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Abstract

Paraphrase, i.e., differing textual realizations of the same
meaning, has proven useful for many natural language pro-
cessing (NLP) applications. Collecting paraphrase for pred-
icates in knowledge bases (KBs) is the key to comprehend
the RDF triples in KBs. Existing works have published some
paraphrase datasets automatically extracted from large cor-
pora, but have too many redundant pairs or don’t cover
enough predicates, which cannot be improved by computer
only and need the help of human beings. This paper shows
a full process of collecting large-scale and high-quality para-
phrase dictionaries for predicates in knowledge bases, which
takes advantage of existing datasets and combines the tech-
nologies of machine mining and crowdsourcing. Our dataset
comprises 2284 distinct predicates in DBpedia and 31130
paraphrase pairs in total, the quality of which is a great leap
over previous works. Then it is demonstrated that such good
paraphrase dictionaries can do great help to natural language
processing tasks such as question answering and language
generation. We also publish our own dictionary for further
research.

1 Introduction

Paraphrase is the mapping from a text to a related one, where
the two texts describe the same thing or have the same mean-
ing. It can be understood as ‘restate’ based on semantic sim-
ilarity and word ontology. Paraphrase generation is the pro-
cess of collecting or generating object-paraphrase pairs for a
given set of phrases, sentences or even passages. It often re-
quires a subsequent verification stage to determine whether
the two texts are paraphrastic, which is also called para-
phrase recognition. However, due to the undemanding def-
inition of paraphrase, this task cannot be perfectly finished
by computer only. Instead it needs human’s intuition, so it
is often distributed to a large group of people and improved
by human’s intelligence, the process of which is known as
crowdsourcing.

Crowdsourcing is the process of outsourcing a vast num-
ber of small, simple tasks to a distributed group of ordi-
nary workers without specific skills. It is an effective way
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to solve computer-hard tasks and has many successful appli-
cations, such as entity resolution (Vesdapunt, Bellare, and
Dalvi 2014; Wang, Xiao, and Lee 2015), image recognition
(Welinder and Perona 2010), data cleaning (Park and Widom
2014; Wang et al. 2014) and knowledge construction (Am-
sterdamer et al. 2015), especially when the public crowd-
sourcing platforms, like Amazon Mechanical Turk (AMT)1,
CrowdFlower2, and Upwork3, have arisen and grown ma-
ture. In a crowdsourcing platform, requesters publish HITs
(human intelligence tasks); Workers finish the tasks and re-
turn the results, and they will get reward when their answers
are accepted. It is an easy part-time work pattern benefiting
both workers and requesters. At the same time, however, as
the tasks are distributed to a group of unskilled workers who
may make mistakes or give bad answers deliberately, the re-
sults obtained from crowdsourcing may have relatively low
quality, which signifies delicate designs to control quality
is of great importance in a crowdsourcing job. Besides, re-
questers often hope to spend less money to get better results
in a shorter period of time. There is a compromise among
quality, money and time. So in crowdsourcing tasks, appro-
priate designs often have a crucial impact on the results.

Knowledge bases (KBs) are gaining more attention
for their wide use in many industrial fields. In a struc-
tured knowledge base, the Resource Description Framework
(RDF) is the general framework for representing entities
and their relations. Each RDF datum is stored as a triple
composed of three elements, in the form of 〈subject, pred-
icate, object〉. The predicate is often the key to compre-
hend the relation between entities (Zou and Özsu 2017). In
a given knowledge base, predicates are limited and fixed,
and sometimes hard to understand, while natural language
expressions are abundant for the same meaning. There is
a need to map predicates of a KB to natural language ex-
pressions, i.e., collecting paraphrase for predicates in knowl-
edge bases, which can be used in many NLP tasks such as
semantic parsing, question answering, machine translation
and query generation. Some existing works focus on para-
phrasing and publish avaliable dictionaries (Miller 1995;

1https://www.mturk.com/
2http://www.crowdflower.com
3https://www.upwork.com
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Nakashole, Weikum, and Suchanek 2012; Ganitkevitch,
Durme, and Callison-Burch 2013). However, these datasets
are mainly obtained automatically from large corpora and
often have many redundant or wrong pairs, and they don’t
cover enough predicates. Applying these paraphrase dictio-
naries to NLP tasks may even degrade performances.

In this paper, we first investigate and analyze the inherent
weaknesses of existing datasets and based on these works
we propose a full procedure to collect a large-scale para-
phrase dictionary for predicates in DBpedia, a widely-used
knowledge base. Then we try to clean these data with the
help of both machine algorithms and crowdsourcing, on the
latter we focus on the control of quality, cost and latency and
have delicate designs. After obtaining a large-scale and high-
quality paraphrase dictionary, we apply it to two NLP tasks
(question answering and question generation respectively)
and gain satisfactory performance promotion, demonstrat-
ing the value of such good paraphrase dictionaries. We also
publish our dataset for future research. More precisely, our
contributions are as follows:

• We give a complete procedure of collecting paraphrase
phrases for knowledge base predicates, which combines
machine mining and crowdsourcing, and in this process
we also optimize the design of crowdsourcing tasks.

• We release our dataset on github for further research4. Our
dataset contains 2284 distinct predicates of DBpedia with
31130 satisfactory paraphrase pairs, which is a great leap
over existing works.

• We introduce two NLP models for question answering
(QA) and question generation (QG) respectively and show
how paraphrase dictionaries can be used properly in such
tasks. Extensive experiments are conducted and the re-
sults prove the value of such good paraphrase dictionaries
for natural language processing tasks.

The rest of the paper is structured as follows. Section 2 intro-
duces existing paraphrase datasets and analyses their inher-
ent short comings. In Section 3, we show our processing pro-
cedure to get a satisfactory paraphrase dictionary as well as
the design details of the crowdsourcing platform. Section 4
introduces two NLP models for QA and QG respectively and
explains how paraphrase dictionaries can be used in such
models. Then we perform extensive experiments with our
new dictionary and present the results in Section 5. Section
6 concludes the study.

2 Related Dataset

WordNet (Miller 1995) is one of the most widely used lex-
ical resources in computer science. It is an on-line lexi-
cal reference system inspired by psycholinguistic theories
of human lexical memory. In this system, English nouns,
verbs, adjectives and adverbs are organized into sets of syn-
onyms, each representing one underlying lexical concept.
And these synonyms are linked with different relations, in-
cluding hypernym, antonymy and meronymy. It involves

4https://github.com/pkumod/Paraphrase

Table 1: Some samples for predicate “award” in Patty.
Paraphrase Score

nominate for 0.10964912280701754
finish in 0.07655502392344497

then sign by 0.05481283422459893
lead be 0.03374233128834356

when join [[det]] 0.02298221614227086
formerly play at 0.02127659574468085
be bury [[con]] 0.059907834101382486

155,287 words, which are arranged into 117,659 synonyms.
But this dictionary is limited to single words and does not
contain phrases or patterns. For example, in WordNet, word
“spouse” and “partner” are in the same synset, based on
which we can learn that “spouse” and “partner” express the
same meaning in some contexts, but phrases like “be mar-
ried with” that well paraphrase the word ”spouse” are not in-
cluded in. And this dictionary is a pure mapping from word
to word and has nothing to do with predicates in KBs. If
phrases and relational patterns were avaliable, this dictio-
nary could play bigger roles in NLP tasks.

Nakashole, Weikum, and Suchanek noticed the deficiency
of phrases and patterns in WordNet and therefore created
Patty (2012), a large resource for textual patterns that de-
note binary relations. It focuses on the compiling of binary
relational patterns(i.e., phrases) between entities from a cor-
pus and then builds a WordNet-style taxonomy for the bi-
nary relations. They obtain 350,569 pattern synsets on the
Wikipedia corpus and then map these patterns to the predi-
cates in DBpedia, a well-known knowledge base structured
from Wikipedia (Bizer et al. 2009), which forms into a para-
phrase dictionary with 225 distinct predicates and 127,811
corresponding paraphrase pairs. This work is a good start for
automatically paraphrase construction for knowledge base
predicates. However, their dataset contains only 225 predi-
cates, which are far from enough in many NLP tasks. And
each predicate has more than 500 paraphrase pairs in aver-
age, many of which are redundant or not good at all. Ta-
ble 1 shows some paraphrase phrases for predicate “award”,
where many are far-fetched. Applying this dataset to NLP
tasks may even degrade performances.

PPDB (Ganitkevitch, Durme, and Callison-Burch 2013;
Pavlick et al. 2015) is a large-scale and multilingual para-
phrase database automatically extracted from bilingual par-
allel corpora. It contains millions of paraphrases in 16 dif-
ferent languages and is arranged in three types: lexical
(single word to single word), phrasal (multiword to sin-
gle/multiword), and syntactic (paraphrase rules containing
non-terminal symbols). The paraphrase pairs are ranked by
score and the score is also used to divide the database into
six sizes, where smaller size means higher precision. This
database contains huge amounts of paraphrase pairs. How-
ever, there is a vital pity that it is independent of knowledge
bases and many paraphrase pairs are merely literally alike.
Similar phrases appear over and over again, which makes it
quite redundant.

Table 2 concludes the statistics of these datasets.
As the analysis above, some existing works devote to the
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Table 2: Statistics of related paraphrase datasets.
(PPDB/W/S and PPDB/P/S stand for PPDB’s English
version of size S for word and phrase respectively.)

Dataset Type Scale
WordNet word to word 155,287 words and 117,659 synsets
Patty predicate to phrase 225 predicates and 127,811 pairs
PPDB/W/S word to word 231,716 paraphrase pairs
PPDB/P/S phrase to phrase 1,530,813 paraphrase pairs

Dataset Features
Wordnet no phrases, independent of predicates
Patty lack predicates, unreliable paraphrase pairs
PPDB pure paraphrase dictionary, too many word-like pairs

construction of paraphrase pairs automatically and have re-
leased extensive databases. But these datasets generally have
many redundant or wrong pairs and don’t cover enough
predicates. We take in their results and introduce machine
algorithms and crowdsourcing for quality improvement and
finally build a satisfactory paraphrase dictionary.

3 Paraphrase Acquisition

We make full use of the existing datasets and combine
the technologies of machine mining and crowdsourcing to
build a large-scale and high-quality paraphrase dictionary
for predicates in DBpedia. This section shows the whole
process and the delicate designs of our crowdsourcing plat-
form. In general, our procedure contains these steps: (1)
Clean PPDB. (2) Merge Patty with PPDB. (3) Collect new
frequent predicates in KBs. (4) Get paraphrase expressions
for these new predicates from WordNet and PPDB. (5) Re-
move redundant and bad pairs by machine algorithms. (6)
Paraphrase recognition by crowdsourcing. It can be broadly
divided into machine processing stage and crowdsourcing
stage, which will be explained in detail below.

3.1 Machine Processing Stage

We first choose PPDB’s English packs for words and phrases
of size S, which contains only the highest-scoring pairs.
The reason we choose size S rather than larger ones is that
the version of size S contains enough paraphrase pairs and
larger ones are composed of too many redundant or bad
pairs which will degrade quality. The two packs have about
230,000 and 1,220,000 paraphrase pairs respectively and
many of these are literally alike. After eliminating redun-
dant pairs by calculating edit distance between neighbouring
strings and removing worthless phrases with odd characters
or strings 5, we reduce the two packs into around 40,000 and
360,000 pairs separately.

Then we combine the contents in Patty and PPDB to build
a large mapping from predicates to phrases. Patty is the map-
ping from predicate P to phrase A and PPDB is the mapping
from phrase (or word) B to phrase (or word) C. To make full
use of the paraphrases in PPDB and involve more paraphrase
candidates for predicate P, we compare the distance between

5For example, some phrases in PPDB contain commas and con-
sist of two segments such as “here , let me help you”, which won’t
contribute to our work.

Figure 1: The binding process between Patty and PPDB.

phrase A and phrase B in many ways, including conducting
string matching, calculating the Levenshtein distance and
measuring distance with Stanford’s pretrained open-source
word embedding6. When phrase A is considered equal to
phrase B, phrase C is added to the paraphrase sets for predi-
cate P. By this step we enlarge the candidate paraphrase sets
for the 225 predicates that already reside in Patty, but po-
tentially introduces more errors as well. Figure 1 shows this
binding process.

In order to cover more predicates, we also start from the
frequent predicates in DBpedia and analyze their denota-
tions. Many predicates are natural words and stand for their
literal meanings, which can get paraphrases from PPDB and
WordNet by measuring the distance between the predicate
and the phrases in existing datasets. Some don’t have actual
connotations literally but we can obtain their corresponding
triples from DBpedia’s resources (http://blog.dbpedia.org/),
which can contribute to make out their meanings. We add ex-
planations for these predicates by hand together with some
corresponding triples, guaranteeing all the predicates shown
to workers are comprehensible. Some predicates in KBs
don’t have meaningful triples and we directly omit them.
By this step we expand our dictionary with more than 2000
predicates. Then we turn to crowdsourcing to get more para-
phrases for these predicates, which can be further propa-
gated with PPDB.

In this machine processing stage, we mainly take advan-
tage of the existing datasets and by merging and culling we
get a large dictionary composed of over 2000 predicates and
plenty of candidate paraphrase pairs. Many bad paraphrase
pairs are hidden here but cannot be removed appropriately
by computer only, so we resort to crowdsourcing to do fur-
ther paraphrase recognition.

3.2 Crowdsourcing Implementation

Crowdsourcing means handing out a vast amount of small,
simple tasks to a distributed group of ordinary workers with-
out specific skills. It is an effective way to solve computer-
hard tasks and has been widely used these days. Quality, cost
and latency control are three aspects that need to be taken
into consideration in the design of crowdsourcing tasks and
have huge influence on the results. And that is exactly what
we focus on.

6http://nlp.stanford.edu/data/glove.840B.300d.zip
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Instead of using public crowdsourcing platforms which
have limited task formats and are hard to perform quality
control, we build our own platform for better designs. In our
platform, each HIT (human intelligence task) contains only
one predicate and a number of candidate paraphrase words
or phrases accessed from the machine processing stage. We
want workers to give a score to determine the quality of
each paraphrase for the predicate. In other words, we choose
single choice in our tasks, which is the simplest task type
in crowdsourcing task design and can easily attract enough
workers in a short time. As (Tschirsich and Hintz 2013)
has demonstrated that querying crowd-workers for a seman-
tic similarity value on a multi-grade scale yields better re-
sults than directly asking for a binary classification, we give
workers four choices (0,1,2,3) to evaluate the paraphrase
pairs in our tasks and higher score means better paraphrase.
No median choice forces the workers to give explicit pref-
erences. Apart from single choices to determine the qual-
ity of the paraphrases, we also introduce an “open task” to
encourage workers to write down more paraphrase phrases
for each predicate optionally. Open tasks don’t have a given
range of answers, thus it is hard to determine or control the
quality of the obtained answers from workers, which makes
it not widely used in crowdsourcing tasks. But in our design,
we merge single choices and blank fillings in each HIT, so
we can determine the quality of the answers for the open
tasks according to the confidence level of the workers calcu-
lated from the single choices, which gives a possible solu-
tion for this challenge. What’s more, thorough instructions
and heuristic scoring rules are presented to each worker in
our platform. And for the obscure predicates, we give de-
scriptions or corresponding triples from DBpedia to make
them clearer to workers. In short, our design combines sin-
gle choices and blank fillings, committed to provide a simple
and definite platform for workers as well as convenient ways
of quality control for requesters.

In term of quality control, we use a gold-injected method.
A few golden paraphrases are hidden in the tasks and the
workers’ qualities can be computed according to their an-
swers for the golden pairs. And in order to make the posi-
tions of the golden pairs more random, we build a hash map
for these pairs, holding back the regularities founded out by
workers. We also modify workers’ quality parameters based
on their answers’ deviation from the majority of others’. It
has been proved in experiments that this parameter can well
represent workers’ reliability and detect malicious workers
in time. As we always assign each task to more than one
worker (specifically three in our experiment), the final score
of each paraphrase is computed by weighted majority vot-
ing after removing untrustworthy workers whose confidence
level lower than a given threshold. As for cost and latency
control, we use machine algorithms to remove similar, bad
or redundant pairs as far as possible, so the number of pairs
needed to be annotated by workers is reduced. We also deal
with predicates with close meanings and transitivity is im-
plemented conservatively here. Specifically, some predicates
in KBs such as “designer” and “architect” are alike and their
candidate paraphrases have much overlap, so we merge their
paraphrases and they are only presented to workers once.

Table 3: Some samples from our paraphrase dictionary
Predicate Paraphrase Score
birthPlace be born in 100
birthPlace native place 80

deathCause die of 100
restingPlace be buried in 90

What’s more, we use accurate allocation algorithm to ensure
all the tasks are marked evenly, i.e., HITs with the minimum
number of labeled times are first showed to workers. Due to
the simplicity of our task form, our tasks can easily attract
enough workers in a short time.

We only handle the predicates with more than five candi-
date paraphrase phrases here. We limit the number of para-
phrase phrases in each task less than 25 and divide our
machine-processing data into near 2,000 HITs. If a predi-
cate has more candidate phrases than 25, they will be scat-
tered into several tasks. No more than 25 pairs in each task
is to avoid workers’ boredom. It takes one or two minutes
to complete such a task. We publish these tasks on our plat-
form and assign each task to three workers. All the tasks are
finished within a week. Owing to the proper designs of our
platform, we detect malicious workers in time and finally get
satisfactory results. We remove bad paraphrase pairs based
on workers’ scoring and the remaining ones are ranked by
their weighted scores. We also get extra 1,000 paraphrase
pairs from reliable workers, which have been proved to be
authentic and useful. Crowdsourcing does much help in our
work and appropriate designs are of vital importance.

Table 3 shows some samples in our final dictionary.

4 Natural Language Processing Models

In this section we introduce two open-source NLP models
for question answering and question generation respectively
and show how paraphrase dictionaries can be used in such
tasks.

4.1 QA Model: gAnswer

gAnswer (http://ganswer.gstore-pku.com/) is a state-of-the-
art open-source question answering system over RDF. It in-
troduces a semantic query graph to model the query inten-
tion of the natural language question in a structural way and
reduce KBQA (question answering over knowledge base) to
subgraph matching problem (Hu et al. 2018). We choose it
to conduct our experiment on question answering.

The core of gAnswer lies in two aspects: how to build a
semantic query graph Qs for the natural language question
N accurately and how to find matches of the query graph
Qs over RDF graph G efficiently. The node-first framework
starts with finding nodes (entity/class phrases and wild-
cards) and try to introduce edges to form a super query
graph. It contains these steps:

1) Node Recognition. They adopt a dictionary-based en-
tity linking approach (Deng et al. 2015) to find entities and
classes from the question sentence N and collect all wh-
words and nouns that could not map to any entities and
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Figure 2: The super semantic query graph for a given ques-
tion.

classes as wild-cards. All these are regarded as nodes in the
semantic query graph Qs.

2) Structure Construction. They first propose an assump-
tion that two nodes v1 and v2 have a semantic relation if and
only if there exists no other node v∗ that occurs in the simple
path between v1 and v2 of the dependency parse tree of ques-
tion sentence N. Based on this assumption and the depen-
dency tree from Stanford Parser (Marszalek-Kowalewska,
Zaretskaya, and Soucek 2014), they introduce edges for the
nodes recognized from last step. Figure 2 shows the super
semantic query graph for the question sentence “What is the
budget of the film starred by an English actor and directed
by Darnell Martin”, where each node and many edges have
a corresponding label.

3) Phrases Mapping. In this step, they find candidate pred-
icates and entities/classes in RDF graph for edges and nodes
using offline dictionaries. Specifically, they adopt Cross-
Wikis (Spitkovsky and Chang 2012) and Patty (Nakashole,
Weikum, and Suchanek 2012) to map node and edge labels
to entities and predicates respectively. Each node and edge
may have more than one corresponding candidate with a
confidence probability to be disambiguate in the matching
stage.

4) Query Executing. This step searches for matches for
the semantic query graph Qs over RDF graph G, which
addresses the ambiguities of phrases as well as obtaining
the candidate answers. Instead of enumerating all spanning
subgraphs of Qs, they propose some efficient pruning
strategies and a bottom-up algorithm to expand the partial
structure step by step, which greatly speeds up the subgraph
matching process.

In the whole process, phrases mapping is a key step link-
ing the semantic query graph Qs to RDF graph G. They use
Patty (2012) to map natural language phrases to predicates,
which contains few predicates and many redundant pairs.
They argue that the failure of phrase mapping is the primary
cause leading to the failure of some questions, the ratio of
which is 31% (Hu et al. 2018). This shows the urgent de-
mand and great effect of a large-scale and high-quality rela-
tion paraphrase dictionary. We later change their dictionary

Figure 3: Pointer-generator model. It enhances the basic
sequence-to-sequence attentional model with a generation
probability Pgen for each decoder timestep, which is used
to decide whether generating words from the vocabulary, or
copying words from the source text.

into ours and do extensive experiments, demonstrating the
huge value of our paraphrase dictionary (see Section 5.2).

4.2 QG Model: Pointer-Generator Network

We choose a hot sequence-to-sequence model for question
generation. Specifically, we adopt the model in (See, Liu,
and Manning 2017), originally used for abstractive text sum-
marization. In this work, they enhance the basic sequence-
to-sequence attentional model (Nallapati et al. 2016) with a
pointer network (Vinyals, Fortunato, and Jaitly 2015), which
facilitates copying words from the source text and thus im-
proves accuracy and handling of out-of-vocabulary (OOV)
words, while retaining the ability to generate new words.
They also introduce a coverage vector (Tu et al. 2016) from
Neural Machine Translation, which is used to control cover-
age of the source document and avoid generating repetitive
text. The whole model is showed in Figure 3.

In this network, they use articles as input and multi-
sentence summaries as output. The tokens of the input ar-
ticle are fed one by one into the encoder (a single-layer bidi-
rectional LSTM), producing a sequence of encoder hidden
states, the decoder (a single-layer unidirectional LSTM) re-
ceives the word embedding of the previous word and has de-
coder state. The attention distribution is calculated as a prob-
ability distribution over the source words and used to pro-
duce a weighted sum of the encoder hidden states, known as
the context vector. Then the context vector is concatenated
with the decoder state and fed through two linear layers to
produce a vocabulary distribution over all words. Apart from
this, they introduce the generation probability pgen calcu-
lated from the context vector, the decoder state and the de-
coder input, which is used as a soft switch to choose between
generating a word from the vocabulary distribution, or copy-
ing a word from the input sequence. This mechanism greatly
intensifies the model’s ability to handle OOV words. And in
the calculation of the attention mechanism, they add a cover-
age vector summing the attention distributions over all pre-
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Table 4: Evaluating QALD questions with gAnswer
6-train 6-test 7-train 7-test 8-test

question 350 100 215 50 41
answered 196 43 121 23 15
answered∗ 201 47 133 23 15

right 106 17 75 11 10
right∗ 116 26 88 12 11
recall 0.303 0.170 0.349 0.220 0.244
recall∗ 0.331 0.260 0.409 0.240 0.268

precision 0.541 0.395 0.620 0.478 0.667
precision∗ 0.577 0.553 0.662 0.522 0.733

vious decoder timesteps as extra input, which makes it easier
for the attention mechanism to avoid repeatedly attending to
the same locations and thus avoid generating repetitive text.

As the broad applicability of sequence-to-sequence model
in NLP tasks and the contributions on reducing inaccuracies
and repetition of their work, we modify its input and out-
put for question generation task, where the input is standard
semantic representation of a question such as SPARQLs or
lambda calculus, and the output is a natural language ques-
tion. The words produced by the primitive model are con-
fined to the limited vocabulary, resulting in the lack of di-
versity of the generated questions, which is currently a main
challenge in natural language generation tasks. That’s ex-
actly where paraphrase dictionaries can play an important
role. We introduce our dictionary at the end of the model,
selecting top expressions for the predicted predicates when
mapping from id to word to compose the final questions,
which helps to make the generated expressions more diverse.
The implementation details can be found in Section 5.3.

5 Experiments

5.1 Datasets

We evaluate our dictionary on QALD (Question Answering
over Linked Data), a series of open-domain question answer-
ing campaigns mainly based on DBpedia. Each piece of data
in QALD contains a question and its corresponding SPAR-
QLs and answers, which is convenient for testing. And many
of these questions are not easy to answer.

We choose QALD6-QALD8 (Unger, Ngomo, and Cabrio
2016; Usbeck et al. 2017; 2018) to conduct experiments. The
question numbers of these datasets can be found in Table 47.

5.2 Question Answering

We use gAnswer model to test our dictionary on question
answering task. As its direct dependency on relation map-
ping dictionary, we change its old Patty dataset with about
130,000 paraphrase pairs into our new dictionary, which is
one-fourth of it in size and contains more predicates. We
evaluate their differences on the qald datasets and Table 4
shows the results. (Results with our new dictionary are de-
noted with ‘*’, i.e., listed in the 3th, 5th, 7th, 9th lines.)

From Table 4 we can see that both recall and precision
have a large promotion on all the datasets after substituting

7Every year’s data contains a train and a test pack. As qald8-
train merely merges the previous data, we omit it here.

into our new dictionary. For example, the question “Who is
the host of the BBC Wildlife Specials?” can be answered
correctly with our dictionary but cannot with Patty, because
a triple 〈 presenter, host, 72 〉 resides in our dictionary and
thus it successfully maps the relation phrase ‘host’ to the
correct predicate ‘presenter’, while Patty doesn’t have. The
performances of the model vary across different datasets and
it performs better on the training sets, which is mainly be-
cause the test datasets for the campaigns are harder and con-
tain more sophisticated query structures. The model gets the
highest precision on qald8-test dataset, but the recall is low.
We analyze the questions in qald8-test and notice that many
of these questions contain multiple or implicit relations or
entities, which makes it harder for the model to understand
the questions. But when the model successfully parses the
question and gets the answer, it is often right.

The dataset comprises corresponding SPARQLs of the
questions as well, so we also compare the parsed SPAR-
QLs with the two relation dictionaries. Since SPARQLs have
multiple expressions for the same meaning and many predi-
cates in DBpedia are quite similar (eg, “publish” and “pub-
lishes”, “designer” and “architect”), evaluating their quality
by machine algorithms can be cumbersome and implausi-
ble. So we analyze their differences by hand here. We ig-
nore the trivial divergences such as replacements of syn-
onymous predicates which come from the inherent imper-
fections of the knowledge base and different orders of the
less important candidate SPARQLs. We also leave out the
divergence when both give the wrong SPARQLs and an-
swers. Thus we mainly focus on two kinds of changes: the
first is that the model gets candidate SPARQLs with one
dictionary but gets nothing with another, the other is that
the SPARQLs obtained have important variance (especially
when the predicates are different). We analyze the results of
the qald7-train dataset, which is composed of 215 different
questions. In this dataset, our dictionary outperforms Patty
on 32 questions, 22 of which are the first change and 10 are
the second, i.e., there are 22 questions that cannot get candi-
date SPARQLs by the model with Patty but obtain satisfac-
tory SPARQLs with our dictionary, and 10 questions gener-
ate better candidate SPARQLs when switching into the new
dictionary. Figure 4 shows two examples reflecting the two
kinds of changes respectively. Example 1 involves predicate
“award”. Though the Patty dictionary has 439 entries for this
predicate, it includes so many wrong pairs (shown in Table
1) that it cannot get correct mapping for the phrase “win”,
thus gets nothing for this question. In example 2, Patty er-
roneously maps phrase “live in” to predicates “deathPlace”
and “birthPlace”, owing to its high scores for these two pred-
icates and its lack for predicates like “residence”. These two
examples demonstrate that too many redundant pairs, lack
of predicates and inaccurate confidence scores of the para-
phrase dictionary will degrade performance in Q/A systems.

As our dictionary covers all the predicates in Patty, there
are no questions that can get SPARQLs with Patty but cannot
with ours. And no SPARQLs are better using Patty because
the confidence scores in our dictionary are more accurate.
We also notice that for some questions the model gets the
correct query graph but still derives wrong answers, which
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Figure 4: Examples of distinct SPARQL changes with dif-
ferent dictionaries. The old and new SPARQLs are those ob-
tained with Patty and our dictionary respectively. (The “Aki”
is “Aki Kaurismaki” for short.)

is due to the inherent imperfection of the model to handle
complex aggregation operations. Besides, our dictionary is
much smaller than Patty in size, leading to the fact that we
can answer the questions faster.

5.3 Question Generation

We modify the pointer-generator network described in Sec-
tion 4.2 for question generation task, which takes the SPAR-
QLs of the QALD dataset as input and outputs correspond-
ing natural language questions. We merge all the QALD
datasets to form into a large one, composed of 737 distinct
questions, from which we randomly choose 67 tuples for
testing and others for training. After training for a whole
day, this baseline model can generate appropriate questions
for most of the SPARQLs, though some of them have syn-
tax errors and are hard to comprehend. These are not the
prime problems we focus on here. Instead, we want to intro-
duce our paraphrase dictionary in this task to show its value
on promoting diversity. Specifically, we add the paraphrase
dictionary at the end of the model, devoted to randomly
choosing a high-score paraphrase when mapping from the
predicted id (obtained from the neural network) to the ulti-
mate word. This is merely a preliminary attempt and doesn’t
change the structure of the model, only helping to increase
lexical but not semantic diversity, which we believe can be
designed more subtly later. But our dictionary does help
to increase the diversity without reducing precision, espe-
cially when repeatedly forecasting the same word. Table 5
lists some examples where our paraphrase dictionary works.
To measure the contributions on diversity of the dictionary,
we adopt the distinct-1 and distinct-2 metrics from (Li et
al. 2016), which are the number of distinct unigrams and

Table 5: Different expressions for testing SPARQLs. O, n
and s mean generated questions with and without paraphrase
and the standard ones respectively.

o: Where does the deathPlace of Arabia?
n: Where does the assassination place of Arabia?
s: Where was JFK assassinated?
o: Give companies into are there in the advertising industry.
n: Give companies into are there in the advertising businesses.
s: Give me all companies in the advertising industry.
o: Where did the architect of the Eiffel Tower study?
n: Where did the architect who also design the Eiffel Tower study?
s: Where did the architect of the Eiffel Tower study?
o: Give me actors starring in movies by William Shatner.
n: Give me actors play as main roles in movies by William Shatner.
s: Give me actors starring in movies directed by William Shatner.
o: Benicio starring movies produced by Benicio del Toro.
n: Benicio act leading role in movies produced by Benicio del Toro.
s: Who is starring in Spanish movies produced by Benicio del Toro?

Table 6: Performance on diversity of the model with and
without dictionary.

unigram dis-unigram dis-1 bigram dis-bigram dis-2
no dic 453 226 0.499 386 313 0.811

with dic 466 235 0.504 399 325 0.815

bigrams in generated texts divided by total number of gen-
erated tokens respectively. Table 6 shows the results.

From Table 5 we can see that our dictionary well para-
phrases the predicted predicates, helping to avoid duplicate
expressions for the same predicate (eg. ‘starring’ in the last
two tuples). And it helps to increase the number of unigrams
and bigrams as well as the distinct-1 and distinct-2 met-
rics, which demonstrates its value on promoting diversity.
As the testing set is not large enough and the tokens don’t
recur frequently, our promotion seems not very conspicuous,
which will be changed when the quantity of the testing en-
tries increases substantially. Besides, we only conduct a mi-
nor change to the model and cannot alter the structure of the
generated sentence, which is left to future researches. But
there is no doubt that our paraphrase dictionary has enor-
mous potential for promoting diversity in natural language
generation tasks.

6 Conclusion

In this paper, we give a full process of collecting large-scale
and high-quality paraphrase dictionaries for knowledge base
predicates, which combines technologies of machine min-
ing and crowdsourcing. We obtain a satisfactory dictionary
for DBpedia and make two attempts on question answering
and question generation tasks. The promotion of the per-
formance demonstrates the value of such good paraphrase
dictionaries in natural language processing tasks. The dic-
tionary can be expanded to other knowledge bases and how
to use paraphrase dictionaries dexterously in more tasks re-
mains an open research question.
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