . , fT } where
each mapping function ft,∀t ∈ {1, 2, . . . , T} maps nodes of a dynamic graph Gt

at time t into low-dimensional space while preserving origin information at the
same time. The More similar two nodes are in the origin dynamic graph, the
closer their representation vectors are in the embedding space.

3.2 Architecture Overview

As shown in Fig.1, DynGCN performs spatial and temporal convolutions in
an interleaving manner. The first layer of the model is a spatial convolution
layer where the GCN model is updated by a GRU cell to self-adapt to graph
dynamism. The spatial convolution layer aggregates neighborhood structural
information with dynamism awareness. The second layer is a temporal convo-
lution layer that aggregates information from current and historical time steps
with dilated convolutions. After that, every node is represented by his current
neighborhood information along with his historical neighborhood information.
Then we add another spatial convolution layer on the top to aggregate spatial
temporal information from neighborhoods.



Dynamic Graph Convolutional Network 5

GCN

GRU

GCN

GRU

GCN

GRU

GCN

GRU

Temporal 
Convolution

 Spatial
Convolution

GCN

GRU

GCN

GRU

GCN

GRU

GCN

GRU
 Spatial 

Convolution

GCN

GRU
Wl

t-1

Xt
l-1

Wl
t

Xt
l-1

, Al
t

Xt
l

Wl
t

Xt
l-1

, At
l-1

: temporal covolution 
operation

data updating flow in 
spatial convolution

Fig. 1. An overview of DynGCN architecture

3.3 Spatial Convolution Layer

GCN has showed its superiority in learning graph topological structures, we
utilize GCN unit to learn the structural information of every snapshot in dynamic
graphs. Formally, given a graph Gt = (Vt, Et) at time step t, the adjacency
matrix is denoted by At ∈ RN×N . At the l-th layer of GCN, it takes output
node embedding vectors X l−1

t of the (l − 1)-th layer and the adjacency matrix
At as input, and output the updated node embedding vectors X l

t. We can write
the operation of a GCN layer as follows:

X l
t = F(X l−1

t , At,W
l
t ) = σ(D̂t

−1/2
ÂtD̂t

−1/2
X l−1

t W l
t ) (1)

where Ât = At + I and I is an identity matrix. D̂t = diag(
∑N

j=1 Ât(ij)) and

D̂t
−1/2

ÂtD̂t
−1/2

is a normalization of At served as a approximated graph con-
volution filter. W l

t is the weight matrix of the l-th layer at time t and function
σ is an activation function (e.g. ReLU). The initial input X0

t for the first layer
is the node features matrix Zt ∈ RN×K where each row represents a K dimen-
sional feature vector for each of N nodes. After L layers of graph convolution
operations, the output matrix contains aggregated neighborhood information for
every node in every single graph.

In consideration of graph dynamism, the spatial convolution layer further
extends static GCN architecture with self-adapting mechanisms which is first
introduced in EvolveGCN. The spatial convolution layer utilizes a recurrent
network to update weight matrix of GCN unit. Although GRU and LSTM both
work in updating GCN parameters, we choose GRU for our implementation
since the input of GRU unit consists of hidden state and current embedding
while LSTM only takes hidden state into consideration. By updating model
parameters, GCN architecture is self-adapted to every time step.

For weight matrix W l
t of l-th layer at time t, we obtain it by W l

t−1 and X l−1
t

through a GRU cell formulated as follows (the superscript l denotes for graph
convolution layer, and the subscript t denotes for time step):

W l
t = G(X l−1

t ,W l
t−1) = (1− Zl

t) ◦W l
t−1 + Zl

t ◦ W̃ l
t (2)



6 J. Li et al.

where:

Zl
t = sigmoid(U l

ZX
l−1
t + V l

ZW
l
t−1 +Bl

Z) (3)

Rl
t = sigmoid(U l

RX
l−1
t + V l

RW
l
t−1 +Bl

R) (4)

W̃ l
t = tanh(U l

WX l−1
t + V l

W (Rl
t ◦W l

t−1) +Bl
W ) (5)

The updating for weight matrix of the l-th layer is to apply the standard GRU
operation on each column of the involved matrices independently since standard
GRU maps vectors to vectors but we have matrices here. We treat W l

t−1 as the

hidden state of GRU. Embedding vector X l−1
t is chosen as the input of GRU

at every time step to represent current information. Zl
t, R

l
t, W̃

l
t are the update

gate output, the reset gate output, and the pre-output, respectively. To deal
with the inequality between the columns of weight matrix W l

t−1 and embedding

matrix X l−1
t , a summarization [2] on X l−1

t is further added to the evolving graph
convolution layer to transfer X l−1

t to have the same columns as W l
t−1 .

GCN unit aggregates embedding vectors from (l − 1)-th layer to l-th layer
and GRU unit updates weight matrix from time step t − 1 to t. The detailed
data updating flow in spatial convolution layer is illustrated in Fig. 1. Formally,
the spatial convolution architecture can be written as follows:

X l
t = F(X l−1

t , At,G(X l−1
t ,W l

t−1)) (6)

Where functions F and G are graph convolution operation and weight evolv-
ing operation respectively as declared above.

3.4 Temporal Convolution Layer

It is a key issue to capture temporal information along time dimension in dy-
namic graph embedding problems. A lot of existing models employ RNN archi-
tectures for sequence modeling. However, RNN-based methods are memory con-
suming and time consuming because of the complex gate mechanisms. Besides,
standard RNN suffers from gradient disappear and can only obtain short-term
memory.

Although variant architectures like LSTM and GRU fix these problems to
some extent, they are still at a disadvantage compared to CNN-based architec-
tures (specially, TCN[1]) which require less memory and training time along with
a flexible receptive field size. What’s more, RNN-based methods model tempo-
ral dynamism by gate mechanism where historical information is considered only
in hidden state of every time step. While in CNN-based methods, information
of every historical time steps are aggregated by convolution operations which
guarantees rich information and at the same time, unifies the idea of spatial and
temporal convolutions.

We employ TCN architecture to capture historical information in the pro-
posed DynGCN model. The temporal convolution layer uses a 1D fully convolu-
tional unit and a causal convolutional network unit. The 1D fully-convolutional



Dynamic Graph Convolutional Network 7

Input

Hidden

Hidden

Output

dilation=1

dilation=2

dilation=4

x0 x1 x2 x3 x4 x5 x6 x7 ...

y0 y1 y2 y3 y4 y5 y6 y7 ...

Fig. 2. An example of dilated convolution in temporal convolution layer with
dilation = 1, 2, 4 and filter size = 2. This guarantees that the aggregated information
covers all historical time steps.

unit guarantees that the output has the same length as the input and the causal
convolutional unit guarantees that an output at time step tk is convoluted with
input of time steps t ≤ tk, which means aggregating information from cur-
rent and historical time steps. Further, the causal convolution is equipped with
dilation to enable a larger and more flexible receptive field. An example of di-
lated convolution is shown in Fig.2. Formally, given X l ∈ RT×M , a length-T
sequence of node embedding vectors in the l-th layer with M channels, and a
filter f : {0, 1, . . . k − 1}, the temporal convolution operation H on element x of
X l is formalized as follow:

H(x) = (X l ∗d f)(x) =

k−1∑
i=0

f(i) ·X l
x−d·i (7)

d is the dilation factor, k is the filter size and x−d · i represents the direction
of the past. Benefit from this, we can obtain a larger receptive field by either in-
creasing filter size k or increasing the dilation factor d. What’s more, convolution
operations provide parallelism in processing a sequence thus is efficient.

Node embedding vectors of the l-th layer are aggregations of neighborhood
information. By performing temporal convolution operations on node embed-
ding vectors, we can then aggregate historical information along time axis. With
another evolving graph convolution layer at the top, we get representations with
current and historical information for both a node and its neighborhood. There-
fore, performing spatial and temporal convolutions in an interleaving manner
ensures both topological and historical information to be included in high-level
node embedding vectors learned from our DynGCN architecture.

3.5 Tasks and Model Training

In order to show the capacity in representation learning of DynGCN, we further
train the model based on two specific downstream tasks: link prediction and edge
classification.

Link prediction. The task of link prediction aims to predict the existence of
an edge (u, v) at a future time step t.

Edge classification. The task of edge classification is to classify the label of
an edge (u, v) at time step t.



8 J. Li et al.

Given the output embedding vectors of DynGCN for every node, we form the
prediction of an edge label or edge existence based on concatenating embedding
vectors of two nodes of this edge. Assuming that the output embedding vector of
node u at time t is denoted by Xu

t , and P is the parameter matrix, the prediction
can be written as yuvt = softmax(P [Xu

t ;Xv
t ]). The loss function is defined as

L = −
∑T

t=1

∑
(u,v) αuv

∑N
i=1(zuvt )ilog(yuvt )i , where zuvt is the ground-truth

one-hot label vector and the nonuniform weight αuv serves as hyperparameter
to balance class distribution since datasets we use in our experiments suffer from
serious class imbalance problems.

4 Experiments

4.1 Datasets

We verify the effectiveness of the DynGCN model on three data sets. All statistics
about these data sets are summarized in Tabel 1.

Table 1. Dataset statistics

Datasets Nodes Edges
Positive
Edges

Train / Test / Val
(Edge classification)

Train / Test / Val
(Link prediction)

OTC 5881 35592 89% 96 / 21 / 21 96 / 14 / 28
Alpha 3783 24186 93% 96 / 22 / 22 96 / 13 / 28

AS 6474 13895 — — 70 / 10 / 20

– OTC.3 This network of bitcoin users rate each other in a scale from -10
(total distrust) to +10 (trust) and every rating comes with a time stamp.
We generate a sequence of 138 time steps and split it into training, testing
and validation sets as shown in Table 1. Specially, this data set suffers from
class imbalance probelms since there are 89% of positive edges.

– Alpha.4 Alpha is similar to OTC but extracted from a different bitcoin
platform. We extract a sequence of 140 time steps. Alpha has a higher ratio
of 93% positive ratings than OTC.

– Autonomous Systems (AS).5 The graph of routers comprising the In-
ternet are organized into sub-graphs called autonomous systems and each
exchanges traffic flows with some neighbors. AS dataset is a who-talks-to-
whom network constructed from the BGP (Border Gateway Protocol) logs.
The dataset spans an interval of 785 days we form a sequence of 100 time
steps.

3 http://snap.standford.edu/data/soc-sign-bitcoin-otc.html
4 http://snap.standford.edu/data/soc-sign-bitcoin-alpha.html
5 http://snap.stanford.edu/data/as-733.html



Dynamic Graph Convolutional Network 9

4.2 Baselines

We compare DynGCN with both static and dynamic baselines where dynamism
is considered in different manners. By conducting these comprehensive compar-
isons, we verify that our architecture design makes sense and has the ability to
model rich information.

– GCN[9]: This is a classical method for static graph representation learning
that learns node embeddings by aggregating neighborhood information. For
dynamic graph, we use the same GCN model for all snapshots.

– GCN-GRU: This baseline is a combination of graph convolution and se-
quence modeling. The output node embeddings of GCN unit are feed into a
GRU architecture to model dynamism on node representations. This method
comes from the Method 1 proposed by Seo et al. [17] and we further adjust
their GNN from ChebNet to GCN and their RNN from LSTM to GRU for
a better comparison.

– EvolveGCN[15]: Different from the above mentioned GCN-GRU method,
EvolveGCN uses RNN to model dynamism on GCN parameters. The au-
thors proposed two types of EvolveGCN model, namely EvolveGCN-H and
EvolveGCN-O. The -H version is implemented by using GRU architectures
to evolve GCN parameters, and the -O version is implemented by using
LSTM architectures to evolve GCN parameters.

4.3 Experimental Results

Link Prediction. The evaluation metric for link prediction is Mean Average
Precision (MAP). MAP averages the predictions for all nodes and higher MAP
shows that the model can predict well for more nodes. Fig. 3. shows the perfor-
mance comparisons of all methods in link prediction tasks. Although all methods
perform badly because of the data distribution and class imbalance, DynGCN
still outperforms all other baselines in all three datasets.

OTC Alpha AS
10-4

10-3

10-2

10-1

100

M
A

P

GCN

GCN-GRU

EvolveGCN-H

EvolveGCN-O

DynGCN

0.0003

0.0001

0.0026

0.0028
0.0049

0.0001

0.0003 0.0003

0.0713

0.0036

0.0049
0.0063

0.1139
0.1534

0.2138

Fig. 3. MAP results for link prediction (the y-axis is in log scale).



10 J. Li et al.

Edge Classification. Table 2 shows the performance comparisons between
DynGCN and all baselines on edge classification task. The accuracy and weighted
F1 score are for all classes and F1 score and the corresponding precision and
recall are for the negative edges. Since both datasets suffer from serious class
imbalance problems, classification tasks on them are of great challenges. Our
proposed DynGCN model achieves the best performance by a significant margin.

Table 2. Experimental results for edge classification tasks

Datasets Methods Accuracy Weighted F1 F1 (Precision/ Recall)

OTC

GCN 0.5535 0.6155 0.3186 (0.2050/ 0.7148)
GCN-GRU 0.5981 0.6551 0.3386 (0.2256/ 0.6788)

EvolveGCN-H 0.6839 0.7118 0.2171 (0.1754/ 0.2848)
EvolveGCN-O 0.6873 0.7168 0.2446 (0.1962/ 0.3246)
DynGCN 0.7949 0.8019 0.3583 (0.3309/ 0.3905)

Alpha

GCN 0.6495 0.6814 0.0992 (0.0802/ 0.1303)
GCN-GRU 0.6340 0.6865 0.3433 (0.2353/ 0.6347)

EvolveGCN-H 0.7569 0.7668 0.3160 (0.2738/ 0.3735)
EvolveGCN-O 0.6773 0.7126 0.2971 (0.2288/ 0.4234)
DynGCN 0.8011 0.8027 0.3519 (0.3549/ 0.3489)

2 4 6 8 10 12 14 16 18

time step

0

0.1

0.2

0.3

0.4

0.5

0.6

F
1

GCN

GCN-GRU

EvolveGCN-H

EvolveGCN-O

DynGCN

(a) F1 score over time

2 4 6 8 10 12 14 16 18

time step

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

A
c
c
u
ra

c
y

GCN

GCN-GRU

EvolveGCN-H

EvolveGCN-O

DynGCN

(b) Accuracy score over time

Fig. 4. Performance over time for dataset Alpha on edge classification.

Advantage of dynamic modeling. We further plot the accuracy score and F1
score for the minority class over time for Alpha on edge classification. Although
the same results are also observed on OTC, we omit figures due to space limita-
tion. As shown in Fig. 4 (a), there is an obvious gap between GCN method and
all other methods while DynGCN still outperforms all baselines along time steps.
Besides, the accuracy score for GCN method is also relatively small as shown in
Fig. 4 (b). Intuitively, GCN is designed for static graphs and no dynamism is
considered in GCN model. The superior performance of other methods against
GCN indicates the advantage of dynamic modeling.



Dynamic Graph Convolutional Network 11

Advantage of spatial-temporal modeling. By further analyzing Fig. 4, we
can observe that DynGCN outperforms all baselines in F1 score of minority
class and accuracy score of all classes over time. Especially, at time step 15,
all baselines show extremely low performance, but DynGCN performs relatively
stable and still keeps an absolute advantage in F1 score. This is benefit from the
special architecture of DynGCN designed to capture both spatial and temporal
information from current and the past.

5 Conclusion

In this paper, we proposed DynGCN for representation learning on dynamic
graphs. By conducting spatial and temporal convolutions in an interleaving man-
ner with a model adapting architecture, we obtain rich information aggregated
along both time dimension and graph dimension. The extended experiments
show that DynGCN outperforms all baselines. The study of dynamic graph rep-
resentation learning opens up a lot of future works. For example, the model
scalability remains more improvements and we plan to extend this work to other
graph mining tasks like node classification, clustering. Besides, it is also an in-
teresting research topic on modeling continuous time for dynamic graphs.

Acknowledgements. This work was supported by NSFC under grant 61932001,
61961130390. This work was also supported by Beijing Academy of Artificial In-
telligence (BAAI). Lei Zou is the corresponding author of this work.

References

1. Bai, S., Kolter, J.Z., Koltun, V.: An empirical evaluation of generic convolutional
and recurrent networks for sequence modeling. CoRR abs/1803.01271 (2018),
http://arxiv.org/abs/1803.01271

2. Cangea, C., Veličković, P., Jovanović, N., Kipf, T., Liò, P.: Towards sparse hierar-
chical graph classifiers (2018)

3. Cao, S., Lu, W., Xu, Q.: Grarep: Learning graph representations with global
structural information. In: Proceedings of the 24th ACM International on Con-
ference on Information and Knowledge Management. pp. 891–900. CIKM ’15,
ACM, New York, NY, USA (2015). https://doi.org/10.1145/2806416.2806512,
http://doi.acm.org/10.1145/2806416.2806512

4. Chen, J., Ma, T., Xiao, C.: Fastgcn: Fast learning with graph convolutional net-
works via importance sampling (2018)

5. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural net-
works on graphs with fast localized spectral filtering. In: Lee, D.D.,
Sugiyama, M., Luxburg, U.V., Guyon, I., Garnett, R. (eds.) Advances in
Neural Information Processing Systems 29, pp. 3844–3852. Curran Associates,
Inc. (2016), http://papers.nips.cc/paper/6081-convolutional-neural-networks-on-
graphs-with-fast-localized-spectral-filtering.pdf

6. Grover, A., Leskovec, J.: Node2vec: Scalable feature learning for net-
works. In: Proceedings of the 22Nd ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining. pp. 855–864. KDD ’16,



12 J. Li et al.

ACM, New York, NY, USA (2016). https://doi.org/10.1145/2939672.2939754,
http://doi.acm.org/10.1145/2939672.2939754

7. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning
on large graphs. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach,
H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neu-
ral Information Processing Systems 30, pp. 1024–1034. Curran Associates,
Inc. (2017), http://papers.nips.cc/paper/6703-inductive-representation-learning-
on-large-graphs.pdf

8. Kazemi, S.M., Goel, R., Jain, K., Kobyzev, I., Sethi, A., Forsyth, P., Poupart,
P.: Relational representation learning for dynamic (knowledge) graphs: A survey.
CoRR abs/1905.11485 (2019), http://arxiv.org/abs/1905.11485

9. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. CoRR abs/1609.02907 (2016), http://arxiv.org/abs/1609.02907

10. Lei, K., Qin, M., Bai, B., Zhang, G., Yang, M.: GCN-GAN: A non-linear temporal
link prediction model for weighted dynamic networks. CoRR abs/1901.09165
(2019), http://arxiv.org/abs/1901.09165

11. Manessi, F., Rozza, A., Manzo, M.: Dynamic graph con-
volutional networks. Pattern Recognition 97, 107000 (2020).
https://doi.org/https://doi.org/10.1016/j.patcog.2019.107000,
http://www.sciencedirect.com/science/article/pii/S0031320319303036

12. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space (2013)

13. Noh, J.D., Rieger, H.: Random walks on complex networks. Physical Re-
view Letters 92(11) (Mar 2004). https://doi.org/10.1103/physrevlett.92.118701,
http://dx.doi.org/10.1103/PhysRevLett.92.118701

14. Ou, M., Cui, P., Pei, J., Zhang, Z., Zhu, W.: Asymmetric transitivity preserv-
ing graph embedding. In: Proceedings of the 22Nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. pp. 1105–1114. KDD
’16, ACM, New York, NY, USA (2016). https://doi.org/10.1145/2939672.2939751,
http://doi.acm.org/10.1145/2939672.2939751

15. Pareja, A., Domeniconi, G., Chen, J., Ma, T., Suzumura, T., Kanezashi, H., Kaler,
T., Leisersen, C.E.: Evolvegcn: Evolving graph convolutional networks for dynamic
graphs. CoRR abs/1902.10191 (2019), http://arxiv.org/abs/1902.10191

16. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: Online learning of social rep-
resentations. In: Proceedings of the 20th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining. pp. 701–710. KDD ’14,
ACM, New York, NY, USA (2014). https://doi.org/10.1145/2623330.2623732,
http://doi.acm.org/10.1145/2623330.2623732

17. Seo, Y., Defferrard, M., Vandergheynst, P., Bresson, X.: Structured sequence mod-
eling with graph convolutional recurrent networks (2016)

18. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph
attention networks (2017)

19. Wang, Y., Yuan, Y., Ma, Y., Wang, G.: Time-dependent graphs: Definitions, ap-
plications, and algorithms. Data Science and Engineering 4(4), 352–366 (2019).
https://doi.org/10.1007/s41019-019-00105-0, https://doi.org/10.1007/s41019-019-
00105-0

20. Xu, D., Cheng, W., Luo, D., Liu, X., Zhang, X.: Spatio-temporal attentive rnn
for node classification in temporal attributed graphs. In: Proceedings of the 28th
International Joint Conference on Artificial Intelligence. pp. 3947–3953. IJCAI’19,
AAAI Press (2019)


