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Abstract
A streaming graph is a graph formed by a sequence of incoming edges with time stamps.
Unlike the static graphs, the streaming graph is highly dynamic and time-related. Streaming
graphs in the real world, which are of the high volume and velocity, can be challenging to
the classic graph data structures: data of internet traffic, social network communication, and
financial transections, etc. The traditional graph storage models like the adjacency matrix
and the adjacency list are no longer sufficient for the large amount data and high frequency
updates. And most the streaming graph structures are only supports the specific graph algo-
rithms. Here a new data structure is presented to meet the challenge: a double orthogonal
list in hash table (Dolha) as a high speed and high memory efficiency graph structure. Dolha
has constant time cost for single edge processing, and near-linear space cost. Moreover,
time cost for neighborhood queries in Dolha is linear, which enables it to support most algo-
rithms of graphs without extra cost. A persistent structure based on Dolha is also presented,
to handle the sliding window update and time related queries.
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1 Introduction

In the real world, billions of relations and communications are created every day. A large
ISP needs to deal about 109 packets of network traffic data per hour per router [16]; 100
million users are active on Twitter with around 500 million new tweets per day [31]; In
worldwide, the total number of sent/received emails are more than 200 billion per day [11].
Yet these newly created relations and information fade away just as quickly as tides. Mining
knowledge from these highly dynamic data is as difficult as capturing a wave in the sea.
A graph data structure of high efficiency for both the memory capacity and speed is thus
proposed, to deal with challenges in the storage of such enormous amount of data, and
seizing and salvaging data every nanosecond from the stream.

There have been several prior arts in streaming graph summarization like TCM [30] and
and specific queries like TRIÈST [9]. However, there are still situations that are not covered
in these existing work . To illustrate, some motivation examples are briefed as follows:

The network traffic is a typical kind of streaming graphs. Each IP address indicates one
vertex and the communication between two IPs indicates an edge. With the data packets
being sent and received between the IPs, the graph changes rapidly. The existing graph
summarization techniques (such as TCM [30]) supports the vertex query and edge query in
O(1) time cost. However, they cannot suffice for the queries that are more structure-aware,
such as queries about “the receivers of given IP”, “the 2-hop neighbors of a specific IP” and
”the counts of IPs that a certain IP reaches. In some applications, an exact data structure is
desirable for streaming graphs rather than probabilistic data structure. In a social network
graph, the system needs to face even more complicated queires such as triangle count-
ing, subgraph matching, social influence [23] and trustworthy [21] algorithms. But existing
solutions are designed specifically for triangle counting [9] and so are some continuous
subgraph matching systems [18], circle detecting systems [27] and social trust path [19, 20,
22] over streaming graphs. To run various kinds of graph analysis, multiple streaming sys-
tems must be maintained with high cost on both space and time. An optimized solution is
thus needed as a uniformed system that could support most current analysis algorithms on
streaming graphs.

Moreover, an edge in streaming graph is received with a time-stamp. Based on these time
stamps, historical information or time constrains are figured out and commonly called
in multiple applications and scenarios, yet few systems support these time-related graph
queries. For example, if there are a few suspicious financial transections made on Tuesday
between 10am and 4pm out through the bank, the needs to run a pattern match on the trans-
fers within such a given time frame. Another example is the credit card fraud detection.If
we have the account IDs of the major parties involved in a credit card fraud, a set of query
graphs is constructed by considering these IDs as vertex and the transactions as edges. We
need to locate the occurrence time when these query graphs appear in the streaming transac-
tion graph, then we check inward and outward neighbors of these suspicious accounts near
that time and find other criminal group members. In these cases, the streaming graph sys-
tem should not only support last snapshot-based queries, but also the time-related queries
for figuring out historical information to be further called in the match.

Motivated by above use cases, an efficient streaming graph structure should suffice the
requirements below:

– To enable efficient graph computing, the space cost of the data structure should be small
enough to fit into main memory to ensure efficient graph computing;
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– For the enormous amount of data and the high-frequency updating, the data structure
must have O(1) time cost to handle one incoming edge processing;

– The data structure should support many kinds of graph algorithms rather than designed
for one specific graph algorithm;

– The data structure should also support time-related queries for historical information.

There are two kinds of graph data structures in mainstream literature : general stream-
ing graph data structure and a data structure designed for some specific graph algorithms.
General streaming graph structure is designed to preserve the whole structure of streaming
graphs, thus, it supports most of graph algorithms such as BFS, DFS, reachability query and
subgraph matching by using neighbor search primitives. Most of its variations are based on
hash map associated with some classical graph data structures, such as adjacency matrix and
adjacency list. For example, GraphStream Project [26] is based on adjacency list associated
with hash map. The basic idea of this structure is to map the vertex IDs into a hash table.
Each cell of vertex hash table stores the vertex ID and the incoming/outgoing links. TCM
[30] and gMatrix [17] propose to combine hash map with adjacency matrix. Different from
[26], TCM and gMatrix are approximate data structures that inherit query errors due to hash
conflicts. There are also some other streaming graph data structures that support a specific
graph algorithm solely, such as HyperANF [3] for t-hop neighbor and distance query, the
Single-Sink DAG [13] for pattern matching and TRIEST [9] for triangle counting.

Table 1 lists the space cost of different general streaming graph data structure, together
with the time complexity to handle edge insertion and edge/1-hop queries. GraphStream’s
O(d) edge insertion time is dependent to the maximum vertex degreewhich can be very
large in free-scale network data. Thus, GraphStream is not suitable for high speed stream-
ing graph. TCM and gMatrix have the square space cost that prevents them to be used
in large graphs. The approach (called Dolha) proposed in this paper improves the perfor-
mance by fulfilling all requirements for streaming graphs.Dolha combines the orthogonal
list with hash techniques. The orthogonal list builds two single linked lists of the outgoing
and incoming edges for each vertex, and stores the first items of two lists in vertex cell.
On the other hand, the hash table is commonly used for streaming data structure to achieve
amortized O(1) time look up, such as bloom filter [4] and count-min [8]. The combination
of orthogonal list and hash table is a promising option to achieve our goal. Based on this
idea, we present a new exact streaming graph structure: double orthogonal list in hash table
(Dolha).

Our contributions Table 1 shows the comparison among the three general streaming graph
structures. In this paper:

1. In Section 2, we introduce the two classes of streaming graph structures.

Table 1 General streaming graph structures

Adjacency List Adjacency Matrix Orthogonal List

+Hash GraphStream [26] TCM [30] Dolha

Space Cost O(|E| log |V |) O(|V |2) O(|E| log |E|)
Time Cost per Edge O(log d) O(1) O(1)

Edge Query O(log d) O(1) O(1)

1-hop Neighbor Query O(d) O(|V |) O(d)
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2. In Section 3, we define the streaming graph models and related algorithms.
3. In Section 4, we design an effective data structure (Dolha Snapshot) for snapshot model

of streaming graphs withO(|E| log |E|) space cost andO(1) time cost for a single edge
operation.

4. In Section 5, we design a variant of Dolha (Dolha persistent) that supports sliding
window and time related queries in linear time cost.

5. In Section 6, we design the graph algorithms both on Dolha Snapshot and Dolha
Persistent.

6. In Section 7, we show experiments on both real and synthetic datasets have confirmed
the capacity of Dolha and the improvements over the state-of-the-art.

2 Related work

Among the existing studies, the data structures can be categorized into two classes: general
streaming graph structures and streaming graph algorithms structures.

2.1 General streaming graph structures

General streaming graph structures are designed to preserve the data of graph stream and
maintain the graph connection information at the same time. General streaming graph struc-
tures support most of graph algorithms like BFS, DFS, reachability query and subgraph
matching by using neighbor search primitives. Most structures of this kind are based on
hash map associated with basic graph data structure, such as adjacency matrix and adja-
cency list. There are two kinds of streaming graph structures in general: exact structure and
approximation structure (Figure. 1).

Exact structures Graph Stream Project [26] is an exact graph stream processing system
implanted by Java. Graph Stream Project is based on adjacency list associated with hash
map and it supports most of the mainstream graph algorithms. The structure is to map the
vertex IDs into a hash table. Each cell of vertex hash table stores the vertex ID and its
incoming / outgoing links.

Adjacency list needs O(|E| log |V |) space and O(|V |+|E|) time for traversal. However,
to locate an edge, we need to go through the neighbor lists pf both in and out vertices which
indicates O(|E|) time cost in some extreme situations. Even the neighbor lists are gathered
into a sorted list, it still costs O(log d) time (d is the average degree of vertices) for each
edge look up.

Figure 1 Graph example

(2020) 23:873–903World Wide Web876

Author's personal copy



Vertex Index 0 1 2 3 4 5

Vertex ID v2 v6 v1 v4 v3 v5

out in out in out in out in out in out in

4 2 2 2 0 1 1 2 3 0 1 0

5 3 1 3 2 4 2

5 3

5

Figure 2 The adjacency list in hash table for the graph example

Figure 2 shows the adjacency list in hash table for the graph example (1). The hash
function H(∗) is used to map the 6 vertices into 6 cells vertex hash table, and each cell has
2 sorted list to store the outgoing and incoming neighbors of the vertex. i.e., H(v2) = 0 and
cell 0 stores the vertex ID v2, the outgoing list {4 = H(v3), 5 = H(v5)} and incoming list
{2 = H(v1)}. The adjacency list stores the exact information of the graph stream but cost
O(d) for each edge insertion.

Approximation structures the adjacency matrix in hash table is the other major kind of
structure as the solution for streaming graph. We could hash the vertices into a hash table,
and then use a pair of vertices indexes as coordinates to construct an adjacency matrix.
Vertex query in hash table is O(1) time cost and so is edge look-up in the matrix. Adjacency
matrix in the hash table is efficient timewise, but O(|V |2) space cost is a drawback. In the
real world, graphs are usually sparse and we could not afford to spend 2.5 quadrillion on
a 50 million vertices graph. There is a compromise formula that we compress the vertices
into O(

√|E|) size or even smaller hash table, to reduce the space cost up to O(|E|). Due
to the high compress ratio, it’s only suite for a graph summarization system, like TCM [30],
gMatrix [17].

Figure 3 shows the adjacency matrix in hash table for the graph example (1). We use hash
function H(∗) to map the 6 vertices into 3 cells hash table and use the table index to build a
3 × 3 matrix. In the 9 cells of the matrix, we store the weights of 11 edges. i.e., H(v1) = 1
and H(v2) = 0, the matrix table cell (1, 0) indicates the edge −−→v1v2. However, the cell (1, 0)
also indicates the edge −−−→v1, v6 and

−−−→v5, v6 since the hash collision. If we do outgoing neighbor

Figure 3 The adjacency matrix
in hash table for the graph
example

0 1 2

0 0 3 1

1 1 1 1

2 1 2 1

Vertex Index 0 1 2

Vertex Label v2 ,v6 v5 ,v1 v3 ,v4
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query for v2, the result is {v5, v1, v2, v3} and the correct answer is {v5, v3}. In this case, if
we want the exact result, the matrix size is 6×6 which is much larger than the edge size 11.

2.2 Specific streaming graph structures

Unlike the general structure, there are some data structures designed for specific algorithms
on streaming graph. For example, HyperANF [3] is an approximation system for t-hop
neighbor and distance query; the Single-Sink DAG [13] is for pattern matching on large
dynamic graph; TRIÈST [9] is sampling system for triangle counting in streaming graph;
SpotLight [12] is a randomized sketching-based system that detects the sudden appearance
of the high dense subgraphs on the streaming graph; both [7] and [25] are focusing on the
graph classification model of streaming graph; and there are some connectivity and spanners
structures showed in Graph stream survey [24]. These structures support the algorithms for
the designed purpose, and are not feasible for other graph queries.

Time constrained continuous subgraph search over streaming graphs [18] is the latest
research body of work that considers the time as a query parameter. This paper proposed an a
kind of query that requires not only the structure matching but also the time order matching.
Figure 4 shows an example of time constrained subgraph query. In this query, each edge of
query graph has a time-stamp constrain ε. A matched subgraph means the subgraph is an
isomorphism of query graph and the time-stamps are following the given order.

3 Problem definition

Definition 1 (Streaming Graph) A streaming graph G is a directed graph formed by a
continuous and time-evolving sequence of edges {σ1, σ2, ...σx}. Each edge σi from vertex u

to v is arriving at time ti with weight wi , denoted as σi(
−→
uv, ti , wi), i = 1, ..., x.

Generally, there are two models of streaming graphs in the literature. One is only to care
the latest snapshot structure, where the latest snapshot is the superposition of all coming
edges to the latest time point. The other model records the historical information of the
streaming graphs. The two models are formally defined in Definitions 2 and 4, respectively.
In this paper, we propose a uniform data structure (called Dolha) to support both of them.

Definition 2 (Snapshot & Latest Snapshot Structure) An edge −→
uv may appear in G mul-

tiple times with different weights at different time stamps. Each occurrence of −→
uv is denoted

as σ j (
−→
uv, tj , wj ), j = 1, .., n. The total weight of edge −→

uv at snapshot t is the weight sum
of all occurrences before (and including) time point t , denoted as

Wt(
−→
uv) =

∑
tj ≤t

wj .

where σ(
−→
uv, tj , wj ) appears in streaming graph G.

Figure 4 Running example query Q (Taken from [18])
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For a streaming graph G, the corresponding snapshot at time point t (denoted as Gt ) is a
set of edges that has positive total weight at time t :

Gt = {(−→uv) ∈ G | Wt(
−→
uv) > 0}.

When t is the current time point, Gt denotes the the latest snapshot structure of G.

An example of streaming graph G is shown in Figure 5. Figure 6 shows the snapshots of
G from t7 to t10. In Figure 6c, total edge weight

−−→v1v2 is updated from W 1(−−→v1v2) = 1 (at time
t1) to W 7(−−→v1v2) = 2 (at time t7). In Figure 6d, edge

−−→v1v4 receives a negative weight update.
Since the weight of −−→v1v4 is 0 after update, it means that it is deleted from the snapshot G8 at
time t8. In Figure 6e, the deletion of edge

−−→v1v2 causes the deletion of vertex v1 in G9 and v1
is added into G10 again because the new edge −−→v1v2 incoming at t10.

Applications The snapshot structure stores the last updated information of the streaming
graph. On the snapshot structure, we could perform BFS,DFS, reachability query, triangle
finding et al. to acquire the latest struction information of the streaming graph and solve the
problems like vertices and edges queires, social network algorithms.

In some applications, we need to record the historical information of streaming graphs,
such as financial transaction and fraud detection example in Section 1. Thus, we also
consider the sliding window-based model (Figure 7).

Definition 3 (Sliding Window) Let t1 be the starting time of a streaming graph G and w

be the window length. In every update, the window would slide θ and θ < w. Di
w,θ (G)

contains all edges in the i-th sliding window, denoted as:

Di
w,θ (G) = {(−→uv, t, w)|

(
−→
uv, t, w) ∈ G, t0 + (i − 1) × θ ≤ t ≤ t0 + (i − 1) × θ + w}.

[14]

In Figure 7, the window size w = 7 and each step the window slides θ = 3 edges.
Figure 7 illustrates the first and the second sliding window, where the left-most three edges
expired in the second window.

Definition 4 (Window Based Persistent Structure) Given a streaming graph G, theWin-
dow Based Persistent Structure (“persistent structure” for short) is a graph formed by
all the unexpired edges in the current time window. Each edge is associated with the time
stamps denoting the arriving times of the edge. An edge may have multiple time stamps due
to the multiple occurrences.

Figure 5 Streaming graph S
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Figure 6 Snapshot G5 to snapshot G10 of streaming graph G

In a snapshot streaming graph structure, only the latest snapshot is recorded and the histo-
rical information is overwritten. For example, a snapshot structure only stores the snapshot
G10 at last time point t10 in Figure 6f. The update process of the streaming graph is overwritten.

Assume that the second time window (Window 1) is the current window. Figure 8 shows
how the persistent structure stores the streaming graph. Edge −−→v1v2 is associated with three
time points (t7, t9 and t10) that are all in the current time window. Although edge −−→v1v2 also
occurs at time t1, it is expired in this time window. The gray edges denotes all expired edges,
such as −−→v1v4 and

−−→v2v3.

Figure 7 Sliding window update on streaming graph
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Figure 8 Window based
persistent structure

Definition 5 (Streaming graph query primitives) We define 4 query primitives for
streaming graph G:
1. Edge Query: Given the a pair of vertices IDs (u, v), return the weight or time stamp of

the edge −→
uv. If the edge doesn’t exist, return {null}.

2. Vertex Query: Given the a vertex IDs u, return the incoming or outgoing weight of u.
If the vertex does not exist, return {null}.

3. 1-hop Successor Query: Given the a vertex IDs u, return a set of vertices that u could
reach in 1-hop. If there is no such vertex, return {null}.

4. 1-hop Precursor Query: Given the a vertex IDs u, return a set of vertices that could
reach u in 1-hop. If there is no such vertex, return {null}.

The query primitives are slightly different in two structures. If we query edge −−→v1v2 in
snapshot structure at G10, the result is the last updated edge information : (−−→v1v2, t10, 1). If
we query edge −−→v1v2 in persistent structure at G10 showing in Figure 8, the result is a list
of unexpired edges: (−−→v1v2, t7, 0), (

−−→v1v2, t9, −1), (−−→v1v2, t10, 1). The same difference applies
to 1-hop successor query and precursor query. If we query the successor of v1 at t10, the
snapshot structure will give the answer v2. But the persistent structure will return a set of
answers: (v2, t7), (v2, t9), (v2, t10).

Based on the persistent structure query primitives, we define a new type of queries on
streaming graph named time related query that considers the time stamps as query param-
eters. In this paper, we adopt two kinds of time related queries: time constrained pattern
query is to find the match subgraph in a given time period; structure constrained time query
is to find the time periods that given subgraph appears in G.

Definition 6 (Time Constrained Pattern Query) A pattern graph is a triple P = (V (P ),
E(P ), L), where V (P ) is a set of vertices in P , E(P ) is a set of directed edges, L is a
function that assigns a label for each vertex in V (P ). Given a pattern graph P and a time
period (t, t ′) and t < t ′, G is a time constrained pattern match of P if and only if there exists
a bijective function F from V (P ) to V (g) such that the following conditions hold:

1. Structure Constraint (Isomorphism)

– ∀u ∈ V (P ), L(u) = L(F(u)).
– −→

uv ∈ E(P ) ⇔ −−−−−−→
F(u)F (v) ∈ E(g).

2. Time Period Constraint

– ∀−→
uv ∈ E(P ), t ≤ t−→uv ≤ t ′.[18]
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In this paper, the problem is to find all the time constrained pattern matches of given P over
Gt ′ which is the snapshot of G at time t ′.

Figure 9 shows an example of time constrained pattern query. In Figure 9a, a pattern
graph is given which queries all the 2-hop connected structures. The edges of pattern graph
have a time constrain that only the edges with the time stamp between (t4, t7) are considered
as match candidates. Figure 9b is the snapshot G7 of G at time t7. Edge

−−→v1v4 and −−→v2v3 are
discarded since the time stamps are out of time constrain. Edge set {(−−→v1v2)(

−−→v2v5)} is the
only matching subgraph for the given pattern on G.

Definition 7 (Structure Constrained Time Query) A query graph Q is a sequence of
directed edges {q1, q2, ..., qm} and T is a set of time pairs {(t1, t ′1), ..., (tn, t ′n)}. Given a
pattern graph Q, a structure constrained time match T is that Q is the subgraph of every
snapshot of G during any time period (ti , t

′
i ) in T .

∀t, ti ≤ t ≤ t ′i ,Q ∈ Gt .

Figure 10 gives an example of structure constrained by the time query edge set
{−−→v1v2,

−−→v2v3,
−−→v3v4}. In this query, we have the topology of the query graph( Figure 10) and

look for the time period(s) that the query graph existed. On G, the query graph is the sub-
graph of every snapshot from G4 to G8 until deletion of −−→v1v2 on G9. In G10, the query
graph is matching again since the new arriving −−→v1v2. The query result of Figure 10 is
{(t4, t7), (t10, t10)}.

Applications By using the window based persistent structure, we could maintain a time
window based streaming graph and perform time related queries on it. In the example of
Section 1, the financial transaction query could be solved by the Time Constrained Pattern
Query. And the fraud detection could be solved by the Structure Constrained Time Query
(Table 2).

Figure 9 Time constrained
pattern query
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Figure 10 Structure constrained
time query

4 Dolha - double orthogonal list in hash table

A data structure is proposed for processing the high speed streaming graph data, namely,
the Double Orthogonal List in Hash Table (Dolha for short). Essentially, Dolha is the com-
bination of double orthogonal linked list and hash tables. A double orthogonal linked list
(Doll for short) is a classical data structure to store a graph, in which each edge −→

uv in graph
G is both in the double linked list of all the outgoing edges from vertex u: {−→

uvA, ...−−→uv�}
denotes as outgoing Doll and in the double linked list of all the incoming edges to vertex v:
{−−→uAv, ...−−→u�v} denotes as incoming Doll. Vertex u has two pointers: one is to the first item
vA and the other is to last item v� of outgoing Doll. Vertex v has two pointers: one is to the
first item uA and the other is to the last item u� of incoming Doll.

For example, Figure 11 illustrates an example of Doll. The edge −−→v2v3 and
−−→v2v5 are con-

nected by the outgoing Doll of vertex v2. The edge −−→v2v5 and −−→v3v5 are connected by the

Table 2 Notations
Notation Definition and description

Gs / Gt Streaming graph / Snapshot at time point t

Ds / Dp Dolha snapshot / Dolha persisdent
−→
uv The directed edge from vertex u to v

Doll Doulble orthogonal linked list

O Outgoing Doll

I Incoming Doll

T Time travel linked list

w Edge weight

t Edge time stamp

H(∗) Hash value of ∗
V (∗) Vertex table index of ∗
E(∗) Edge table index of ∗
E∗

A() First item’s edge table index of link ∗
E∗

�() Last item’s edge table index of link ∗
E∗

�() Last item’s edge table index of link ∗
E∗

N() Next item’s edge table index of link ∗
E∗

P () Previous item’s edge table index of link ∗
∗−/+ Previous/next item of ∗
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Figure 11 Example of doll

Edge

v2v5

Edge

v2v3

Edge

v3v5

Vertex

v2

Vertex

v5

incoming Doll of vertex v5. Vertex v2 has 2 pointers for the outgoing Doll: the first item
pointer pointing to −−→v2v3 and the last item pointer pointing to −−→v2v5. Vertex v5 has 2 point-
ers for the incoming Doll: the first item pointer pointing to −−→v2v5 and the last item pointer
pointing to −−→v3v5.

4.1 Dolha snapshot data structure

Given a graph G, the Dolha structure contains four key-value tables. First, we assume that
each vertex u (and edge −→

uv) is hashed to a hash value H(u) (and H(
−→
uv)). For example, we

use hash function H(∗) to map the vertices and edges:

– H(v1) = 1, H(v2) = 2, H(v3) = 0, H(v4) = 1, H(v5) = 3
– H(−−→v1v2) = 1, H(−−→v2v3) = 0, H(−−→v1v4) = 4, H(−−→v3v4) = 2, H(−−→v2v5) = 4, H(−−→v3v5) = 3

Vertex hash table Dolha creates mv(mv ≥ |V |) size vertex hash table and the function
H(∗) to map the vertex ID u to vertex hash table index H(u). Due to the hash collision,
there would be a list of vertices with same hash table index. In each table cell, Dolha stores
the vertex table index of the first vertex in the collision list.

Table 3 is an example of vertex hash table. We use H(v1) = 1 as hash index to locate
the vertex table index 0 and find the details of v1 in vertex table cell 0. The vertex v4 has
the same hash value as v1 which indicates a hash collision. We use hash value 1 to find the
first vertex v1 on the collision list then to find the next item v4’s vertex table index 3 in v1’s
vertex table cell.

Vertex table V Dolha creates mv(mv ≥ |V |) size vertex table. A empty cell variable
denoted as φV . Initially, φV = 0 . We use the vertex table index for new coming vertex u

as V (u). Let V (u) = φV and increase φV by 1. In each vertex table cell, Dolha stores the
vertex ID, the outgoing weight sum wO(u), the incoming weight sum wI (u) and the head
and tail edge table index for outgoing Doll, the head and tail edge table index for incoming
Doll and and the vertex table index of the next vertex on collision list.

Table 4 shows the vertex table of G5 in Figure 6. Out/In w indicates the outgoing and
incoming weights of the vertex. O is the edge table index of first and last items of outgoing
Doll; I is the edge table index of the first and the last items of an incoming Doll. H is the
next vertex on the collision list. The vertices are the given indexes ordered incrementally by

Table 3 Vertex hash table of G5
Hash index 0 1 2 3 4

Vertex table index 2 0 1 4 /
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Table 4 Vertex table of G5

φV = 5

first arriving time. φV = 5 means vertex table is full. If more vertices arrive, a new vertex
table will be created, which begins with index 5 as the extension of existing vertex table.

Edge hash table Edge hash table: Dolha creates me(me ≥ |E|) size vertex hash table and
uses function H(∗) map the outgoing vertex ID u plus the incoming vertex ID v of edge −→

uv

to the edge hash table index H(
−→
uv). Same as the vertex hash table, Dolha stores the edge

table index of the first edge on a collision list.
In Table 5, we have the same method as vertex hash table to deal with hash collision.−−→v1v4 has the same hash value 4 as −−→v2v5. In cell 4, we can find

−−→v1v4’s edge table index 2 then
find −−→v2v5’s edge table index.

Edge table E Dolha creates me(me ≥ |E|) size vertex table and uses a empty cell flag
denoted by φE . Initially, φE = 0. We denote the vertex table index for new coming edge −→

uv

as E(
−→
uv). Let E(

−→
uv) = φE and increase φE by 1. In each edge table cell, Dolha stores the

vertex table indexes V (u) and V (v), the weight w(
−→
uv), the time stamp t (

−→
uv), the previous

and next edge table index for outgoing Doll, the previous and next edge table index for
incoming Doll and the edge table index of the next edge on collision list.

Table 6 shows the edge table of G5 in Figure 6. w is the weight and t is the time stamp.
Vertex index indicates the outgoing and incoming vertices of the edge. O is the edge table
index for the next and the previous items of outgoing Doll and I is the edge table index of
next and previous items of incoming Doll. H is the next edge on the collision list.

4.2 Dolha snapshot construction

When an edge (
−→
uv; t; w) comes:

– Map the edge −→
uv into edge hash table cell H(

−→
uv).

– If H(
−→
uv) is empty, −→uv does not exist in Ds . If H(

−→
uv) is not empty, traverse the collision

list of cell H(
−→
uv) in edge hash table. If −→

uv is found, −→uv exists; if not, −→uv does not exist.

There are two possible operations:
If −→

uv does not exist in Ds

– Add −→
uv into edge table cell E(

−→
uv) and the collision list of H(

−→
uv).

– Map the vertices u, v into vertex hash table H(u),H(v).
– If H(u) is empty, add ID u into vertex table cell V (u). If H(u) is not empty, traverse the

collision list of cell H(u) in vertex hash table. If find match ID, then we update vertex
table V (u) of u; if not, add u into vertex table cell V (u) and collision list of H(u).

– Do the same operation for v.

Table 5 Edge hash table of G5
Hash index 0 1 2 3 4 5

Edge table index 1 0 3 / 2 /
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– Add −→
uv into the end of outgoing Doll of u and incoming Doll of v.

If −→
uv exists in Ds:

– Set t (−→uv) = t and w(
−→
uv) = w(

−→
uv) + w.

– Delete −→
uv from outgoing Doll of u and incoming Doll of v

– If −→
uv has positive weight after this update:

– Add −→
uv into the end of outgoing and incoming Dolls.

– if −→
uv has zero or negative weight after this update:

– Delete −→
uv from edge table.

– If there is not any item in both Doll of u or v, delete u or v.

For example, at time 6, edge −−→v3v5 is received. We use H(v3v5) = 3 to get the edge hash
table index and then to find edge −−→v3v5 as a new edge. We write the empty cell index 5 of
edge table into hash table and check the two vertices by using vertex hash table. We locate
the V (2) for v3 and V (4) for v5 on vertex table and get the last item of outgoing Doll E(3)
together with the last item of incoming Doll E(4). We update both the last items of outgoing
and incoming Doll to 5 then move to the edge table. We update the next item of outgoing
Doll to 5 in E(3) and update the next item of incoming Doll to 5 in E(4). Finally, we write
w, t , (2, 4), (3, /) and (4, /) into E(5).

At time 7, edge −−→v1v2 comes. It is already on the edge table. We first update the w and t

at E(0) and remove −−→v1v2 from both of the Dolls then add it to the end of Dolls.
At time 8, edge −−→v1v4 carries negative weight and w is 0 after the update. We remove

E(2) from the outgoing and incoming doll and update the related indexes, then we empty
the cell 2 of edge table and put the index 2 into the empty edge cell list. At time 9, edge−−→v1v2 is deleted and v1 has neither out nor in edges. We empty cell 0 of vertex table and put
the index 0 into the empty vertex cell list.

4.3 Time and space cost

4.3.1 Time cost

Algorithm 1 shows how Dolha process one incoming edge.
From line 3 to 14, we maintain the edge hash table to check the existence of incoming

edge −→
uv. According to [29], if we hash n items into a hash table of size n, the expected

maximum list length is O(log n/ log log n). In the experiment, more than 99% collision
list is less than log n/ log log n, more than 90% collision list is shorter than 5. Hash table
achieves amortized O(1) time cost for 1 item insertion, deletion and update which is much
faster than sorted table. Here the time cost is O(1).

Table 6 Edge table of G5

φE = 5
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If −→
uv is a new edge, from line 16 to 22, the vertex hash table is maintained to check the

existence of two vertices u and v. In this step, we do two hash table look up and it costsO(1)
time. From line 23 to 29, we write −→

uv into edge table then add it into the end of outgoing
and incoming Dolls. The time complexity here is the same as the insertion on double linked
list which is also O(1).

If −→
uv exists, from line 31 to 38, we will first update the weight and time stamp of −→

uv, and
then delete it from outgoing and incoming Dolls. This step costs the same time as deletion
on double linked list which is also O(1). From line 39 to 40, if updated weight is positive,
we add the −→

uv to the end of both two Dolls which costs O(1). If the updated weight is zero
or negative, we delete −→

uv completely then delete u and v if they have 0 in and out degrees.
Line 41 to 46 shows the deletions and this step also costs O(1).

Overall, for each incoming edge processing, the time complexity of Dolha is O(1).

4.3.2 Space cost

Dolha snapshot structure needs one |V | cells vertex hash table, one |V | cells vertex table,
one |E| cells edge hash table and one |E| cells edge table. Dolha also needs a log |V | bits
integer for one vertex index and log |E| bits for one edge index.

Vertex hash table: Each cell only stores one vertex index. The space cost here is
log |V | × |V |.

Edge hash table: Each cell only stores one edge index. The space cost here is log |E| ×
|E|.

Vertex table: Each cell stores vertex ID, in and out weights one log |V | bits vertex index
for collision list, four log |E| bits edge indexes for Dolls. The space cost here is (log |V | +
4 × log |E|) × |V |.

Edge table: Each cell stores weight, time stamp, one log |E| bits edge index for collision
list, two log |V | bits vertex index for in and out vertices, four log |E| bits edge indexes for
Dolls. The space cost here is (2 × log |V | + 5 × log |E|) × |E| .

In total, Dolha needs (2×log |V |+4×log |E|)×|V |+(2×log |V |+5×log |E|)×|E| bits
for the data structure. Since usually |V | � |E|, the space cost of Dolha snapshot structure
is O(|E| log |E|).

5 Dolha persistent structure

5.1 Dolha persistent data structure

Using Dolha, we could construct a persistent structure Dp based on Ds . Dp contains all the
snapshot’s information of the snapshots of G. It has the same structure as Ds except for the
time travel list.

Definition 8 (Time Travel List) An edge −→
uv may appear in streaming graph S multiple

times with different time stamp. Time travel list T is a single linked list that links all the
edges −→

uv which share same outgoing and incoming vertices. In T , each edge has an index
points to its previous appearance in the stream.

Dp also has four index-value tables: the vertex hash table, vertex table and edge hash
table (same as in Ds). In each cell of the edge table, Dp has a extra value to indicate the
previous item on the time travel list.
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5.2 Dolha persistent construction

5.2.1 Incoming edge processing

When an edge σ(
−→
uv; t; w) comes:

– Check the existence of −→
uv, the same as in Dolha snapshot.

If −→
uv does not exist in Dp:

– The operation is exactly the same as in Dolha snapshot.

If −→
uv exists in Dp:

– Use edge hash table to find the existing edge table index E(σ ′) of −→
uv.

– Insert edge σ as a new edge into edge table, and set the time travel list index as E(σ ′).
– Update the edge table index of −→

uv on the edge hash collision list.

Tables 7 and 8 show the Dolha persistent’s edge hash table and edge table of G inWindow
0. The vertex hash table and vertex table of Dolha persistent are similar like Dolha snapshot
and so is the new edge coming. But for the updating process of edge −−→v1v2 at time 6, we add
the update as new edge into E(6) and then update the edge hash table to latest. By using the
time travel list, all the updates on −−→v1v2 are linked.

5.2.2 Sliding window update

When the window slides the ith step, we have the start-time ts = t0 + (i − 2) × θ and the
end-time te = t0+(i−1)×θ of expired edges which need to be deleted from the edge table.
Since the edge table is naturally ordered by time, we can find the last expired edge denoted
as E(σe) at te in O(log S) time. By using the edge hash table, we can find the latest update

Table 7 Edge hash table of window 0

Hash index 0 1 2 3 4 5 6 7 8 9

Edge table Index 1 / 3 / 5 4 / 2 6 /
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Table 8 Edge table of window 0

of E(σ�) and traversal back by the time travel list. For each E(σn)(e < n ≤ �) on time
travel list, let wn = wn − we. If each wn ≤ 0, then delete all the E(σn). Then delete each
E(σm)(0 < m ≤ e) on time travel list. The same operations are adopted for all the edges
from te to ts . For every deleted edge, if it is the first or last item of Doll, its associated cell
in vertex table should be updated and its index set to null. If all its Doll indexes are null in
the vertex cell, the vertex will be deleted and the cell will be flagged as empty.

As shown in Figure 7, when the window slides from 0 to 1, it means the edges before t4
will be expired. First, we can binary search the edge table to locate the first unexpired edge
index 3 since the table is sorted by time stamp. Then, we start to delete the expired edges
from cell 3. We use the hash table to check if there is any unexpired update for the expired
edges. For example, −−→v1v2 has unexpired update at time 7, so we minus the expired weight
from cell 6.

Table 9 shows the edge table of Dolha persistent at Window 1. The first 3 expired edges
have been deleted. At time 8, −−→v1v4 with negative weight arrives, but there is no positive−−→v1v4 in this window. In this case, −−→v1v4 will not be saved. At time 9 and 10, −−→v1v2 has either
negative or zero weights, and −−→v1v4 has positive weight at time 7, thus we keep the record
and link them by the time travel linked list.

Space recycle Due to the chronological ordered edge table, the expired edges are always
sorted continuously and before the sections of the unexpired edges. We could always recycle
the space occupied by the expired edges; we won’t need infinite space to save the continuous
streaming but only need the maximum number of edges in each window. For instance, in
Table 9, we can re-use the cell from 0 to 1 for next window update and there will be enough
space as long as there are no more than 9 edges in 1 window.

5.3 Time and space cost

The time cost of Dolha persistent is the sum of the time cost of hash table, Doll and time
travel list. For each incoming edge, the hash table cost and Doll cost are O(1) as discussed
in Dolha snapshot and the time travel list cost is alsoO(1) same as insertion on single linked
list. Overall, the time cost for one edge processing is O(1).

To store all the information of streaming S, Dolha persistent structure needs one |V | cells
vertex hash table, one |V | cells vertex table, one |S| cells edge hash table and one |S| cells
edge table. In total, Dolha needs (2 × log |V | + 4 × log |S|) × |V | + (2 × log |V | + 5 ×
log |S|) × |S| bits plus log |S| × |S| for time travel list. The space cost of Dolha persistent
structure is O(|S| log |S|).
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Table 9 Edge table of window 1

6 Algorithms on Dolha

In this section, we will discuss the application of graph algorithms on both Dolha snapshot
structure and persistent structure.

6.1 Algorithms on Dolha snapshot

6.1.1 Query primitives

Dolha snapshot structure supports all the 4 graph query primitives.

Edge query For a given pair of vertices IDs (u, v), to query the weight and time stamp of
edge (

−→
uv) is the same as the existence checking of (

−→
uv) in the insertion. Using the edge

hash table, we can find E(
−→
uv) on edge table and return w and t . As proved before, the time

cost of hash table checking is amortized O(1).

Vertex query Similar to the edge query, by using vertex hash table, we can locate a given
vertex u on the vertex table in O(1) time and return the query result.

1-hop successor query and 1-hop precursor query For a given vertex ID u, Dolha first
perform vertex query to find V (u) in O(1) time. Then we have the head edge index EO

A (u)

from the outgoing Doll. From E(σ) = EO
A (u), we can use EO

N (σ) to acquire all edges on
the outgoing Doll iteratively, and add the incoming vertex indexes of these edges into set
{V (v)}. The IDs of {V (v)} can be found in the vertex table and then returned as the results
of 1-hop successor query. The 1-hop precursor query is similar as successor query only
using the incoming Doll instead. The time cost of Doll iteration depends on the outgoing or
incoming degree d of the given u. The total time cost of both the 1-hop successor query and
the 1-hop precursor query is O(d).

Chronological doll In Dolha structure, the Doll is maintained in chronological order. The
result list of 1-hop successor query or 1-hop precursor query is sorted by the time stamps.
The chronological Doll reduces the search space in some time related queries. For example,

in Figure 4, we have a candidate edge (
−→
uv; t) that matches (

−→
dc; ε4) and look for the can-

didate edges of (
−→
ce; ε5). Since the timing order constrain ε5 ≺ ε4, we first check the time

stamp of first edge on v’s outgoing Doll in O(1) time. If the time stamp is equal to or larger
than t , it means there is no match for (

−→
ce; ε5). If the time stamp is less than t , we can search
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from the first edge on v’s outgoing doll until the time stamp is equal to or larger the time
stamp than t .

6.1.2 Directed triangle finding

With the 4 graph query primitives, most graph algorithms run on Dolha. The 1-hop succes-
sor query and 1-hop precursor query associated with edge query support all the BFS or DFS
based algorithms like reachability query, tree parsing, shortest path query, subgraph match-
ing and triangle finding. Here, the application on the triangle finding will be elaborated as
a case of a common graph query on streaming graph.

To query the directed triangle on Dolha, we can use the edge iterator method. During
the Dolha snapshot construction, we can add one out degree counter and one in degree
counter for each vertex. For each edge (

−→
uv) incoming edge, the minimal candidate set {j}

is constructed between v’s successor set and u’s precursor set. Then check each j in set

{j} that if there is a (
−→
ju) or (

−→
vj ) existing in the edge table by edge query. The set con-

taining all existing (
−→
uv,

−→
vj ,

−→
ju) is the query result.According to [28], the time complexity

of triangle finding on whole graph is O(
∑−→

uv∈E min{din(u), dout (v)}), so the time cost is
O(min{din(u), dout (v)}) for updating each edge.

6.2 Algorithms on Dolha persistent

6.2.1 Query primitives

Dolha persistent structure also supports all the 4 graph query primitives both on the latest
snapshot and persistent perspective of G:

Edge query For a given pair of vertices IDs (u, v), the latest update for the edge −→
uv could

be found by using edge hash table. Once the latest update of edge −→
uv is found, we could use

time travel list to retrieve all the updates of −→
uv in current window.

Vertex query The vertex query on Dolha persistent is exactly the same as snapshot
structure.
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1-hop successor query and 1-hop precursor query: For a given vertex ID u, the outgoing
or incoming Doll of umay contain duplicates of edges. To query the successor of u on Dolha
persistent, it’s better to start from the last item of outgoing Doll EO

� (u) which is definitely
the latest outgoing edge from u. Let E(

−→
uv) = EO

� (u), then we add v to the result set and
use the time travel link of −→

uv to flag all the previous update records of −→
uv. Then we traversal

the outgoing doll and do the same operation for each unflagged edge as −→
uv. 1-hop precursor

query is the same as successor query, the only different is to use the incoming Doll instead.
Both of the two lists are sorted by time naturally.

6.2.2 Time related queries

Time constrained pattern query Given time period (t, t ′), the essential part of time con-
strained pattern query is to find the all the edges with time stamp (t ≤ t−→uv ≤ t ′) on snapshot
G′

t . The chronological edge table allows us to locate the first edge E(σt ) at time t and the
last edge E(σ ′

t ) at time t ′ in O(log S) time. Then we can run Algorithm 4 to construct the
adjacency list of the candidate subgraph of time constrained pattern query. Also we could
construct a Dolha snapshot structure to store the candidate subgraph by using Algorithm
5. The time cost of candidate subgraph construction is O(log S + S′) and the space cost is
O(S′) (S′ is the incoming edge number of (t, t ′)). We can run any isomorphism algorithm
on the candidate subgraph structure to get the final query result.
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Structure constrained time query Given a sequence of directed edges Q{q1, q2, ..., qm},
for each edge qn in Q, we can use the edge hash table to locate the latest update E(qn) in G
and use time travel list to find the time period set Tn when edge qn appears. Then we join
all the time period sets to find the result time period set. The Algorithm 6 shows that the
time complexity is O(m × p × log(m × p)) (p is the average amount of the occurrence of
a certain edge in S).

7 Experimental evaluation

7.1 Experiment setup

We evaluate Dolha snapshot and Dolha persistent structure separately.
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In Dolha snapshot experiment, we compare Dolha snapshot with adjacency matrix in
hash table and adjacency list in hash table. Since TCM is based on adjacency matrix in hash
table and the java project GraphStream is based on adjacency list in hash table, we believe
the comparison to these two general GraphStream structures could reflect the performance
of Dolha properly. And we also use the dynamic graph structure PMA[1] [2]for compara-
tion. For the four structures, we first compare the average operation time cost and space cost
and then compare the speed of query primitives.

We use the same hash function (MurmurHash) for all the structures and build the same
vertex hash table and vertex table for all four structures so they all share the same vertex
operation time cost and accuracy. Because the full adjacency matrix is too large, we com-
press the matrix in certain ratios that costs similar space as Dolha. That makes TCM become
an approximation structure and we take account of the relative error.

In Dolha persistent experiment, since there is no similar system for comparison, we build
an adjacency list in hash table with an extra time line which stores all the edge update
information. We use the adjacency list as baseline method to compare with Dolha persistent
on the speed of sliding window update, query primitives and time related queries.

7.1.1 Dataset

1. DBLP [10]: DBLP dataset contains 1,482,029 unique authors and 10,615,809 time-
stamped coauthorship edges between authors (about 6 million unique edges). It’s a
directed graph and we assign each streaming edge with weight 1.

2. GTGraph [15]:We use the graph generator toll GTGraph to generate a directed graph.
We use the R-MAT model generate a large network with power-law degree distribu-
tions, add weight 1 to for each edge and use the system clock to get the time-stamp.
The generated graph contains 30 million vertices and 1 billion streaming edges.

3. Twitter [6]:We use the Twitter link structure data as a directed streaming graph. It has
56 million vertices and 2 billion edges with weight 1 assigned to each edge.

4. CAIDA [5]: CAIDA Internet Anonymized Traces 2015 Data-set obtained from www.
caida.org. The network data contains 445,440,480 records of communication as edges
(about 100 million unique edges) concerning 2,601,005 different IP addresses as
vertices.

We use 4 datasets above for the Dolha snapshot experiment: The DBLP, GTGraph and
Twitter are used for Dolha snapshot experiments and DBLP and CAIDA are used for Dolha
persistent experiments.

7.1.2 Environment

All experiments are performed on a server with dual 8-core CPUs (Intel Xeon CPU E5-2640
v3 @ 2.60GHz) and 128 GB DRAM memory, running CentOS. All the data structures are
implemented in C++.

7.2 Dolha snapshot experimental results

7.2.1 Construction

Firstly, we compare the average time and space cost of records stream graphs on four struc-
tures:TCM, GraphStream and Dolha. In real world scenario, the insertion, deletion and
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update operations are usually coming randomly and the average stream processing speed is
the key performance indicator of the system and all three operations time costs on Dolha
are O(1). We load the datasets 2 times as insertion and update and set the weight to −3
for last loading as deletion. Then we calculate the average time of datasets loading as the
stream processing time cost and present it in the form of operations per second. During the
data loading, we record the actual memory consumption when the edges are fully loaded.
The results are shown in Figure 12.

In the DBLP dataset, Dolha processing speed reaches 1,837,357 operations per second
which almost same as TCM ( 2,192,715 operations per second) and faster than GraphStream
(1,266,815 operations per second) and PMA (1,055,950 operations per second). Due to the
preset compress ratio, the memory cost of TCM is 690MB which is similar to Dolha’s
563MB. The GraphStream costs 833MB which is worse than Dolha.

In the GTGraph dataset, the performance remains the same. The TCM is the fastest
structure with 2,014,768 operations per second and Dolha is not far behind with 1,552,536
operations per second. The speed of GraphStream drops significantly to 85,441 opera-
tions per second and the space cost reaches 96GB which is way higher than Dolha’s 45GB
and TCM’s 47GB. The PMA structure has the slower speed 976,950 but better memory
consumption.

In the Twitter dataset, the GraphStream runs out memory since the enormous space
cost for the maintenance of sorted list. The performances of Dolha and TCM are steady.
Dolha costs 86GB memory and reaches 1,550,197 operations per second while the TCM
costs 88GB and reaches 2,336,785 operations per second.The PMA structure has 950,197
operations per second speed and 84GB memory cost.

The time costs show that Dolha is slightly slower on stream processing speed than the
TCM but significantly faster than the GraphStream and PMA. The slight latency to TCM
is acceptable, since the TCM is an approximation structure and Dolha is an exact structure.
The space costs show that Dolha could process 2 billion streaming edges in less than 90GB
memory.

Figure 12 Time and space cost for the 3 streaming graph structure
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7.2.2 Query primitives

In this part, we will compare the query primitives speed on the four systems: the vertex
query, the edge query, 1-hop successor query and 1-hop precursor query. The time-related
query and sliding window update are not supported by the other two structures and the time
costs are depended on the given parameters, so we have not run experiment on these two
queries.

Vertex query The four structures share the same vertex hash table and vertex table, so the
vertex query speeds are same. We run 25 random vertex queries and the time cost is 14,146
nanoseconds in total. It means the average vertex query is 566 nanoseconds per query.

Edge query We run 50 random edge queries with four structures on each dataset. The
results show that speed of edge query on Dolha is similar as on TCM with 0 relative error
and much faster than on GraphStream and PMA.

1-hop successor query and 1-hop precursor query We randomly choose 25 vertices and
run 1-hop successor query and 1-hop precursor query with four structures on each dataset.
Since the speed depends on the size of results set, the average query speed is calculated as
nanoseconds per result. The TCM has almost 0 average precision on these queries and the
slowest query speed. Among the four structures, Dolha has the best performance with fast
query speed and 100% precision.

Compare to the GraphStream and PMA, Dolha has great advantages on the average
stream processing time cost, edge query speed, 1-hop successor query and 1-hop precur-
sor query speed. Dolha is slightly slower than the TCM with similar space cost on average
stream processing time cost, space cost, edge query speed but faster on 1-hop successor
query and 1-hop precursor query. On the other hand, the Dolha is an exact structure and the
TCM is an approximation structure Figures 13, 14 and 15.

Figure 13 Time cost and average precision rate for edge queries

(2020) 23:873–903World Wide Web 897

Author's personal copy



Figure 14 Time cost and average precision for 1-hop successor query

7.2.3 Graph algorithms

BFS We run BFS for 10 random vertices on DBLP and GTGraph datasets. Since the
precision of TCM is below the acceptable range, we only compare between Dolha and
GraphStream. The experiment results shows that Dolha is about 30% faster than GTGraph.
In DBLP dataset, the average BFS time cost of Dolha is 419 milliseconds, the time cost
of GraphStream is 599 milliseconds and the time cost of PMA is 580 milliseconds. In
GTGraph dataset, the average BFS time cost of Dolha is 41,432 milliseconds, the time cost
of GraphStream is 67,049 milliseconds and the time cost of PMA is 67,149 milliseconds.
In Twitter dataset, the average BFS time cost of Dolha is 58,816 milliseconds and the time
cost of PMA is 687,618 milliseconds Figure 16

Figure 15 Time cost and average precision for 1-hop precursor query
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Figure 16 Time cost for BFS and reachability query

Reachability query We run reachability query for 10 random pairs of vertices on DBLP and
GTGraph datasets. Since TCM is a compressed adjacency matrix, it has a high false positive
rate for reachability queries. TCM answers most reachability queries as “reachable” and the
precision only depends on the reachable rate of given queries. In this case, we only compare
between Dolha and GraphStream. The experiment results shows that Dolha is about 40%
faster than GTGraph. In DBLP dataset, the average reachability queries time cost of Dolha
is 389 milliseconds, the time cost of GraphStream is 622 milliseconds and the time cost
of PMA is 610 milliseconds. In GTGraph dataset, the average BFS time cost of Dolha is
43,019 milliseconds, the time cost of GraphStream is 69,703 milliseconds and the time cost
of PMA is 69,524 milliseconds. In Twitter dataset, the average BFS time cost of Dolha is
56,732 milliseconds and the time cost of PMA is 64,265 milliseconds Figure 16

Directed triangle finding We run continuous the directed triangle finding algorithm on
DBLP and GTGraph 1 billion date set using Dolha snapshot and GraphStream. For DBLP
dataset, Dolha processes 759,866 edge updates per-second and GraphStream only processes
238,095 edge updates per-second. For GTGraph 1 billion date set, Dolha is capable to
deal 129,853 throughput edges per-second but GraphStream only deals less than 10,000
throughput edges per-second.

7.3 Dolha persistent experimental results

7.3.1 Construction and sliding window update

We set window length = 1
10 |S|, slide length = 1

5 window length as W1 and slide length
= 1

50 window length as W2. Then we load the DBLP and CAIDA dataset with / without
sliding window update. Figure 17 shows the through-puts of Dolha persistent and adjacency
list plus time-line with / without sliding window update.

On DBLP date set, Dolha persistent reaches 2,008,420 edges update per second without
sliding window update, 1,979,889 edges update per second in W1 and 1,961,238 edges
update per second inW2. The adjacency list plus time-line only can process 1,120,269 edges
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Figure 17 Edge throughput without and with time window update

update per second without sliding window update, 893,795 edges update per second in W1
and 583,367 edges update per second in W2. Comparing with no sliding window update,
the processing speed of W1 drops 1% and the processing speed of W2 drops 2.3%.

On CAIDA dataset, Dolha persistent reaches 3,969,514 edges update per second without
sliding window update, 3,917,037 edges update per second in W1 and 3,425,009 edges
update per second in W2. The results are way better than the adjacency list plus time-line’s
speeds: 761,834 edges update per second without sliding window update, 676,077 edges
update per second in W1 and 472,953 edges update per second in W2. Comparing with no
sliding window update, the processing speed of W1 drops 1% and the processing speed of
W2 drops 1.3%.

The outstanding high speed is due to the high duplicated edge rate on CAIDA dataset.
We set the edge hash table as the same size as edge table, but the unique edge number is
only 1

4 of total stream edge number. This reduces the hash collision significantly. In this
way, we do not need to check the vertices by using vertex hash table when processing the
duplicated edge update

7.3.2 Query primitives

The query primitives of DBLP on Dolha persistent are exact the same as on Dolha snapshot.
Here we only compare the CAIDA with adjacency list plus time-line Figure 18.

Vertex query The two structures use the same vertex hash table and vertex table. We run
25 random vertex queries and the average vertex query is 605 nanoseconds per query.

Edge query We run 50 random edge queries on both data structures. The result shows that
Dolha persistent is 5 times faster than adjacency list plus time-line.

1-hop successor query and 1-hop precursor query We randomly choose 25 vertices and
run 1-hop successor query and 1-hop precursor query on the two structures. Dolha persistent
is slighly faster than adjacency list plus time-line.
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Figure 18 Query primitives on CAIDA

7.3.3 Time related queries

Time constrained pattern query For time constrained pattern query, we randomly choose
3 pairs of time-stamps as the time constraints and extract the eligible edges to form a can-
didate subgraph. Figure 19a shows the average speeds of forming the list of candidate
subgraphs with Dolha persistent and adjacency list plus time-line. In DBLP, we reach 457
nanoseconds per edge to extract the candidate subgraph into a Dolha snapshot, meanwhile
the adjacency list plus time-line can only construct 789 nanoseconds per edge into an adja-
cency list. In CAIDA, the speed reaches 146 nanoseconds per edge while the adjacency list
plus time-line can only process 709 nanoseconds per edge.

Structure constrained time query To compare structure constrained time query, we ran-
domly choose 5 query edge sets, each of which has 5 edges. The average query time of

Figure 19 Time related query
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Dolha persistent is 49,378 nanoseconds per query on DBLP and 1,623,200 nanoseconds
per query on CAIDA. The average query time of adjacency list plus time-line is 486,576
nanoseconds per query on DBLP and 17,312,871 nanoseconds per query on CAIDA
Figure 19b.

8 Conclusions and future of work

We have proposed an exact streaming graph structure Dolha which could maintain high
speed and high volume streaming graph in linear time cost and near-linear space cost.
We have shown that Dolha is a structure suitable for general proposes, and supports the
query primitives in the major graph algorithms. Dolha persistent structure, as a variant of
Dolha, supports the sliding window update and time-related queries efficiently. The experi-
ment results have proved that Dolha has better performance than the other streaming graph
structures.

In the future, we plan to extend Dolha into two fields. One extention is using Dolha to
process the streaming RDF graph data and queries. The other extention is implanting Dolha
into GPU for parallel processing.
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