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Abstract. Natural Answer Generation (NAG), which generates natu-
ral answer sentences for the given question, has received much attention
in recent years. Compared with traditional QA systems, NAG could of-
fer specific entities fluently and naturally, which is more user-friendly in
the real world. However, existing NAG systems usually utilize simple re-
trieval and embedding mechanism, which is hard to tackle complex ques-
tions. They suffer issues containing knowledge insufficiency, entity ambi-
guity, and especially poor expressiveness during generation. To address
these challenges, we propose an improved knowledge extractor to retrieve
supporting graphs from the knowledge base, and an extending graph
transformer to encode the supporting graph, which considers global and
variable information as well as the communication path between enti-
ties. In this paper, we propose a framework called G-NAG, including a
knowledge extractor, an incorporating encoder, and an LSTM genera-
tor. Experimental results on two complex QA datasets demonstrate the
efficiency of G-NAG compared with state-of-the-art NAG systems and
transformer baselines.

Keywords: question answering · natural answer generation · graph trans-
former.

1 Introduction

Natural Answer Generation (NAG), which devotes to providing fluent answers
in the form of natural language sentences, has received much attention in recent
years. Compared with traditional question answering (QA) systems that merely
offer accurate Answer Semantic Units (ASU) [10], NAG could satisfy users in
real-world scenarios where fluency is of strong demand.

Generally, the popular NAG framework consists of three modules, as shown
in Figure 1-a. Knowledge extractor recognizes the topic entity and retrieves its
related triples from the underlying Knowledge Base (KB). After Knowledge en-
coder representing these candidate triples and the question as two sequences,
Generator could generate the natural answer with an attention mechanism. Ex-
isting NAG systems have achieved some success focused on simple problems (one
topic entity), such as [27, 10, 6].

However, there are still many non-trivial issues due to linguistic complexity
that the above systems do not perform well. (1) In Knowledge extractor. On
the one hand, existing NAG systems recognize one topic entity and retrieve its
one-hop neighbors related to the question. When a question contains more en-
tities and multi-hop relations, they may leave out some critical entities. Take
Q in Figure 1 as an example, the ASU Jason Statham should be retrieved
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Fig. 1. Natural Answer Generation process of an example question.

through 2-hops from the mentioned entities in question so that it may be left by
previous knowledge extractor with one-hop retrieval mechanism. On the other
hand, without considering the global structure in KB, the above systems do dis-
ambiguation before retrieving triples. Thus, they may choose irrelevant entities
far apart from others, such as Paul Thomas Anderson which may be confused
with the correct entity Paul W.S. Anderson but unrelated to the question in
Figure 1-a. (2) In Knowledge encoder. Previous NAG systems encode triples as
a sequence, such as a list by LSTM [27, 10] or key-value structure by Memory
Network [6], which is too simple to express complicated semantic information.
For the same example, triple-list or key-value could not represent the topological
structure of the supporting graph clearly, which is the key to generate answers
logically.

We focus on these challenges above and propose some novel solutions. (1)
In Knowledge extractor, we consider to retrieve multi-hop triples around men-
tioned entities, such as 2-hops, as some may not appear in questions but useful
for answer generating. Since multi-hop retrieval may return a supporting graph
with much redundancy, we propose a simplifying method based on semantic
similarity, as shown in Figure 1-b. Meanwhile, we solve entity ambiguity after
retrieving triples based on the global structure in KB to choose correct entities.
(2) In Knowledge encoder. Since graph transformer [13] is proposed to gener-
ate summarization and achieve excellent performance, we employ an extending
graph transformer as encoder, which has more capacity to encode complicated
pair-wise relationships than the sequence structure. To fit the NAG problem, we
introduce the communication path and two extra vertices to capture global or
variable information, respectively (to be discussed in Section 2.3).

In this paper, we propose a framework called G-NAG (Graph-based NAG)
to implement the generation process, which also consists of three modules, as
shown in Figure 1-b. Compared with previous work, we enlarge the retrieval
range before disambiguation and then propose a simplifying strategy based on
semantic similarity in Knowledge extractor. Moreover, we replace the sequence
encoder with a graph transformer considering communication path as well as
global and variate vertices. Based on Wikimovie dataset [16] and DBpedia,
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we reconstruct a QA dataset in movie domain aimed at multi-hop question
answering. Experimental results on the original Wikimovie and new dataset
demonstrate the efficiency of our model compared with state-of-the-art NAG
systems and transformer baselines.

We summarize our main contributions of this paper as follow:

– We design a generation framework G-NAG, which generates natural and
logical answer based on KB. To our knowledge, it is the first framework that
aims at addressing complex NAG problem.

– We present a novel knowledge extractor which enlarges retrieval range before
disambiguation and simplifies triples based on semantic similarity to gain the
supporting graph.

– We propose an extending graph transformer to represent the supporting
graph, which considers the communication path and captures global or vari-
able information by extra vertices.

– We implement experiments on two datasets in the movie domain. The results
demonstrate that G-NAG performs better compared with existing NAG ap-
proaches and transformer baselines, especially in complex natural answer
generation problems.

2 Methodology
In this section, we introduce the notations employed in this paper.

Basic definition: We denote a given question as Q, and its accurate Answer
Semantic Units as ASU . There is only one type of ASU for each question, i.e.,
the ASU maybe two actors but not an actor and a writer. The generated natural
answer is denoted as A, and knowledge triples in KB are in the form 〈s, p, o〉,
where s,o are entity vertices (ent) and p is relation edge (rel).

Graph definition: We define the initial graph by multi-hop retrieval as
a inter-connected graph set G = [Gi = (Vq, Vo, Ei)], where vertex v ∈ Vq is
mentioned in question, v ∈ Vo denotes other retrieved vertex, and Ei is a set
of relation edges that link vertices. After disambiguation and graph simplifying,
the final supporting graph is denoted as G. In encoding section, we convert G
to an unlabeled graph G′ = (V ′, P ′), where V ′ is a set of all vertices and P ′ is
a matrix describing communication path among vertices.

2.1 Framework overview

Our G-NAG framework consists of three modules: Knowledge Extractor, In-
corporating Encoder, and Generator. We depict an overview with a concrete
example in Figure 2.

In Knowledge Extractor: Given the question Q, G-NAG maps each entity
phrase to its candidate linking vertices v ∈ Vq in underlying KB. Allowing for the
ambiguity of phrase linking, k-hop neighbors of these v ∈ Vq are retrieved from
KB. These triples construct a large graph, which could be divided into an inter-
connected graph set G, as illustrated in Figure 2 a-I. Then for disambiguation,
we employ a cost-distance strategy as a-II. Further, G-NAG removes redundant
vertices and edges by semantic similarity to acquire a simplified supporting graph
G as shown in Figure 2 a-III.
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Fig. 2. Natural Answer Generation process of an example question.

In Incorporating Encoder: G-NAG obtains the embedding of supporting
graph and question through concatenating a novel graph transformer (to be
discussed in Section 2.3) and bi-LSTM, as shown in Figure 2-b. Specially, we
consider the communication path between vertices-pair in graph attention cal-
culation. Before encoding, we convert the supporting graph G to an unlabeled
bipartite graph G′, which contains global and variate vertices (to be discussed
in Section 2.2).

In Generator: G-NAG predicts output word wt at each time step t by gen-
erating from vocabulary or copying from supporting graph G and question Q
via a soft switch p. As illustrated in Figure 2-c, token with underline is copied
from question text, and the colored token is from the graph, while other ordinary
words are generated from the vocabulary.

2.2 knowledge extractor
We propose an improved knowledge extractor in this section to provide a more
accurate supporting graph. Specifically, we enlarge the extraction range by multi-
hop retrieval before entity disambiguation, then solve the ambiguity based on the
global graph structure, and simplify the graph by semantic similarity eventually.

In the offline phase, following a similar procedure to [25], G-NAG encodes the
underlying KB into a common low-dimensional vector space. We employ TransE,
which refers to that p of each triple is represented as translation operation from
head vertex s to tail vertex o. Take triple 〈s, p, o〉 as an example, o should be
the closest vertex of s + p, while semantically similar vertices should be closed
as well.

Multi-hop Retrieval
Given Q, we map each entity phrase enti to its candidate linking vertices v ∈ Vq
in KB, while a entity phrase ent1 may be matched more than one vertex as
a set, such as vent1 = [v1i ] ⊆ Vq. Allowing for the ambiguity of phrase linking
temporarily, we retrieve k-hop neighbors of each linking vertex to construct a
large graph. As some linking vertices are far apart in KB, the large graph could
be divided into a graph set G = [Gi = (Vq, Vo, Ei)] where Gi are unconnected
to each other, Vq denotes linking vertices for entity phrase in question and Vo
denotes the other vertices retrieved. Factual questions usually have only a group
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of core multi-hop relationships, that is, the distances between exact entities are
all within a fixed number of hops, so target entities are rarely distributed on two
completely different graphs Gi.

Entity Disambiguation
In this stage, G-NAG deals with the ambiguous vertices in Vq. To ensure the
integrity of the supporting graph, we remain at most M graphs in G with more
linking entity phrases (Assume n graphs cover all entity phrases and denote m
as a parameter). Then considering one of the remaining graphs Gi, we compute
its cost motivated by [25] formulated as follow:

M = max(m,n), CostGi
=

∑
(s,p,o)∈Gi

‖s+ p− o‖22 (1)

Because of the cumulative effect of error, the candidate G with the minimum
cost could be selected with the strongest internal relevance.

Moreover, we propose a minimum-distance method to delete redundant link-
ing vertices in G for each entity phrase. Take vent1 = [v1, v2] in Figure 3-a as
an example, we define the shortest path (number of edges) between v1 and each
vertex of vent2 as the minimum-distance between v1 and vent2. Then we rank
vertices v in the same ventj according to the minimum-distance sum of v and
other ventj . Further, we only keep the vertex with the minimum sum in each v.

Graph Simplifying
In this stage, G-NAG deletes redundant vertices in Vo. For each vertex v ∈ Vo
in graph, we keep it if there exists a communication path between two linking
vertices vi, vj ∈ Vq containing it. In other words, we remove v ∈ Vo only related
to one entity phrase, which means a weak correlation with Q. Here, we regard
two vertices as isomorphic if they share the same neighborhood and connect
every common neighbor vertex with edges of the same relation. Then we merge
isomorphic vertices and concatenate their text attributions as one vertex.

G-NAG further deletes redundant vertices in Vo using aggregated semantic
similarities based on word embedding [9]. For this step, we only consider the
alternative vertex v ∈ Vo that could be removed without affecting the connectiv-
ity of the graph. Specifically, for each vertex, we concatenate triples containing
it as a word sequence T , then use Word2Vec [15] to compute string similarities
between T and question Q following [20]. where, w represents a word of the
string, and the average is used as the aggregation functions. Finally, we keep the
top-k alternative vertices in Vo with a higher score.

Similarity(Q,T ) = Agg cos(wQ, wT ) (2)

Different from existing NAG systems, which match triples with the question
directly, G-NAG performs multi-hop retrieval in entity-level without considering
relation phrases, then simplifies the graph based on semantic similarity. This
strategy allows G-NAG to handle implicit relations, where predicates are missed
in question, more effectively.

In addition, we identify the wild-card, i.e., who, when or main type phrase,
i.e., actress in Figure 1, in question text, which will be the text attribution of
variate vertex described in next section.
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2.3 Incorporating encoder

The encoder receives discrete inputs (question text and supporting graph de-
fined before) and encodes them into numerical representations jointly [3], to
accomplish neural network feeding.

Graph Conversion
Inspired by [2, 13], we convert the extracted graph to an unlabeled bipartite
graph. Specifically, we replace each relation edge with two vertices, where one
represents the forward direction of the relation and the other represents the
reverse. The key difference with the above work is G-NAG introduces two extra
vertices vv, vg to capture effective information.

Specifically, global vertex connects to vertices v ∈ Vq mentioned in the ques-
tion to update the global state following the reasoning perspective as humans.
Besides, variate vertex connects to other retrieved vertices v ∈ Vo and global ver-
tex, where its text attribution is a wild-card, i.e., who, or ASU type recognized
by knowledge extractor, i.e., actor. Therefore, the variate vertex vv concerns the
other retrieved vertices v ∈ Vo except for these mentioned in question, while
global vertex vg mainly grasps the whole graph via mentioned vertices v ∈ Vq
and variate vertex vv.

As shown in Figure 3-b, global vertex vg, which concentrates information
via two mentioned vertices and the variate vertex, could reach all vertices in G′.
Therefore, we initialize the decoder state using global vertex representation after
self-attention following [26, 13]. Moreover, since the variate vertex has specific
text attribution, it focuses more on other involved vertices v ∈ Vo especially
ASU, which is of vital importance for the generation. The conversion result is
G′ = (V ′, P ′), where V ′ is a vertex set and P ′ is a matrix storing communication
path between every vertices-pair. Take vertices pair v1, v2 as an example in
Figure 3-c, a sequence of vertex text attribution along the path from v1 to v2
expresses the communication path. Note we choose the shortest path between
vertices-pair (numbers of edges) and adopt embedding average when two or more
equal length paths exist.

Graph Transformer
In this section, the text attribution of vertices is embedded as V = [vi], vi ∈ Rd

in a dense continuous space using bi-LSTM described in the Question encoder
section, which is the input of graph transformer. Same as typical transformer,
each vertex has 3 vector representations q(query), k(key), v(value).
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Our graph transformer maintains a similar architecture as that in [13], which
is proposed to generate summarization in the scientific domain. Compared with
summarization generation, there are two differences in our task that is also
challenges for encoding.

– Entities in supporting graph could be divided into mentioned vertices v ∈
Vq and other retrieved vertices v ∈ Vo, while the former linked by entity
phrases are related to answers but the latter may be ASU or supplementary
information that could be omitted.

– There are closer relationships between entities than that of a summariza-
tion since the supporting graph is for a specific question in NAG, not for a
scientific topic.

Therefore, we improve the graph transformer as following.

For each original vertex, G-NAG employs self-attention over the whole con-
verted graph while [13] only calculates on local neighborhoods. This design
allows vertex to capture more information except for neighborhoods since the
supporting graph in the NAG task is smaller and more logically connected than
that in the long-text summarization generation task.

Besides, we extend the conventional self-attention architecture by explicitly
encoding the communication path between vertices-pair vi, vj in the alignment
model motivated by [22]. Specifically, we encode the communication path de-
scribed following into d-size dimension space and add it to vertex vj ’s k(key)
vector for calculation. Thus, we represent vi as the weighted sum of all vertices’
v(value) vectors with the consideration of communication path, formulated as
follow:

v̂i =
N

‖
n=1

∑
j∈V

αn
ijW

n
V vj , where a

n
ij =

exp((Wkkj + WRrij)
>
WQqi)∑

z∈V exp((Wkkz + WRriz)
>
WQqi)

(3)

where ‖ represents concatenation, αn
ij is normalized attention coefficient com-

puted by self-attention mechanism per head, and Wn
V is transformation’s weight

matrix of v(value). For each attention function α, WK , WQ are transforma-
tion’s weight matrix of k (key) and q (query), where rij denotes the embedded
communication path between vi, vj and WR ∈ Rd∗d is a parameter matrix of r.

For global and variate vertex, we compute their representation over neighbor
vertices without path encoding respectively. As discussed before, we capture re-
trieved information by variate vertex and obtain global state by global vertex,
which allows graph transformer to better articulate global patterns and ASU
location. Since the edges around each extra vertex do not represent real relation
in KB, we only contextualize global and variate vertices’ representation by at-
tending over their neighborhoods. As a result, these two vertices’ representations
are calculated attending over their neighborhoods in G′ formulated as follows.
Here, Ng denotes the neighborhoods of vg and the representation calculation of
vv is the same as vg.

v̂g =
N

‖
n=1

∑
j∈Ng

αn
jW

n
V vj , where anj =

exp((Wkkg)
>
WQqi)∑

z∈Ng
exp((Wkkz)

>
WQqg)

(4)
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Finally, we adopt the conventional transform architecture, which is composed
of a stack of D = 6 identical layers. As illustrated in Figure 2 b, each layer con-
sists of a self-attention mechanism and feed-forward network, both around by a
residual connection. The final representation of vertices is denoted as V D = [vD].

In the following, we describe the representation of the communication path
between vertices-pair. Given a vertex sequence along the communication path
between two vertices, we concatenate the text attribution pi of each vertex as
sequence p = [pi]. Then, we acquire d-sized corresponding embedding sequence
s = [si] inspired by the label sequence embedding procedure in [28]. Considering
continuous or discrete representations separately, we employ the average method
and self-attention method to calculate representation vector rij .

Average method: calculate the averaged embedding as the representation
vector of the communication path.

Self-attention method: use attention function as presented in Eq. 4 to
acquire the representation of s as hs = [hsi ], then define a weight γ to calculate
weighted sum of hs as r:

γi =
exp(ei)∑L

k=0 exp(ek)
, ei = v>tanh(Whshsi + b) (5)

where L denotes the length of communication path.

Question encoder
The question encoder transforms the question text into a vector representation
by Recurrent Neural Network (RNN). The tokens of the question qi are fed
into a single-layer bidirectional LSTM [11] one by one, producing a sequence of

concatenated encoder hidden states hqi. While hqi is expressed by [
−→
hqi,
←−
hqL−i+1],

which are encoded by a forward and a backward RNN independently. We use

encoder state hqL = [
−−→
hqL,

←−
hq1] to represent the whole question, while encoder

output list hqi is stored for attention distribution calculation.

2.4 Generator

To predict answer words yt in each time step, we use LSTM decoder. Dur-
ing training, decoder accepts the embedding of previous output words y<t =
y1, y2, ..., yt−1, a context vector ct with attention on inputs, and decoder hidden
state of previous step st−1 to update hidden state: st = f(yt−1, st−1, ct). In-
spired by Copynet [7], we apply the copy mechanism to deal with the unknown
or special words expected to appear in the answer sentence. In the following, we
describe the generation process in decoder at each time step.

Firstly, we initialize the decoder state using global vertex representation as
s0. Then we compute the graph context vector cg using N-headed attention as
follows, which is a weighted sum of vertex representations.

cg = st +
N

‖
n=1

∑
i∈V

αn
i W

n
Gv

D
i , whereαi =

exp((Wkki)
>
WQst)∑

z∈V exp((Wkkz)
>
WQst)

(6)

Similarly, the question context vector cq is computed attending over the
question text as in [1]. Then we concatenate cg and cq as final context vector ct.
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Below, parameters Wh,Ws, b
∗ are learned during training, and L indicates the

length of question sequence.

cq =

L∑
j=1

βn
j hj , whereβj =

exp(ej)∑L
k=0 exp(ek)

, ej = v>tanh(Whhj +Wsst + b∗) (7)

G-NAG model generates answer words both from vocabulary based on atten-
tion and copying words via pointing. Therefore, we define a soft switch g within
0 to 1, which chooses between predicting a vocabulary word by distribution Pv

or copying a word via attention distribution [αi, βj ]. Eventually, we acquire a
final probability distribution over the extend vocabulary as follows.

P (w) = gPcopy(w)+(1−g)Pv(w), where g = sigmoid(W>h ht +W>s st +bg) (8)

Pcopy =
∑

j:wj=w
(αj + βj) Pv = softmax(Wv1(Wv2[st, ct] + b1) + b2) (9)

Besides, we minimize negative log-likelihood of the target word w∗t for each time
step, and the overall loss is defined as their sum.

L =
1

T

∑T

t=0
(−logP (w∗t )) (10)

3 Experiment
3.1 Datasets

Our model attempts to generate natural answers, especially for complex ques-
tions that contain logical relations between entities. To our knowledge, there
is not an existing dataset naturally fitted to this problem. Thus, we tailor
the Wikimovie1 dataset [16] according to our requirements as wikimovie*.
Moreover, we reconstruct a multi-hop dataset wikimovie-multihop from the
Wikimovie and DBpedia by manual annotation. The original Wikimovie dataset
consists of simple question-ASU pairs, external KB and natural sentences from
Wikipedia about the movie, which covers 10 topics. To expand knowledge, we
search cast members’ related triples in DBpedia by DBpedia Lookup Service .
Statistics of the two datasets are available in Table 1.

Table 1. Data statistics of dataset

Dataset
Total movie

num
QA-pairs

Avg length
of question

Avg length
of answer

Avg triples
per QA-pair

wikimovie* 6429 12037 17 14 4.7
multihop 13066 34472 15 15 5.5

wikimovie*: Take each natural sentence in Wikimovie as an ideal answer,
we search the related triples in underlying KB and choose one o (object) among
the triples as ASU . Then let annotators generate the corresponding question,
which contains the triple information mentioned in the answer without variate
and movie name as Example 1. We remove the QA-pair if its ASU is not unique.
Since each natural sentence in Wikimovie is around one movie, the related graph
is star-like and within 2-hops.

1 http://fb.ai/babi
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Example 1. Given the natural answer “Resident Evil is a 2013 English movie
directed by Paul Anderson and starring Li Bingbing”. One possible question is
“What is the language of the 2013 film by Paul Anderson and Li Bingbing”.

wikimovie-multihop: We extract sub-graph randomly in underlying KB with
limited size, while the sub-graph should contain more than 2-hop relations be-
tween entities, but no more than 4-hop for the longest path. Then for each
sub-graph, we mask one vertex to be ASU that is not in the border. Based on
the sub-graph, let annotators generate QA pairs in natural language sentences,
while the question must be answerable and the answer should contain all infor-
mation without missing. Note that entities not essential for reasoning ASU could
be omitted or replaced, i.e., in 2008 replaced by in the same year in section 1.
After annotators providing 460 QA pairs, we extend the dataset by replacing
the sub-graph in underlying KB with the same graph structure.

3.2 Evaluation Metrics

Automatic Evaluation:Similar to existing NAG systems [27, 10], we compute
ASU-acc to evaluate the correctness of ASU . Following [5], we adopt some word-
overlap based metrics (WBMs)2 including BLEU-4 [19], and METEOR [4] to
measure the co-occurrences of references and generated answers.

Manual Evaluation: Further, it is hard to automatically evaluate the natu-
ralness and correctness of generated answers. Following [17], we employ a manual
evaluation to measure the Naturalness and Correctness respectively by a score
among 0-5, where the higher the score, the better the evaluation. The Kappa
coefficient for inter-annotator is 0.744, and the p-value for scores is less than
0.01.

3.3 Comparison Models

Throughout existing researches on the natural language answer generation prob-
lem, we compare our model (G-NAG) with state-of-the-art NAG models from
different perspectives.

– GenQA [27], a standard seq2seq model with attention using encoder-decoder
structure. It retrieves the best-matched triple by MLP and encodes it with
the question encoded by LSTM to generate a natural answer.

– COREQA [10], a similar structure to GenQA. Moreover, it retrieves more
one-hop triples and introduces the copy mechanism.

– HM-NAG [6], an improvement of COREQA. It encodes all related triples in
key-value structure without matching with the question and selects proper
triples completely by attention during generation.

Except for existing NAG systems, we compare several baselines containing graph
attention or transformer. Since these models have no knowledge extractor mod-
ule, we feed the same simplified graph after converting as input.

2 WBMs are implemented in https://github.com/Maluuba/nlgeval.
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– GraphWriter [13], a graph2seq model for summarization containing graph
transformer without variate vertex and communication path during the self-
attention calculation.

– Tranformer [23], a sequence transformer proposed originally without graph
structure.

3.4 Implementation Details
In knowledge extractor, we recognize entity phrases by StanfordCoreNLP tools
and use Word2Vec [15] with 300 dimension vectors trained on the EN-wiki
dataset to compute string similarities. Besides, we keep the top-2 alternative
vertices in Vo with a higher score, and set k = 2, m = 3 in extractor module.

In experiments, G-NAG and baseline models are trained for about 40 epochs
with the learning rate as 0.03, where gradients are updated by Adam [12] learning
rule. In both datasets, we add word occurring more than 5 times into vocabulary
and the state size of word embedding and batch size are both set to 256. For the
transformer, we set layer D as 6, attention heads as 4, following the setting in
[13], and use a self-attention based method to encode the communication path
described in section 2.3.

3.5 Result
Table 2. Performances on dataset Wikimovie*

Model GenQA COREQA HM-NAG GraphWriterTransformer G-NAG

ASU-acc 0.6506 0.6680 0.6818 0.8171 0.7913 0.8310
BLEU-4 0.3421 0.3792 0.3879 0.4282 0.4014 0.4419
METEOR 0.3722 0.3990 0.4113 0.4527 0.4371 0.4809

Natural 2.5 2.7 2.7 3.4 3.1 3.4
Correctness 2.0 2.5 2.7 3.4 3.1 3.6

Table 2 shows the answer generation performance on the wikimovie* dataset.
From the result, we can see that G-NAG performs better than NAG baselines3

both in the automatic or manual evaluation due to the improved knowledge
extractor. Meanwhile, G-NAG outperforms GraphWriter and Transformer in
ASU-acc, BLEU-4, and METEOR with stronger information express-ability of
graph embedding method.

Considering manual evaluation, both G-NAG and GraphWriter, employing
graph transformer, could generate fluent natural answers with the same score
in Naturalness. Moreover, our G-NAG obtains a higher score in Correctness as
it introduces two extra vertices and communication path embedding into the
self-attention calculation.

Next, we prove the effectiveness of our model in wikimovie-multihop dataset
in Table 3. Compared with G-NAG, ASU-acc metrics of NAG baselines are un-
satisfactory as they use one-hop triple retrieval, which solves complex relations
hardly in a multi-hop situation. Meanwhile, we see that G-NAG achieves higher
ASU-acc than GraphWriter and Transformer which are fed with the same sup-
porting graph since G-NAG has more ability to capture the ASU by variate
vertex representation.

3 Since different tailoring for the dataset, the result of HM-NAG is not the same as it
reported
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Table 3. Performances on dataset Wikimovie-multihop

Model GenQA COREQA HM-NAG GraphWriterTransformer G-NAG

ASU-acc 0.3071 0.4129 0.4513 0.7544 0.7403 0.7816
BLEU-4 0.1608 0.2011 0.2106 0.3322 0.3078 0.3471
METEOR 0.2034 0.2351 0.2509 0.3777 0.3541 0.3912

Natural 2.1 2.3 2.4 3.1 3.0 3.2
Correctness 1.7 2.1 2.2 3.2 2.9 3.3

A comparison in manual evaluation between sequence-based knowledge rep-
resentation, such as NAG baselines or Transformer, and graph transformer-
based framework proves the express-ability of graph transformer. We analyze
that sequence-based systems may miss information during retrieving or gen-
erating stage, therefore the generated answers get a low score. Further, as for
graph transformer, G-NAG could generate more logical and perfect answers than
GraphWriter, which is reflected in BLEU-4 and Correctness metrics.

Table 4. Performances on implicit relation dataset Wikimovie*

Model GenQA COREQA HM-NAG GraphWriterTransformer G-NAG

ASU-acc 0.5217
(-0.129)

0.5513
(-0.117)

0.5904
(-0.091)

0.7744
(-0.0430)

0.7502
(-0.041)

0.7909
(-0.040)

BLEU-4 0.2904
(-0.052)

0.3122
(-0.067)

0.3212
(-0.067)

0.3884
(-0.040)

0.3571
(-0.044)

0.4037
(-0.038)

METEOR 0.3317 0.3520 0.3688 0.4243 0.3914 0.4427

Natural 2.3 2.6 2.6 3.4 3.0 3.4
Correctness 1.8 2.2 2.3 3.2 2.7 3.5

As mentioned in section 2.2, G-NAG can handle implicit relations in ques-
tions, which is a challenge to NAG but the common situation in daily life, i.e.,
Q in Figure 2. Thus, we select the QA pairs in Wikimovie* where the questions
have no obvious attribute or relational predicates. As shown in Table 4, G-NAG
performs better than NAG baselines as it extracts triples depending more on the
entity, not the relation, which is reflected in the decline value of ASU-acc and
BLEU-4 compared with Table 3. Moreover, G-NAG keeps retrieved vertices as
well as relation edges with higher scores in graph simplifying so as to identify
these implicit relations. Furthermore, we can see that although the automatic
metrics have fallen, the Naturalness and Correctness of G-NAG stay essentially
flat because of the ability of generator module. However, G-NAG may gener-
ate redundant information in this situation, which will be discussed in the case
study.

3.6 Case Study
Table 5 gives some outputs from our model, GraphWriter, and HM-NAG which
performs better than the other two NAG baselines. ASU and other entities in
this table are marked as bold and italics separately, while copy words marked
as underline and superscript denotes the dataset QA pairs from. Besides, we use
(movie-1,movie-2) to denote mentioned movies in the order that they appear in
gold answers.

In Case 1, though HM-NAG recognizes entities correctly, it fails to generate
ASU and accurate movie names because of triple missing. Meanwhile, because
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Table 5. Example outputs of various systems versus Gold.

Question∗ Do you remember the César-winner actress who appeared in
director Rupert Sanders’ and Drew Goddard’s film in the same year?

Knowledge
(movie-1, release year, 2012), (movie-1, directed by, Rupert Sanders),
(movie-1, starred actor, ASU),(movie-2, release year, 2012),
(movie-2, directed by, Drew Goddard),(movie-2, starred actor,ASU)

HM-NAG

César-winner Rupert Sanders worked with Rupert Sanders in the

film Snow White and the Huntsman, and Drew Goddard in the
film Bad Times at the El Royale in the same year .

GraphWriter
César-winner Kristen Stewart worked with Rupert Sanders in the

film Snow White and the Huntsman in 2012, and Drew Goddard
in the film The Cabin in the Woods .

G-NAG
César-winner Kristen Stewart worked with Rupert Sanders in the

film Snow White and the Huntsman, and Drew Goddard in the film
The Cabin in the Woods in 2012 .

Gold
Yes, César-winner Kristen Stewart worked with Rupert Sanders

in the film Snow White and the Huntsman, as well as
Drew Goddard in The Cabin in the Woods in 2012 .

Questionmulti What is the release date of the animated movie by Kurt Frey and

Ben Stassen?

Knowledge
(movie-1,directed by,Ben Stassen),(movie-1,written by,Ben Stassen)
, (movie-1, written by, Kurt Frey),(movie-1, release year, ASU)

HM-NAG
Haunted Castle is a animated film written by writer Kurt Frey

and Ben Stassen .

GraphWriter
Haunted Castle is a 2001 animated horror film written by writer
Kurt Frey and directed by Ben Stassen .

G-NAG
Haunted Castle is a 2001 animated horror film written by writer
Kurt Frey and directed by co-writer Ben Stassen .

Gold
Written by Kurt Frey and directed by co-writer Ben Stassen,

Haunted Castle is a 2001 animated film .

GraphWriter does not consider path information in the attention calculation, it
has not a comprehensive grasp of graph structure to generate year in the right
position. In Case 2, when the given question contains implicit relations, it is hard
for HM-NAG to recognize all accurate relations and ASU . Moreover, even fed
with a more accurate graph, GraphWriter misses the relation reflected in gold
answer by co-writer. As implicit relation affects the simplifying stage, G-NAG
obtains a supporting graph with more redundant entities while it generates extra
information as horror.

4 Related Work
Our work belongs to the NAG task and draws inspiration from the research fields
of graph-to-sequence, and copying mechanism.

NAG: [27, 10] propose an end-to-end model to encode question and related
knowledge as a sequence. Further, [6] put these triples into Key-Value memory
proved effective by [16]. The above work provides a feasible framework consists
of retrieving and generating that is followed by G-NAG. However, limited by
the simple retrieval and sequence representation structure, these systems do not
perform well in complex questions, which stimulates us to make improvements.
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Graph-to-sequence: To find alternative representation structure for NAG,
we notice that converting graph to sequence is wildly studied from different
aspects. The above work proves that the graph is an effective structure to en-
code complex information [14], which fits our requirements. As for graph rep-
resentation, the key idea is to learn a mapping to embed nodes as points in a
low-dimensional vector space. Motivated by [24, 13, 28], we employ graph trans-
former considering communication path to encode the supporting graph.

Attention and Copy Mechanism: Since unknown or special words in
source text may impede predicting, Copying based on Attention has been proven
extremely useful for a broad range of text generation tasks. To judge where to
copy from, Copynet [7] utilizes the soft attention distribution to produce an
output sequence containing elements from the input. This solution is applied to
dialogue system [7], NMT [8], summarization [18, 21], QA system [10], etc.

5 Conclusion and Future Work
In this paper, we propose a novel generating framework based on graph trans-
former to address the natural answer generation problem (NAG). The model
we put forward, named G-NAG, improves knowledge extraction by multi-hop
retrieval before disambiguation and simplifying strategy. Besides, it mainly in-
creases express-ability by an extending graph transformer to encode the support-
ing graph for generating. Experimental results on two closed-domain datasets
demonstrate that our model significantly outperforms existing NAG models, and
prove the effectiveness of graph attention and transformer meanwhile. In the fu-
ture, we expect G-NAG to find the balance between enlarging retrieval range
and controlling graph size. Moreover, we try to solve the repetition problems by
coverage model or other approaches.
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