
Leaper: A Learned Prefetcher for Cache Invalidation in
LSM-tree based Storage Engines

Lei Yang1
∗

, Hong Wu2, Tieying Zhang2, Xuntao Cheng2, Feifei Li2, Lei Zou1,
Yujie Wang2, Rongyao Chen2, Jianying Wang2, and Gui Huang2

{yang lei, zoulei}@pku.edu.cn1

{hong.wu, tieying.zhang, xuntao.cxt, lifeifei, zhencheng.wyj, rongyao.cry, beilou.wjy,
qushan}@alibaba-inc.com2

Peking University1 Alibaba Group2

ABSTRACT
Frequency-based cache replacement policies that work well
on page-based database storage engines are no longer suffi-
cient for the emerging LSM-tree (Log-Structure Merge-tree)
based storage engines. Due to the append-only and copy-
on-write techniques applied to accelerate writes, the state-
of-the-art LSM-tree adopts mutable record blocks and issues
frequent background operations (i.e., compaction, flush) to
reorganize records in possibly every block. As a side-effect,
such operations invalidate the corresponding entries in the
cache for each involved record, causing sudden drops on the
cache hit rates and spikes on access latency. Given the ob-
servation that existing methods cannot address this cache
invalidation problem, we propose Leaper, a machine learn-
ing method to predict hot records in an LSM-tree storage
engine and prefetch them into the cache without being dis-
turbed by background operations. We implement Leaper in
a state-of-the-art LSM-tree storage engine, X-Engine, as a
light-weight plug-in. Evaluation results show that Leaper
eliminates about 70% cache invalidations and 99% latency
spikes with at most 0.95% overheads as measured in real-
world workloads.

PVLDB Reference Format:
Lei Yang, Hong Wu, Tieying Zhang, Xuntao Cheng, Feifei Li,

Lei Zou, Yujie Wang, Rongyao Chen, Jianying Wang, and Gui
Huang. Leaper: A Learned Prefetcher for Cache Invalidation in
LSM-tree based Storage Engines. PVLDB, 13(11): 1976-1989,
2020.
DOI: https://doi.org/10.14778/3407790.3407803

1. INTRODUCTION
Caches are essential in many database storage engines

for buffering frequently accessed (i.e., hot) records in main
memory and accelerating their lookups. Recently, LSM-tree
(Log-Structure Merge-tree) based database storage engines
have been widely applied in industrial database systems

∗Work performed while at Alibaba Group.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 11
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3407790.3407803

0 50 100 150 200
Time (s)

100

101

N
or

m
al

iz
ed

va
lu

e

Hit ratio

QPS

Latency

Figure 1: Cache hit ratio and system performance churn (QPS
and latency of 95th percentile) caused by cache invalidations.

with notable examples including LevelDB [10], HBase [2],
RocksDB [7] and X-Engine [14] for its superior write perfor-
mance. These storage engines usually come with row-level
and block-level caches to buffer hot records in main mem-
ory. In this work, we find that traditional page-based and
frequency-based cache replacement policies (e.g., Least Re-
cently Used (LRU) [28], Least Frequently Used (LFU) [33])
do not work well in such caches, despite their successes
on B-Trees and hash indexes. The key reason is that the
background operations in the LSM-tree (e.g., compactions,
flushes) reorganize records within the storage periodically,
invalidating the tracked statistics for the cache and dis-
abling these replacement policies to effectively identify the
hot blocks to be swapped into the cache.

The root causes come from append-only and copy-on-
write (CoW) techniques applied to accelerate inserts, up-
dates and deletes, in conjunction with the mutable blocks
in the storage layout of an LSM-tree. Although newly ar-
rived records and deltas on existing records are appended
into the main memory in the first place, eventually they
need to be merged with existing record blocks in the durable
storage through the flush and compaction operations in the
LSM-tree. Because of these operations, traditional cache
replacement policies that rely on tracking page/block level
access frequency are no longer effective. Every time when
a flush or compaction is executed in the LSM-tree, record
blocks are reorganized and moved both physically and logi-
cally to or within the durable storage, along with changing
key ranges for records and updated values and locations.
This invalidates their corresponding entries and statistics in
the cache and leads to cache miss for their lookups. Further-
more, compactions are usually executed multiple times for
the same record due to the hierarchical storage layout of the

LSM-tree. In this work, we have identified that this problem
often causes latency spikes due to the decreased cache hit
rates. We refer to it as the cache invalidation problem.

Such cache invalidations happen frequently in workloads
with intensive writes and updates, such as order-placement
on hot merchandises in e-commerce workloads. Figure 1
shows an example where the cache misses caused by such
invalidations leads up to 10× latency spikes and 90% queries
per second (QPS) drops in X-Engine [14], a high-performance
LSM-tree based storage engine at Alibaba and Alibaba Cloud.
This level of performance instability introduces potential
risks for mission-critical applications. Meanwhile, off-peak
scheduling of compactions cannot maintain high performance
under high stress, because it accumulates a large number of
levels which lead to severe performance degradation in LSM-
tree (e.g., the accrued range deletion operations have fatal
performance reduction to range selection queries [35]). Be-
yond this, we aim to provide a general database service on
the cloud, so that we cannot ignore the cache invalidation
problem when users need high performance (i.e., under high
stress).

The cache invalidation problem has attracted some re-
search attention in the past [11, 1, 37]. They try to decrease
the frequency of compactions by relaxing the sorted data
layout of the LSM-tree [15], or maintain a mapping between
records before and after compactions [1, 40]. Furthermore,
they often require significant changes to the LSM-tree im-
plementation. Hence, they either sacrifice the range query
performance, or the space efficiency, or introduce signifi-
cant extra overhead. These are often unacceptable because
many industrial applications prefer general-purpose storage
engines offering competitive performance for both point and
range queries with high memory and space efficiencies.

In this paper, we introduce machine learning techniques to
capture the data access trends during and after compactions
that cannot be captured by existing methods. Our proposal
introduces a small overhead without adding or altering any
data structures in the LSM-tree. More specifically, we pro-
pose a learned prefetcher, Leaper, to predict which records
would be accessed during and after compactions using ma-
chine learning models, and prefetch them into the cache ac-
cordingly. Our key insight is to capture data access trends
at the range level, and intersects hot ranges with record
block boundaries to identify record blocks for prefetching
into the cache. We are enabled by machine learning models
to find such hot ranges from the workload, which cannot be
identified by conventional cache replacement policies. The
identified ranges are independent of background operations,
allowing Leaper to perform across multiple compactions or
flushes continuously. And, our method naturally supports
both point and range queries.

We design and implement Leaper to minimize both of-
fline training overhead and online inference overhead. To
this end, we have applied several optimizations in the imple-
mentation such as the locking mechanism and the two-phase
prefetcher. We have evaluated Leaper using both synthetic
and real-world workloads. Results show that Leaper is able
to reduce cache invalidations and latency spikes by 70% and
99%, respectively. The training and inference overheads of
Leaper are constrained to 6 seconds and 5 milliseconds, re-
spectively. Our main contributions are as follows:

• We formulate the cache invalidation problem, and iden-
tify its root causes in the modern LSM-tree storage

engines, which existing methods cannot address. We
have proposed a machine learning-based approach, Le-
aper, to predict future hot records and prefetch them
into the cache, without being disturbed by background
LSM-tree operations that cause the cache invalidation
problem.

• We have achieved a low training and inference over-
head in our machine learning-based proposal by care-
fully formulating the solution, selecting light-weight
models for predictions and optimizing the implemen-
tation. The overall overhead is often as small as 0.95%
(compared to the cost of other normal execution op-
erations excluding Leaper) as observed in real-world
workloads. We have extracted effective features, achie-
ving a high level of accuracy: 0.99 and 0.95 recall
scores for synthetic and real-world workloads, respec-
tively.

• We have evaluated our proposal by comparing it with
the state-of-the-art baselines using both synthetic and
real-world workloads. Experimental results show that
Leaper improves the QPS by more than 50% in average
and eliminates about 70% cache invalidations and 99%
of latency spikes, significantly outperforming others.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the background and formulates the cache
invalidation problem. Section 3 presents our design overview
of Leaper. We introduce details of Leaper’s components in
Sections 4, 5 and 6. We evaluate our proposal in Section 7
and discuss related works in Section 8. At last, we conclude
in Section 9.

2. BACKGROUND AND PRELIMINARY
2.1 LSM-tree based Storage Engines

LSM-tree based storage engines have acquired significant
popularity in recent years. Notable examples include Lev-
elDB [10] from Google, RocksDB [7] from Facebook and X-
Engine [14] from Alibaba, supporting applications such as
Chrome [17], LinkedIn [8], and DingTalk [14]. This popu-
larity is driven by the trend that there are increasingly more
writes (e.g., inserts, updates) in database workloads, where
the traditional B-tree based storages struggle to offer the
expected performance at a reasonable space cost.

LSM-tree is designed to achieve a high write through-
put. Figure 2 illustrates the generic architecture of a LSM-
tree, consisting of a memory-resident component and a disk-
resident component. Incoming records are inserted into ac-
tive memtables in the main memory, which are implemented
as skiplists in many systems [31, 14]. To update an existing
record, the corresponding delta is inserted into this active
memtable in the same way. This append-only design ensures
that all writes other than logging are completed in the main
memory without going into the durable storage where the
access latency is much higher. When an active memtable
is filled, it is switched to be an immutable memtable. As
memtables accumulate in the main memory, approaching
the main memory capacity, flush operations are triggered
to flush some immutable memtables into the durable storage
where incoming records are merged with existing ones. Such
a merge may incur a lot of disk I/Os. And, the same record
may be merged multiple times, causing write amplifications.

To bound such write amplifications and to facilitate fast
lookups over recently flushed records which are still very

likely to be hot due to locality, the disk component of the
latest LSM-tree storages adopts a tiered layout consisting
of multiple levels storing a sorted sequence of extents. An
extent packages blocks of records as well as their associated
filters and indexes [14]. Each level is several times larger
than the one above it. Flushed records first arrive in the
first level L0. When L0 is full, parts of it are merged into
the next level L1 through compactions. In the meantime,
compactions also remove records marked to be deleted or old
versions of records that are no longer needed and then write
back the merged records in a sorted order into the target
level.

Active
MemTable

L0

L1

L2

100-200

50-150 160-250

0-150

Immutable
MemTable

Flush

Switch

Compaction

Block cache
0-150 100-200 160-250

160-300

B1

B2 B3

Memory
Disk

T1

Requests
R1: 285

R2: 285
R3: 205
R4: 155

R5: 155
R6: 10
R7: 205
R8: 205

M1: Flush

M2: Compaction

160-300

50-130 140-180 190-250

B1’ B2’ B3’

T1’

Operations

M1

M2

Tim
e

Figure 2: General architecture of LSM-tree based storage engines
and examples of cache invalidations caused by flush and com-
paction.

The above-introduced write path achieves a high write
throughput at the cost of the lookup performance. Although
many lookups for newly inserted records can be served by
the memtables in the main memory, the rest have to access
all those levels in disk. And, to access a frequently updated
record, a lookup has to merge all its deltas scattered across
the storage to form the latest value. Even with proper in-
dexes, this lookup path can be very slow due to the disk
I/Os involved. A range query, even worse, has to merge
records satisfying its predicates from all levels in the disk.

To resolve the slow lookups, many LSM-tree storage en-
gines have incorporated caches in the main memory to buffer
hot records. In Figure 2, we have illustrated a block cache
buffering three record blocks from the disk. To maintain
these caches, traditional frequency-based cache replacement
policies like LRU are usually enforced to swap entries in and
out of those caches. These policies work well when there is
a clear and stable level of locality in the workload that they
can track, however, flushes and compactions in the LSM-
tree often disable such policies, which we introduce in the
following.

2.2 Cache Invalidation Problem
In database storage engines, caches are essential for buffer-

ing frequently accessed (i.e., hot) records, and cache replace-
ment policies are exploited to effectively identify hot blocks
that should be swapped into the cache. Cache replacement
problem can be formulated as follows:

Formulation 1. Cache replacement problem. Given
a set of records R = {r0, r1, · · · , rn−1} based on a sequence
of latest requests, and a database cache C that could buffer
L records, find an algorithm to determine L ordered records
in cache such that the probability P (rn ∈ C) for the coming
request hitting the cache is maximized, where ri and L refer
to a record, and cache size respectively, i, L ∈ N .

In most real-life scenarios, traditional cache replacement
policies (e.g., LRU [28]) work well. The cache hit ratio

can be kept up to 99% in the cases without compactions
or flushes. However, in a LSM-tree based storage engine,
background operations either flush blocks from memtable
to the disk or reorganize blocks within the disk, causing the
original blocks in the cache inaccessible. Further, poten-
tial retrievals of the inaccessible blocks miss the cache. We
define this as the cache invalidation problem:

Formulation 2. Cache invalidation problem. Given
a database cache C = {r0, r1, ..., rL−1} determined by a cache
replacement policy, and a set of records participate in a com-
paction (or flush) Mi = {r0i , r1i , · · · , rni−1

i }, the invalidated
cache can be represented as |C

⋂
Mi|, where Mi and ni refer

to a compaction (or flush) and the number of records moved
by it, ni, i ∈ N . The cache invalidation problem is defined
to minimize the invalidated cache for a compaction or flush.

Examples. Figure 2 illustrates an example of the for-
mulated problem by showing the status of blocks before
and after a flush and a compaction. The right side gives
a sequence of requests and a set of operations over time.
The requests marked as black represent cache hits while
the requests marked as red represent cache misses. At the
beginning, flush M1 moves block T1 from the immutable
memtable to the disk, and causes request R2 to miss the
cache. In the following, compaction M2 reorganizes blocks
B1, B2 and B3 (i.e., selected by the red dashed box) to
blocks B1′, B2′ and B3′, which invalidates cached blocks
B1 and B3. Therefore, it causes two cache misses of request
R5 and request R7. Request R8 hits the cache because LRU
swaps block B3′ into the cache after R7.

Existing solutions. Several methods were proposed by
early works. Stepped-Merge tree (SM-tree) [15] is an LSM-
tree variant where records are not fully sorted to decrease
the frequency of compaction, and therefore reduce cache in-
validations. However, it significantly degrades read perfor-
mance when executing range queries or frequently-updated
workloads.

LSbM [40] combines the idea of SM-tree [15] and bLSM [37],
and aims to maintain the reference between cache and disk
during compaction. Unfortunately, it increases the burden
of compaction and brings storage overhead. Also, it de-
grades read performance when executing range queries as
Stepped-Merge tree.

Incremental Warmup Algorithm [1] builds mappings be-
tween data before and after compaction through pre-sorted
smallest keys. It moves newly compacted blocks sequentially
into block cache whose key ranges overlap with blocks in the
block cache. Before they are moved, the blocks in the block
cache are evicted. However, it has two disadvantages. First,
it assumes that newly compacted blocks are supposed to
be frequently visited if they overlap with any blocks in the
block cache. Second, blocks in the cache may overlap with
more than one newly compacted block, so it might prefetch
infrequently requested blocks into the block cache.

3. DESIGN OVERVIEW
3.1 Design Rationale

Existing methods are not sufficient to solve the cache in-
validation problem formulated above. First, SM-tree [15]
aims to delay compactions (i.e., reducing the amount of com-
paction M), which significantly degrades read performance.
Second, LSbM [40] and Incremental Warmup [1] attempt
to restore the cache C. However, compactions disable the

Online

Offline

Key Range
Selection

Feature
Selection

Multi-thread
Collection

Feature
Generation

Overlap
Check

Learner

Prefetcher

Collector

Leaper
component

Storage
Engine

Log Data

Blocks

Compaction
/Flush

Inference

Workload

Cache

Key Range Statistics

Prefetch Blocks

Trained model(s)

 ···

Hot/Cold Key Ranges

Data FlowControl Flow

Figure 3: Workflow of LSM-tree storage engine with Leaper.

cache replacement policies to track the access frequency of
each block, so that the restored cache is ineffective for the
cache invalidation problem.

Fundamentally, the cache invalidation problem can be ad-
dressed by minimizing |C

⋂
Mi| during each compaction (or

flush). It requires us to predict which records are accessed
in the near future, and then swap them into the cache in
advance. It is a prediction problem that predicts the future
access of each record in the set |C

⋂
Mi|. The prediction

problem can be formally defined as a binary classification
problem: given the access of a record in the latest x · t min-
utes, predict whether this record is accessed in the following
T minutes, where t, x, and T refer to a statistical time inter-
val, number of intervals, and the prediction duration. This
prediction method can address the cache invalidation prob-
lem because of the following reasons. First, it achieves a
higher cache hit ratio than LRU theoretically because it can
detect more hot records [3]. Second, access frequency of each
record tracked by the prediction method is not disturbed by
compactions because it is independent of the storage struc-
ture. Third, predicting the access of records in the cache
is naturally a binary classification problem because we only
need the first access of records to eliminate potential cache
misses.

Other formulations for the prediction problem, such as
sequence prediction and time series regression, are not suit-
able in our case. The sequence prediction approach collects
a long historical record access sequence for a past period
and makes predictions on the future access sequence. The
computation and memory overhead incurred in this process
are more than necessary for our problem because we only
need to make predictions on the invalidated cached entries,
and the information on the rest is not necessary, given that
policies like LRU already performs reasonably well. For the
time series regression approach, the transformation from re-
gression to classification causes considerable accuracy loss
because most workloads have typical hot spots.

3.2 System Overview
To achieve the binary classifier introduced above, we in-

troduce machine learning models to predict record accesses
during and after compactions. Specifically, we predict at
the key range level, aiming at a good trade-off between the
prediction overhead and accuracy. With such hot ranges
predicted, we intersect them with block boundaries to select
record blocks that should be prefetched into the cache.

Figure 3 shows the workflow of our proposal, Leaper,
consisting of three major parts: Collector, Prefetcher,

and Learner. The bottom part shows the Learner com-
ponent which is responsible for training predictive models
with different time scales. The higher part shows the Col-
lector component which generates featurized data and the
Prefetcher component which interacts with the flush op-
eration and the compaction operation and fills appropriate
data blocks into the cache. The overall system can be easily
plugged into the LSM-tree storage engine, shown on the left
of Figure 3, without altering any existing data structures.

The learner extracts the access data from query logs, trans-
forms the data into the format for training classification
models. To reduce the overhead, we group adjacent keys
into key ranges. Leaper selects the right size of key ranges
according to different workloads to achieve a good system
and model performance. After that, the learner trains mul-
tiple models for Leaper to predict the future access of key
ranges with different time scales. We use tree-based models
for classification to achieve accurate prediction.

The collector collects data in a multi-threaded way. We
introduce optimized lock mechanisms to avoid write conflicts
in the collector. We also introduce a sampling strategy to re-
duce the overhead of the collector. After that, the collector
obtains the access frequency of several time intervals for dif-
ferent key ranges and transfers them into counting features
for further prediction.

The prefetcher first predicts the access of key ranges using
the features from the collector and the trained models from
the learner. All blocks that predicted to be accessed from
those participating in the compactions (or flushes) are han-
dled by the Overlap Check module. Finally, the prefetcher
takes actions to either insert new blocks into the cache or
evict old blocks from the cache. The prefetches happen
along with the processing of flush and compaction opera-
tions.

Figure 3 also depicts the control flow between the storage
engine and Leaper. In a running storage engine, the collec-
tor keeps updating the access statistics. The learner trains
the models periodically, depending on the changes of the
workload. It outputs trained models for the prefetcher to do
prediction as necessary. When the flush and the compaction
operations are internally triggered by the storage engine, the
prefetcher begins to run. For flush, the prefetcher directly
predicts the future access of key ranges that involved in the
flush. For compaction, it usually takes a long time period.
We use a two-phase mechanism to predict the accesses of
the key ranges that participate in the compaction.

4. OFFLINE ANALYSIS
In this section, we describe the offline component of Leaper

which is responsible for data featurization and model train-
ing. We first introduce the key range selection to reduce the
system overhead and make our approach feasible for the on-
line components. Next, we discuss the features for the pre-
diction problem. Last, we describe the classification models
and the training methodology in Leaper.

4.1 Key Range Selection
In a running LSM-tree based storage engine, we are unable

to track the access frequency of blocks because they are
reorganized frequently by compactions. So we introduce the
key range that is independent of compactions. The use of
key ranges has three advantages. First, key ranges help
reduce the overhead of offline training and online inference.

Algorithm 1: Key Range Selection

Input: Total key range T , initial size A , access
information and decline threshold α

Output: Most suitable granularity A∗

1 Initialize access matrix M (N × T
A

bits for N time

intervals and T
A

key ranges) for key range size A;
2 Define the number of zeroes in M as Z(A);
3 while 2 · Z(2A) > α · Z(A) do
4 A← 2A;
5 Binary search to find the maximum value A∗

satisfying A∗ · Z(A∗) > αA · Z(A) from A to 2A;
6 return A∗

Second, key ranges are consistent with the layout of blocks in
the underlying LSM-tree, whether the key is a primary key
or a secondary key. So that key ranges are efficient to check
overlap with blocks. Third, statistics for access frequency of
range queries are easy to collect if key ranges are used.

The key range size has significant impact on both the pre-
diction accuracy and the overhead of the online component
of Leaper. For a given storage filled with records, the key
range size determines the number of key ranges and the size
of statistics per key range to be collected online by the Col-
lector in our design. Reducing such key range size results
in more detailed statistics, and potentially a higher level
of prediction accuracy for prefetch, with increasing online
collection overhead.

We initialize the size of key ranges with a small value A
(we use 10 in our experiments). For each key range, we
use a binary digit (i.e., 1 or 0) to indicate whether it is
accessed (or predicted to be accessed soon) or not. With
this method, it takes a vector of N bits to store such access
information for N key ranges in a single time interval. For a
period time with multiple time intervals, we extend a vector
into a matrix, with one row in the matrix corresponding to
one time interval. We take a vector of 4 bits (0,1,1,1) for
example. If we expand the key range size twice, the access
vector forms logical add (i.e., 1 + 0 = 1, 1 + 1 = 1 and
0 + 0 = 0) to become (1,1), and therefore the size of it
shrinks to the half. When we expand the key range size, the
access information loss occurs as long as the proportion of
zeros in vector (or matrix) declines.

Information loss does not necessarily lead to performance
penalties for the prediction. Through experimental analysis,
we propose the concept of Efficient expansion:

Definition 1. Efficient expansion. An expansion of
key range size from L to L′ (L′ > L) is efficient, if and only
if Z(L′)/Z(L) ≥ α, where Z is the proportion of zeros in the
access vector (or matrix), and α is a threshold based on the
initial proportion of zeros and the decline ratio of prediction.

Such expansion is efficient because associated information
loss can be compensated by the learning ability of the model,
so the prediction results only have a slight decrease (e.g., no
more than 0.1% in recall). Therefore, we can keep expand-
ing the key range size until the expansion is not efficient
anymore. In our case, the threshold α is set to 0.6, and the
final key range size is expanded to ten thousand.

Formally, Algorithm 1 depicts the procedure for comput-
ing the range size. It follows the idea of binary search to
find the maximum value A∗ satisfying the definition of Effi-
cient expansion. By using this algorithm, Leaper selects an
appropriate range size to group keys together.

4.2 Features
In the storage layer, the access key and the access times-

tamp of each request are usable access information. Our
challenge is to make use of them to build a classification
model and predict future accesses. Another requirement is
to select the most profitable features to achieve good ac-
curacy (e.g., more than 95% in recall) and introduce small
overhead (e.g., no more than 1% overall). Since data in
LSM-tree based storage engines are commonly represented
as key-value pairs for high performance, the query informa-
tion (i.e., the structures and semantic information of query
strings [23]) is unavailable in the storage layer. Based on
above considerations, we perform feature engineering to tra-
nsfer the usable access information into a set of features
that guarantee both precision and efficiency. This section
explains how we select the features.

Read/write Arrival Rate. To model the access pat-
terns of the workload, we exploit the concept of Arrival
Rate [34]. The read (or write) arrival rate means the num-
ber of reads (or writes) in successive time slots. Usually,
the time slot is one or two minutes. Key ranges have dif-
ferent access patterns, as shown in Figure 4(a). Therefore,
the read arrival rate is the most important feature for the
model to capture the access patterns because it can reflect
the user behavior at the application level. Figure 4(b) tells
us for some key ranges, the write arrival rate shares similar
access patterns with the read arrival rate. In other words,
popular items have both frequent browses and orders in the
scenario of e-commerce. So it is necessary to add the write
arrival rate as a feature. In our implementation, we use 6
time slots (explained in Section 7) to collect the arrival rate.
So there are 12 features in total for both the read arrival rate
and the write arrival rate.

Prediction Timestamp. Figure 4(c) depicts the num-
ber of accesses on a table during five consecutive days. It
tells us that for the e-commerce workload, the access of
a table has periodical patterns with peaks and bottoms.
Since many real workloads have time-dependent character-
istics [23], it’s important to add the timestamp at prediction
time(i.e., prediction timestamp) as a feature. In our exper-
iment, we use 3 features (i.e., hour, minute and second of
the day) to capture the access patterns of key ranges be-
cause we find most of our testing workloads have repeated
access patterns in a day. But it is reasonable to extend the
prediction timestamp with more comprehensive dimensions
such as year, month, and day.

Precursor Arrival Rate. A precursor of a target key
range is another key range that after whose accesses, the
target key range’s accesses follow. So the precursor arrival
rate means the number of a precursor’s reads in successive
time slots. As shown in Figure 4(d), the target key range
(i.e., the blue line) shares a similar access pattern with the
precursor (i.e., the orange line). On one hand, it tells us
that the access of a target key range might be affected by
its precursor(s), and the correlation between key ranges in
storage engines corresponds to the correlation between be-
haviors in real applications. For example, in the e-commerce
workload, the probability for a user to purchase a piano rack
increases after he purchases a piano. On the other hand, the
target key range may have different numbers of precursors,
so we need to capture this kind of transition patterns across
different key ranges. We use their arrival rates in multiple
time slots as a vector to calculate the cosine similarity and

(a) Read arrival rate (b) Read and write arrival rate (c) Temporal Feature (d) Precursor arrival rate

Figure 4: Access patterns in e-commerce scenario. (a) shows read arrival rate of different key ranges have different patterns; (b) shows
read arrival rate and write arrival rate of the same key range share similar pattern; (c) shows e-commerce workload has temporal
periodicity; (d) shows many key ranges share similar patterns with their precursors.

select the most γ similar key ranges as the precursors of the
target key range. Algorithm 2 depicts the process. Using
the algorithm, we add the arrival rates of γ most similar
precursors in the last one slotted time interval into the fea-
tures. In our experiment, γ is set to 3 so it adds 3 features
to the model.

Algorithm 2: Calculation of Precursors

Input: M historical accesses {(ki, ti)}Mi=1,
similarity length γ and threshold ε

Output: Precursors P = {(ki, {p1, p2...pγ})}ni=1

for all key ranges
/* Generate key range transfer matrix T */

1 for each key range in historical accesses do
2 for j from 1 to γ do
3 T [ki][ki−j]← T [ki][ki−j] + 1;

/* Access similarity judgement */

4 Calculate read arrival rates for key ranges;
5 for each key range ki do
6 count← 0;
7 for item kj in sorted(T [ki]) do
8 while count < γ do
9 if cosine similarity

cosθ =
~Vki
·~Vkj

‖~Vki
‖×‖~Vkj

‖
> ε then

10 P (ki).add(kj);
11 count← count+ 1;

12 return P

Other features. We also evaluate additional features
such as query type and cache state. The results prove that
adding the query type does not contribute to the predic-
tion metrics. We also consider using the block ids in the
current cache to present the cache states. However, this in-
troduces huge extra overhead of the feature size, since the
cache is usually tens of GB containing millions of block ids.
Furthermore, the cache states change intensively in every
second so it is not feasible to collect such data.

4.3 Model
We use Gradient Boosting Decision Tree (GDBT) [9] as

the classification model due to its accuracy, efficiency and
interpretability. It produces a model in the form of an en-
semble of weak prediction models (decision trees). GBDT
is widely used in industry and is often used for tasks such
as click-through rate prediction [32] and learning to rate [5].
For every feature, GBDT needs to scan all the data instances
to estimate information gain of all the possible split points.
Thus, the computational complexity of GBDT is propor-
tional to both the number of features and the number of

data instances. We select LightGBM, the novel implemen-
tation of GBDT, for its excellent performance in computa-
tional speed and memory consumption [16].

Other kinds of machine learning models, including neural
networks, have also been tried, but are infeasible in our case.
For example, LSTM [13] suffers from low precision and long
inference time because of the following reasons. First, since
the access distribution of the key ranges is highly skewed, it
is difficult to apply normalizations. Therefore, LSTM could
not distinguish the negative examples from the positive ex-
amples with a limited number of accesses. Second, the time
to do hundreds of inferences in one compaction is about 1-2
seconds, which is unbearable in the online transaction pro-
cessing (OLTP) database system.

The input of the classification model is a feature vector
with 18 dimensions (i.e., 6 read arrival rates, 6 write arrival
rates, 3 timestamp features, and 3 precursor arrival rates).
The output is a binary digit (i.e., 1 or 0) indicating whether
this key range would be accessed soon (i.e., one slotted time
interval). The loss functions we use are Square Loss and Log-
arithmic Loss. For model training, we generate training set
and testing set from the e-commerce workload. We exploit
GridSearchCV function from scikit-learn [30] to search for
the optimal parameters on testing set. The main parame-
ters we tune are num leaves, learning rate, bagging fraction
and feature fraction, which help avoid over-fitting. K-fold
cross validation also helps determine the ultimate param-
eters. Finally, num leaves, learning rate, bagging fraction,
and feature fraction are set to 31, 0.05, 0.8 and 0.9, respec-
tively. We train one global model for different key ranges.
Since new key ranges would be generated in a running stor-
age engine, one global model for all key ranges has better
generalization ability than multiple models for different key
ranges. Also, it can help reduce inference overhead.

5. ONLINE PROCESSING
In this section, we discuss how to collect statistics, infer-

ence and decide which blocks need to be prefetched in the
online components of Leaper.

5.1 Statistics Collection
The collector maintains a global counter for each key range.

In multi-threaded storage engines, if records belonging to the
same key range are accessed by different threads, concurrent
updates of the global counter for the key range causes the
write conflicts. Therefore, it is necessary to apply locking
mechanisms but minimize the extra overhead in the collec-
tor. We adopt two strategies in the design of locking mecha-
nisms to reduce the overhead. First, we use double-checked

locking [36] and lazy initialization for initializing key ranges
counters. Lazy initialization avoids initializing a key range
until the first time it is accessed. Double-checked locking
reduces the overhead of acquiring a lock by checking the cri-
terion before acquiring the lock. Second, we use atomic op-
erations in collecting the access statistics instead of a global
mutex. Because a global mutex has significant impact on
the system performance, as shown in Table 1. We use the
decline rate of QPS to present the influence of strategies on
system performance. Through our locking strategies, the
decline ratio can be reduced from 40.61% to 17.21%.

Table 1: Influence of strategies

Strategies avg QPS (k/s) Decline rate
Raw 337.7 -

Global mutex 200.5 40.61%
Double-Checked+Atomic 279.6 17.21%
Double-Checked+Atomic

+Sampling
325.4 3.66%

Further, we use sampling to reduce the overhead. Specif-
ically, lazy initialization and double-checked locking guar-
antee the first access of each key range is collected in the
counter and then the following accesses of the key range are
recorded with the probability of P . Therefore, the estimated
accesses of a key range N̂i can be calculated by the collected
value Si and the sampling probability P :

N̂i =
Si − 1

P
+ 1 (1)

Then, we compute the sampling error as follows:

• Si in probability-sampling obeys the binomial distri-
bution [41]:

Si − 1 ∼ B(Ni − 1, P),

• At the same time, the binomial distribution can be
considered as the normal distribution approximately:

Si ∼ N((Ni − 1)P + 1, (Ni − 1)P (1− P)),

• As a result, the sampling error could be described as:

|N̂i −Ni| ≤ zα/2

√
(Ni − 1)(1− P)

P
,

where zα/2 means standard score in Normal Distribu-
tion Tables with significance level of α.

From the results, although on average the sampling causes
approximately 16.3% error rate for access statistics, it has a
minor influence on the predictions (see Section 7). Table 1
shows that it helps reduce the decline rate to 3.66%.

5.2 Inference
Through inference, we divide all involved key ranges into

hot key ranges and cold key ranges using the featurized data
from the collector and the trained model from the learner.
A hot key range means this key range is predicted to be
accessed in the near future while a cold key range means
the opposite.

In Leaper, we use the Treelite [6] as the inference imple-
mentation to further reduce inference overhead. There are
three major considerations for using Treelite. First, it uses
compiler optimization techniques to generate model-specific
and platform-specific code, which includes Annotate condi-
tional branches, Loop Unrolling, etc. Treelite achieves 3-5×
speedup on the original implementation of lightGBM. Sec-
ond, we use dynamic linking library to integrate the model

inference logic into the storage engine. Without recompiling
the inference code, we only need to update the trained model
by simply replacing the dynamic library generated from the
learner. Third, it supports multiple tree models such as
Gradient Boosted Trees and Random Forests from differ-
ent implementations (XGBoost, LightGBM, Scikit-Learn,
etc). These properties are very important for us to compare
Leaper with others. And it is flexible for Leaper to sup-
port many models from different training libraries. In the
experimental section, we test and verify the effectiveness of
Treelite and LightGBM through the cost of inference.

5.3 Overlap Check
After inference in the prefetcher, we need an overlap check

between the key ranges generated by Key Range Selection
and the target blocks moved by the compaction and flush
operations to figure out which target blocks are hot.

Algorithm 3: Check Overlap Algorithm

Input: Target blocks {(Ai, Bi)}mi=1, hot key ranges
{(aj , bj)}nj=1

Output: Prefetch Data T
/* Binary Search: O(nlogm) < O(m) */

1 start = A1, end = Am ;
2 for aj in hot key ranges do
3 Binary Search for Ai 6 aj < Ai+1 from start to

end;
4 while bj > Ai+1 do
5 if Min(Bi, bj) > aj then
6 T.Add((Ai, Bi));
7 i← i+ 1;

8 start = Ai+1;

/* Sort-merge: O(m) 6 O(nlogm) */

9 for Ai in target blocks and aj in hot key ranges do
10 if Min(Bi, bj) >Max(Ai, aj) then
11 T.Add((Ai, Bi));
12 if Bi < bj then
13 i← i+ 1;
14 else if Bi > bj then
15 j ← j + 1;
16 else
17 i← i+ 1, j ← j + 1;

18 return T

We pose a Check Overlap Algorithm to check whether tar-
get blocks would be prefetched as Algorithm 3. There are
two ways to check the overlap between predicted hot key
ranges and target blocks, binary search and sort-merge.
We choose one based on when the prefetcher gets the start
key and the end key of target blocks. If we get it at the end
of flush or compaction, sort-merge is invoked. Otherwise,
if we get it during flush or compaction, binary search is
invoked. If we get the start key and the end key of tar-
get blocks both during and after flush or compaction, which
one is better depends on how many orders of magnitudes ex-
ist between m and n, where m means the number of target
blocks and n means the number of predicted hot key ranges.
In our case, m and n change dynamically in different flush
or compaction operations. So we adopt a hybrid algorithm
combining both of them to reduce the running time.

Other technologies like Date reuse [14] and Bloom Fil-
ter [4] are exploited to reduce the errors of Check Overlap
Algorithm.

6. OPTIMIZATIONS FOR COMPACTION
We propose Multi-step Prediction and Two-phase Prefet-

cher to help the prefetcher deploy in the compactions ac-
cording to the following requirements of the compaction op-
eration. First, corresponding cached entries of moved blocks
need to be dealt with in two phases (i.e., during and after
the compactions) to reduce the cache misses. If they are
accessed during the compaction, they should be preserved
in the cache until the end of the compaction. Otherwise,
they should be evicted to make use of the cache. Second,
since compactions have different lengths, the prediction for
two phases need to be combined by multiple steps.

The Multi-step Prediction helps Leaper to predict the fu-
ture access of key ranges in a fine-grained way. Then Two-
phase Prefetcher is used to distinguish the accesses during
and after the compaction. In the first phase, which refers to
the eviction phase, Leaper predicts the accesses during the
entire compaction operation. In the second phase, which
refers to the prefetch phase, Leaper predicts the accesses in
an estimated time period after the compaction operation.
Also, Two-phase Prefetcher cooperates with the cache re-
placement policy (LRU) in two ways. First, Leaper only
evicts the invalidated blocks which are predicted as cold
data. It means the evicted blocks are not requested any
more and should be evicted by LRU soon. Second, since the
size of blocks prefetched is relatively small compared to the
total cache size (i.e., usually tens of GB in real-life applica-
tions), those blocks should not be evicted by LRU nor break
the arrangement of LRU as long as they are accessed soon.

Figure 5: The design of the prefetcher for compaction.

The details of the optimizations are depicted in Figure 5.
At the beginning of a compaction, multi-step prediction
models trained offline are used to distinguish hot and cold
key ranges. Then, Leaper combines the models to predict
hot key ranges in two phase. Finally, target blocks in two
phases are evicted or prefetched respectively.

6.1 Multi-step Prediction
Since compactions have different time lengths, we divide a

compaction into multiple steps. A step restricts the slotted
time interval mentioned in Section 4. Specifically, the slotted
time interval is bounded by T1 and T2 in Figure 5 where T1

means the duration of a compaction, and T2 means recovery
time of cache hit ratio decline caused by cache invalidations.

In theory, the slotted time interval t is the greatest com-
mon divisor of T1 and T2. Under most practical circum-
stances, recovery time T2 is far less than compaction time
T1. Therefore, t approximately equals to the smallest T2 in
practice. Since t is determined, given n compactions, the
number of steps k can be calculated as follows:

k = dMax{(T1 + T2)1, · · · , (T1 + T2)n}
t

e+ C, (2)

where C is a constant to handle the case when an online
compaction lasts longer than all compactions in the training
phase. Each step corresponds to a prediction model trained

using the method of Section 4. So Multi-step Prediction
contains k models to predict whether key ranges would be
accessed in the next k slotted time intervals. Although we
train C more models in learner, it introduces no additional
online overhead because in most scenarios, these models are
not used. Ultimately, these k models are provided for Two-
phase Prefetcher to do prediction as necessary.

6.2 Two-phase Prefetcher
Models provided by Multi-step Prediction cannot be used

directly because compaction has different T1 and T2. We
first need to estimate the value of T1 and T2. According to
our analysis, T1 and T2 approximately satisfy the following
relations respectively:

T1 ≈ αN,

T2 ≈ β
Q

S
,

(3)

where N means the number of blocks needed to merge, Q
means real-time QPS and S means the size of block cache.
Both α and β are constants that can be computed by sam-
pling from previous log data.

Then we combine k slotted time intervals into T1 and T2

to form a two-phase binary classification. Hot key ranges
for T1 and T2 can be combined as follows:{

hotT1 = hot1t ∪ · · · ∪ hotk1t,
hotT2 = hot(k1+1)t ∪ · · · ∪ hot(k1+k2)t,

(4)

where hotT1 means k1 hot key ranges for T1, hotT2 means
k2 hot key ranges for T2 and hotit means hot key ranges for
the ith slotted time interval.

At last, we use the two-phase binary classification to per-
form eviction or prefetch. Since the evictions and prefetches
are scattered in many merge tasks of a compaction, we take
one merge task shown in the left part of Figure 5 as an exam-
ple to describe the operations. In this case, block [300,500]
from Leveli and block [1,150] from Leveli+1 are swapped
into cache before merging. After they check overlap with
hotT1, we know block [1,150] is predicted to have no visit
before the end of compaction. So we evict block [1,150] and
keep block [300,500] in the block cache. Also, the other three
blocks are checked as well to make sure we do not omit any
blocks to be accessed. After this merge task, two blocks
from Leveli and three blocks from Leveli+1 are merged to
Leveli+1. It is important to note that during merge tasks,
blocks are loaded into memory and we need no extra storage
overhead to get exact blocks. Additionally, newly generated
blocks are writable before filled up. Once a new block is
full, it checks overlap with hotT2 and we determine whether
it should be prefetched. In this way, block [201,350] is put
into block cache.

In addition, extent-based compactions and row-based com-
pactions are also supported. First, extents are divided into
blocks to do the same check as we mentioned. Rows can
also check overlap with hotT1 but swapped into key-value
cache (if used). Second, no matter extents, blocks or rows,
they are all reorganized in the same way in the underlying
LSM-tree. So we only need to deploy the prefetcher module
in the corresponding place.

7. EXPERIMENTS
7.1 Experimental Setup

Testbed. The machine we use consists two 24-core Intel
Xeon Platinum 8163 CPUs (96 hardware threads in total), a

512 GB Samsung DDR4-2666 DRAM and a RAID consisting
of two Intel SSDs. For the model evaluation, we train our
model using LightGBM [26]. For system performance, we
implement Leaper in X-Engine with MySQL 5.7 which is
deployed in a single node.

Baseline. To evaluate the impact of Leaper on the system
performance, we compare with Incremental Warmup [1],
which we consider as the state-of-the-art solution, in X-
Engine [14]. Incremental Warmup exploits the idea of tem-
poral locality and assumes the newly compacted blocks are
frequently accessed if they overlap with any blocks in the
block cache (i.e., they were accessed recently). In offline
evaluation, we implement the idea of Incremental Warmup
that assumes the records accessed in the latest time interval
should be accessed in the next time interval.

Metrics. We evaluate both recall and precision of the
proposed prediction model in Leaper. We need high recall
to increase cache hit rates, and high precision to reduce the
memory footprint of the prefetched records in the cache. We
also adopt the Area Under Curve (AUC) metric [22] to eval-
uate the generalization ability of our model. Performance-
wise, we evaluate the cache hit rate, QPS and latency of
95th percentile.

Workloads. We use synthetic workloads, generated by
SysBench [18] with varying configurations (e.g., skewness),
to evaluate the performance of Leaper in different scenar-
ios. We further adopt two real-world workloads, e-commerce
(i.e., placing orders for online purchases) from Tmall and in-
stant messaging (i.e., online chats) from DingTalk, to evalu-
ate how Leaper performs. These two workloads correspond
to two typical applications in which cache invalidation prob-
lems are ubiquitous. Table 2 introduces the statistical de-
tails of these workloads.

Dataset. The dataset we use for offline evaluation is
generated from the e-commerce workload for its typicality
and universality (i.e., similar conclusions can be drawn by
using the other two workloads). Specifically, we use the
data in the first three days as the training set and data of
the following one day as the testing set. Data dependencies
and temporal relations are preserved in these data sets. The
training and testing data sets contain 3,404,464 and 807,829
records, respectively.

7.2 Offline Evaluation
7.2.1 Overall results

Precision Recall AUC
0.80

0.85

0.90

0.95

1.00

R
at

e

Baseline LGB LGB with sample

Figure 6: Results of metrics among baseline, LightGBM and
LightGBM with sampling.

From Figure 6, LightGBM model used in Leaper (orange
bars) performs much better than the baseline (blue bars).
The recall score of 0.83 achieved by the baseline implies
that 83% data has strong temporal localities and it could
potentially perform well if the cache of the storage engine
is large enough. And the higher recall score and AUC of
LightGBM model indicate that it has a better predictive

capability. Meanwhile, it is observed that the features we
chose cannot always distinguish normal inputs from abnor-
mal noises, causing the proposed model to mis-predict future
accesses for those noisy inputs.

7.2.2 Influence of data sampling
Then we evaluate the impact of data sampling in collec-

tor. The green bars in Figure 6 show the precision, recall
scores and AUC when we apply sampling. The sampling
rate we use is 0.01. Despite sampling errors, our model with
sampled inputs still achieves similar results as the accurate
statistics. This is mainly because our model is a binary clas-
sifier, and the lazy initialization and double-checked locking
in collector guarantee the 0/1 property. So such sampling
errors have negligible impact on the results of the model.

7.2.3 Features

2 4 6 8 10
Feature length

0.80

0.85

0.90

0.95

1.00

P
re

ci
si

on
/R

ec
al

l/
A

U
C

ra
te

Recall

Precision

Cost

AUC
40

50

60

T
ra

in
in

g
ti

m
e(

s)

Figure 7: Variation of metrics and training time alongside feature
length.

Precision Recall AUC
0.900

0.925

0.950

0.975

1.000

R
at

e

R

R/W

R/W/T

R/W/T/P

Figure 8: Results of metrics using different feature types.
Figure 7 shows the precision, recall and AUC metrics and

training times for different feature lengths. With feature
length increasing, both recall and AUC increase significantly
until the length up to six, while the precision has a mi-
nor decrease and stabilizes at around 0.95. Meanwhile, the
training cost rises generally with the length, which might be
influenced by different early stopping rounds. We use the
feature length of 6 based on the evaluation.

When it comes to feature types, Figure 8 gives an abla-
tion study of feature types including R (read arrive rate), W
(write arrival rate), T (prediction timestamp) and P (pre-
cursor arrival rate). Through the ablation study, read arrival
rate, write arrival rate and precursor arrival rate contribute
to the improvement of the recall score, while the prediction
timestamp has minor impact on the recall. The importance
of features generated by the LightGBM library shown in Ta-
ble 3 also obtains the same conclusion. The AUC increases
step by step, showing that all these features contribute to
the robustness of the model.

7.2.4 Models
After determining the features we use in the model, we

compare different models by evaluating their correspond-
ing metrics and training time costs. We experiment with
tens of models and select six best-performing ones to com-
pare. Figure 9 presents the results. The blue, orange,
green, red, brown and purple bars represent Logistic Re-
gression (LR), Random Forest (RF), GBDT (implemented

Table 2: Detailed information of different workloads

Workload Type Point lookups Range lookups Updates Inserts R/W ratio1 Table size2 Skewness3

Default synthetic workload 75% 0% 20% 5% 3:1 20m 0.5
E-commerce workload 75% 10% 10% 5% 6:1 10m 0.3

Instant messaging workload 40% 0% 35% 25% 2:3 8m 0.9
1 Read-write Ratio is the approximate ratio.
2 The workloads we use are all single-table, the table size also means the number of records.
3 All three workloads approximately follow Power-law Distributions, we use zipf factor to demonstrate their skewness.

Table 3: Importance of features

Feature Type Feature Length Sum of Importance
Read 6 35.61%
Write 6 23.53%
Time 3 9.88%

Precursor 3 30.98%

Precision Recall AUC Cost
0.900

0.925

0.950

0.975

1.000

R
at

e

LR RF GBDT XGB ANN LGB

0

500

1000

T
im

e(
s)

Figure 9: Results of metrics using different models.

by scikit-learn [30]), XGBoost (XGB), Artificial Neural Net-
work (ANN, also called Multi-Layer Perceptron, with 2 hid-
den layers containing 120 and 3 cells), and LightGBM, re-
spectively. LightGBM has the highest recall score and the
second highest AUC score, with the least training time.
Among other models, only XGBoost performs similarly with
LightGBM. However, it consumes five times more training
time. Therefore, we choose LightGBM in this work.

7.3 Online Performance
We implement Leaper in X-Engine [14] and compare it

with the Incremental Warmup baseline. The initial data
size is 10 GB with a key-value pair size of 200 bytes. The
total buffer cache is set to 4 GB including 1 GB reserved for
the write buffers (i.e., memtables), and 3 GB for the block
cache. We run a 200-second test on each workload. During
the test, about 10 background operations are triggered. The
report interval for intermediate statistics is set to 1 second.

7.3.1 Cache invalidation in Flush
First of all, we run the test using the default synthetic

workload to observe Leaper’s effect on flush operations. We
disable compactions to avoid the influence of compactions.
The results are shown in Figure 10. The blue and orange
lines represent the Incremental Warmup baseline and Leaper,
respectively. Although shutting down compactions causes
layers to accumulate in Level0 without merging into the
next level, and results in step descent of the QPS and step
ascent of latency shown in the lower sub-figure of Figure 10,
it does not interfere with our evaluation on flush because we
only examine the performance of Leaper on cache invalida-
tion problem. The results show that our method eliminates
almost all the cache invalidations (reflected as cache misses)
caused by flush and the QPS drops and latency spikes are
also smoothed.

7.3.2 Cache invalidation in Compaction
With Leaper addressing the cache invalidations caused by

flush, we now move on to evaluate its efficiency against the
cache invalidation problem caused by compactions. We first
use two real-world applications and then use synthetic work-
loads with varying configurations.

0 50 100 150 200

95

100

C
ac

he
hi

t
ra

ti
o

(%
)

0

2

4

N
um

be
r

of
flu

sh
es

Baseline Leaper Number of flushes

0 50 100 150 200
Time (s)

0

200

Q
P

S
(k

/s
)

QPS

Latency

0

50

100

L
at

en
cy

(m
s)

Figure 10: Cache hit ratio, QPS and latency of synthetic workload
for flush operations over 200 seconds among baseline and Leaper.

Real-world Application
Figure 11(a) shows the cache hit rates, QPS and latency

of the e-commerce workload over 200 seconds achieved by
the Incremental Warmup baseline and Leaper. The green
bars represent the number of compaction tasks running in
the background.

The upper sub-figure indicates that our approach reduces
about half of the cache invalidations. And, the cache hit
rates recover about 2x faster after compactions with Leaper.
The lower sub-figure indicates that our approach performs
similarly with the baseline when there is no compaction, and
outperforms the baseline during compactions.

Figure 11(b) shows the cache hit ratio, QPS and latency
of the instant messaging workload over 200 seconds. The up-
per sub-figure also indicates that Leaper reduces about half
of the cache invalidations. Although the instant messaging
workload has more write operations and more compactions
than the e-commerce workload, the lower sub-figure shows
Leaper can still prevent significant QPS drops and latency
raises caused by compactions, achieving a smooth overall
performance.

We also evaluate the efficiency of Key Range Selection in
the e-commerce workload. The initial value and the thresh-
old are set to 10 and 0.6, respectively. The experimental
results are shown in Figure 12. The key range with asterisk
(i.e., 104) is the most suitable range size calculated. The re-
sults in Figure 12 shows 104 performs stabler cache hit ratio
than other sizes and outperforms others in QPS.

Synthetic workloads
Table 4: Achievements of Leaper

Workload Type QPS Latency Cache misses
E-commerce +83.71% -46.35% -40.56%

Instant messaging +18.30% -7.49% -64.23%
Synthetic +66.16% -62.24% -97.10%

1 Statistics are collected during and after compactions.

Figure 11(c) shows the cache hit ratio, QPS and latency
of the default synthetic workload over 200 seconds. From
the upper sub-figure, Leaper still removes almost all cache
invalidations while the baseline performs much worse than
real-world workloads. This is mainly because compactions
in synthetic workload contain more blocks than that in real-
world applications. QPS and latency performance in the

0 50 100 150 200

95

100

B
lo

ck
ca

ch
e

h
it

ra
ti

o
(%

)

0

2

4

N
u

m
b

er
of

co
m

p
ac

ti
on

s

Baseline Leaper Number of compactions

0 50 100 150 200
Time (s)

0

100

200

Q
P

S
(k

/s
)

QPS

Latency

0

2

4

6

L
at

en
cy

(m
s)

(a) E-commerce

0 50 100 150 200

95

100

B
lo

ck
ca

ch
e

h
it

ra
ti

o
(%

)

0

2

4

N
u

m
b

er
of

co
m

p
ac

ti
on

s

Baseline Leaper Number of compactions

0 50 100 150 200
Time (s)

0

50

100

Q
P

S
(k

/s
)

QPS

Latency
0

1

2

L
at

en
cy

(m
s)

(b) Instant messaging

0 20 40 60 80 100

50

75

100

B
lo

ck
ca

ch
e

h
it

ra
ti

o
(%

)

0

2

4

N
u

m
b

er
of

co
m

p
ac

ti
on

s

Baseline Leaper Number of compactions

0 20 40 60 80 100
Time (s)

0

200

Q
P

S
(k

/s
)

QPS

Latency

0

50

100

150

L
at

en
cy

(m
s)

(c) Synthetic workload

Figure 11: Cache hit ratio, QPS and latency over 200 seconds among baseline and Leaper for E-commerce, Instant messaging and
synthetic workload, respectively.

100 101 102 103 104∗ 105

80

100

C
ac

h
e

h
it

ra
ti

o
(%

)

100 101 102 103 104∗ 105

Key Range Size

0

200

Q
P

S
(k

/s
)

Figure 12: Cache hit ratio and QPS over different key range sizes
ranging from 1 to 105. The key ranges with * means calculated
effective ranges in the offline part.

lower sub-figure can also draw the same conclusion as above
real-world workloads.

Table 4 summarizes the speedups of QPS and the smooths
of latency achieved by Leaper over the baseline. Please
note that the comparison are collected only during and af-
ter compactions (i.e., T1 + T2 in section 6), because Leaper
is exploited to stabilize system performance and smooth la-
tency rather than speed up overall performance. Combining
the speedups and detailed information of these workloads,
Leaper achieves the best speedup of QPS in the e-commerce
workload, because of its high read-write ratio. Leaper has
less QPS speedup and latency smooth but more cache misses
eliminated in the instant messaging workload, because of its
more skewed data distribution.

A. Range-intensive workloads

In this part, we study the influence of range-intensive
workloads. The read-write ratio is fixed to 3:1 and we
tune the range query ratio from 0 to 100% of the total read
queries. From the lower sub-figure of Figure 13(a) we find
that the QPS declines with the rise of range query ratio.
And, Leaper always outperforms the baseline during and af-
ter compactions (i.e., T1 + T2 in section 6). At the ratio of
20%, the gap between baseline and Leaper is the biggest.
In the upper sub-figure, the churn of the baseline’s cache
hit ratio worsens with increasing range query ratios, while
Leaper performs much better for all ratios. We find that
proper range queries (i.e., 20% of range query ratio) accel-
erate the collection of key range statistics for hot key ranges
and then help to make accurate predictions.

B. Data skew

In Figure 14, we vary the skewness of keys accessed by
both reads and writes according to a Zipf distribution, and

measure the speedup of QPS achieved. When accesses obey
uniform random distribution (i.e., the Zipf factor is 0), Leap-
er achieves no speedup, and even slows down because of the
computational and storage overhead. With skewed accesses,
Leaper can predict hot records and achieve high speedups.
When the Zipf factor reaches up to about 1.0, the base-
line can also work well because of the small number of hot
records with such a high level of skewness. The skewness of
most real-world workloads (e.g., the e-commerce workload
and the instant messaging workload) are ranging from 0.3
to 0.9, so that Leaper can work well in them.

C. Different mixtures

Figure 13(b) shows the performance of baseline and Leaper
while processing different mixtures of point lookups, updates
and inserts. We start with the default mixture of 75% point
lookups, 20% updates and 5% inserts, which represent com-
mon scenarios with many write operations. In this case,
Leaper increases the cache hit rates from 97.66% to 98.59%.
We gradually scale the shares of reads up to 85% and 90%
while fixing the update/insert ratio (i.e., 4:1), Leaper always
outperforms the baseline.

D. Cache size

We vary the cache size from 1GB to 8GB to explore its im-
pact on the performance. Figure 13(c) indicates that Leaper
outperforms the baseline no matter how we vary the cache
size. Leaper obtains the maximum speedup of the cache hit
ratio when the cache size is minimum (i.e., 1GB), because
decreasing cache size affects more on baseline than Leaper.
However, larger cache size can tolerate more incorrect evic-
tions (i.e., incorrect prediction) caused by Leaper, so that
the maximum speedup of QPS is obtained when the cache
size is 2GB.

7.3.3 Computation & Storage Overhead
Table 5: Computation & Storage Overhead of Leaper

Collector LGB LGB*
Check

Overlap
Overall

C
o
m

p
u
-

ta
ti

o
n Default synthetic <1µs/query 3ms 1ms 1ms -4.68%

E-commerce <1µs/query 21ms 5ms 3ms -0.77%
Instant messaging <1µs/query 9ms 2ms 2ms -0.95%

S
to

ra
g
e Default synthetic 3.2KB 4.9KB 8KB - -

E-commerce 16.3KB 5.0KB 8KB - -
Instant messaging 8.9KB 5.0KB 8KB - -

To better understand the computational and storage over-
head of Leaper, we recorded the time and space it spends
in its three main components and the overall overhead is
expressed by QPS decline rate.

Collector: The time to record the key of a query and
update the key range counter, and the maximum space the
key range counter occupies in the memory.

0% 20% 40% 60% 80% 100%
90

95

100

C
ac

h
e

h
it

ra
ti

o
(%

) Baseline Leaper

0% 20% 40% 60% 80% 100%
Range query ratio

0

200

400

Q
P

S
(k

/s
)

1.0

1.5

2.0

S
p

ee
d

u
p

R
at

io

(a) Range query

75:20:5 85:12:3 90:8:2

95

100

C
ac

h
e

h
it

ra
ti

o
(%

) Baseline Leaper

75:20:5 85:12:3 90:8:2
Mix ratio (%:%:%)

0

200

400

Q
P

S
(k

/s
)

1.0

1.5

2.0

S
p

ee
d

u
p

ra
ti

o

(b) Mixture

1 2 4 8

80

100

C
ac

h
e

h
it

ra
ti

o
(%

) Baseline Leaper

1 2 4 8
Cache size (GB)

0

200

400

Q
P

S
(k

/s
)

1.0

1.5

2.0

S
p

ee
d

u
p

ra
ti

o

(c) Cache size

Figure 13: Cache hit ratio and QPS among baseline and Leaper over different range query ratio, mixture, and cache size, respectively.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Zipf factor

0.9

1.0

1.1

1.2

Sp
ee

du
p

ra
ti

o

Figure 14: Speedup Ratio of QPS between Leaper and baseline
with different zipf factors ranging from 0 to 1.0.

Inference: The time to do inferences in one compaction
with CPU only, and the size of the model object containing
both model parameters and tree structure for LightGBM.

Check Overlap: The time to run check overlap algo-
rithm once.

Overall: Since some other components (such as input
blocks of predict and prefetch, the prefetch operation) are
shared with the storage engine, we could not compute the
overhead of them singly. As a result, we adopt the decline
of QPS exclude during and after flushes and compactions to
capture the overall overhead of Leaper.

Table 5 shows that all of Leaper’s components have ac-
ceptable computation and storage overhead. For the Col-
lector, since we exploit sampling, the overhead of one query
can be reduced to below 1 microsecond. For inference, we
compare the inference time whether we use Treelite. Treel-
ite achieves 3-5× speedup in the inference of LightGBM.
For check overlap, the computation overhead is about 1-3
millisecond. The storage overhead is not computed because
all the inputs are loaded into memory by the storage en-
gine. The overall decline of QPS shows that the overhead
of Leaper is kept below 5% and 0.95% for synthetic and
real-world workload respectively.

7.4 Limitations of Leaper
There are two main limitations of Leaper. First, the

models can be trained periodically but not incrementally.
Therefore if the workload pattern changes dramatically or
the newly generated key ranges have unknown patterns, the
accuracy of prediction is affected. In this case, we exploit a
simple rollback strategy, called Slow SQL Anomaly Detec-
tion (SSAD), to reduce the performance degradation. If the
SSAD component detects the number of queries exceed pre-
defined thresholds, it notifies the prefetcher to stop working
until the model is updated. In the future, it is valuable to
consider training and updating the model in a smart way.
Second, the offline model training is decoupled from DBMS
running. Although such design reduces the negative impact
on online performance, it adds complexity for the deploy-
ment and the installation of DBMS. Especially for the tradi-

tional on-premise environment, the model training requires
extra hardware resources that are not easily provided. We
are exploring a lightweight and efficient machine learning
pipeline coupled with DBMS in our future work.

8. RELATED WORKS
We have discussed the existing solutions for the cache in-

validation problem in Section 2. Here we summarize other
works using machine learning methods to solve problems in
the database systems.

Machine learning methods assist the database ad-
ministrators (DBAs) to manage the database. Ot-
terTune [42] introduces a machine learning pipeline to rec-
ommend the optimal knobs configuration across different
workloads. CDBTune [43] and Qtune [21] model the knobs
tuning process as decision-making steps and use reinforce-
ment learning algorithms to learn this process. QueryBot
5000 [23] proposed a forecasting framework that predicts
the future arrival rate of database queries based on histori-
cal data. iBTune [39] uses a pairwise DNN model to predict
the upper bounds of the response time which saves mem-
ory usage of the database. DBSeer [27] performs statistical
performance modeling and prediction to help DBA under-
standing resource usage and performance.

Machine learning methods optimize modules of
the database system. Learned index [20] uses the mix-
ture of expert networks to learn the data distribution and
use learned models to replace inherent data structures. Re-
JOIN [25] and Neo [24] use reinforcement learning methods
to optimize the join order in the query execution plan. Lo-
gistic regression is used for transaction scheduling [38] and
LSTM is used for memory access prediction [12].

Machine learning methods for the database archi-
tecture. Self-driving database systems [29] optimizes it-
self automatically using deep neural networks, modern hard-
ware, and learned database architectures. SageDB [19] also
proposes a vision where lots of components of the database
systems can be optimized via learning the data distributions.

9. CONCLUSIONS
We introduce Leaper, a Learned Prefetcher, to reduce

cache invalidations caused by background operations (i.e.,
compaction, flush) in LSM-tree based storage engines. In
Leaper, we introduce a machine learning method to predict
hot records and prefetch them into caches accordingly. Eval-
uation results show that Leaper eliminates about 70% cache
invalidations and 99% latency spikes with at most 0.95%
overheads as measured in real-world workloads.

10. REFERENCES
[1] M. Y. Ahmad and B. Kemme. Compaction management in

distributed key-value datastores. PVLDB, 8(8):850–861,
2015.

[2] Apache. Hbase. http://hbase.apache.org/.
[3] C. Berthet. Approximation of lru caches miss rate:

Application to power-law popularities. arXiv preprint
arXiv:1705.10738, 2017.

[4] B. H. Bloom. Space/time trade-offs in hash coding with
allowable errors. Communications of the ACM,
13(7):422–426, 1970.

[5] C. J. Burges. From ranknet to lambdarank to lambdamart:
An overview. Learning, 11(23-581):81, 2010.

[6] DMLC. Treelite. http://treelite.io/.

[7] Facebook. Rocksdb.
https://github.com/facebook/rocksdb.

[8] T. Feng. Benchmarking apache samza: 1.2 million messages
per second on a single node. URL https://engineering.
linkedin. com/performance/benchmarking-apache-samza-
12-million-messagessecond-single-node,
2015.

[9] J. H. Friedman. Greedy function approximation: a gradient
boosting machine. Annals of statistics, pages 1189–1232,
2001.

[10] Google. Leveldb. https://github.com/google/leveldb.

[11] L. Guo, D. Teng, R. Lee, F. Chen, S. Ma, and X. Zhang.
Re-enabling high-speed caching for lsm-trees. arXiv
preprint arXiv:1606.02015, 2016.

[12] M. Hashemi, K. Swersky, J. Smith, G. Ayers, H. Litz,
J. Chang, C. Kozyrakis, and P. Ranganathan. Learning
memory access patterns. In Proceedings of the 35th
International Conference on Machine Learning, volume 80,
pages 1919–1928. PMLR, 2018.

[13] S. Hochreiter and J. Schmidhuber. Long short-term
memory. Neural Computation, 9(8):1735–1780, 1997.

[14] G. Huang, X. Cheng, J. Wang, Y. Wang, D. He, T. Zhang,
F. Li, S. Wang, W. Cao, and Q. Li. X-engine: An
optimized storage engine for large-scale e-commerce
transaction processing. 2019 International Conference on
Management of Data (SIGMOD’19), 2019.

[15] H. V. Jagadish, P. P. S. Narayan, S. Seshadri,
S. Sudarshan, and R. Kanneganti. Incremental organization
for data recording and warehousing. In VLDB’97, pages
16–25. Morgan Kaufmann, 1997.

[16] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma,
Q. Ye, and T.-Y. Liu. Lightgbm: A highly efficient gradient
boosting decision tree. In Advances in Neural Information
Processing Systems, pages 3146–3154, 2017.

[17] S. Kimak and J. Ellman. Performance testing and
comparison of client side databases versus server side.
Northumbria University, 2013.

[18] A. Kopytov. Sysbench: A system performance benchmark,
2004, 2004.

[19] T. Kraska, M. Alizadeh, A. Beutel, E. H. Chi, J. Ding,
A. Kristo, G. Leclerc, S. Madden, H. Mao, and V. Nathan.
Sagedb: A learned database system. 2019.

[20] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis.
The case for learned index structures. In Proceedings of the
2018 International Conference on Management of Data,
pages 489–504, 2018.

[21] G. Li, X. Zhou, S. Li, and B. Gao. Qtune: A query-aware
database tuning system with deep reinforcement learning.
PVLDB, 12(12):2118–2130, 2019.

[22] J. M. Lobo, A. Jiménez-Valverde, and R. Real. Auc: a
misleading measure of the performance of predictive
distribution models. Global ecology and Biogeography,
17(2):145–151, 2008.

[23] L. Ma, D. Van Aken, A. Hefny, G. Mezerhane, A. Pavlo,
and G. J. Gordon. Query-based workload forecasting for
self-driving database management systems. In Proceedings

of the 2018 International Conference on Management of
Data, pages 631–645. ACM, 2018.

[24] R. Marcus, P. Negi, H. Mao, C. Zhang, M. Alizadeh,
T. Kraska, O. Papaemmanouil, and N. Tatbul. Neo: A
learned query optimizer. PVLDB, 12(11):1705–1718, 2019.

[25] R. Marcus and O. Papaemmanouil. Deep reinforcement
learning for join order enumeration. In Proceedings of the
First International Workshop on Exploiting Artificial
Intelligence Techniques for Data Management, pages 1–4,
2018.

[26] Microsoft. Lightgbm.
https://github.com/microsoft/LightGBM.

[27] B. Mozafari, C. Curino, and S. Madden. Dbseer: Resource
and performance prediction for building a next generation
database cloud. In CIDR, 2013.

[28] E. J. O’neil, P. E. O’neil, and G. Weikum. The lru-k page
replacement algorithm for database disk buffering. Acm
Sigmod Record, 22(2):297–306, 1993.

[29] A. Pavlo, G. Angulo, J. Arulraj, H. Lin, J. Lin, L. Ma,
P. Menon, T. C. Mowry, M. Perron, I. Quah, et al.
Self-driving database management systems. In CIDR,
volume 4, page 1, 2017.

[30] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, et al. Scikit-learn: Machine learning
in python. Journal of machine learning research,
12(Oct):2825–2830, 2011.

[31] W. Pugh. Skip lists: a probabilistic alternative to balanced
trees. Communications of the ACM, 33(6), 1990.

[32] M. Richardson, E. Dominowska, and R. Ragno. Predicting
clicks: estimating the click-through rate for new ads. In
Proceedings of the 16th international conference on World
Wide Web, pages 521–530. ACM, 2007.

[33] J. T. Robinson and M. V. Devarakonda. Data cache
management using frequency-based replacement. In
Proceedings of the 1990 ACM SIGMETRICS conference on
Measurement and modeling of computer systems, pages
134–142, 1990.

[34] S. Salza and M. Terranova. Workload modeling for
relational database systems. In Database Machines, Fourth
International Workshop, Grand Bahama Island, March
1985, pages 233–255. Springer, 1985.

[35] S. Sarkar, T. I. Papon, D. Staratzis, and M. Athanassoulis.
Lethe: A tunable delete-aware LSM engine. In Proceedings
of the 2020 International Conference on Management of
Data, SIGMOD Conference 2020, online conference
[Portland, OR, USA], June 14-19, 2020, pages 893–908.
ACM, 2020.

[36] D. C. Schmidt and T. Harrison. Double-checked locking.
Pattern languages of program design, (3+):363–375, 1997.

[37] R. Sears and R. Ramakrishnan. blsm: a general purpose log
structured merge tree. In Proceedings of the 2012 ACM
SIGMOD International Conference on Management of
Data, pages 217–228. ACM, 2012.

[38] Y. Sheng, A. Tomasic, T. Zhang, and A. Pavlo. Scheduling
oltp transactions via learned abort prediction. In
Proceedings of the Second International Workshop on
Exploiting Artificial Intelligence Techniques for Data
Management, aiDM ’19, New York, NY, USA, 2019.
Association for Computing Machinery.

[39] J. Tan, T. Zhang, F. Li, J. Chen, Q. Zheng, P. Zhang,
H. Qiao, Y. Shi, W. Cao, and R. Zhang. ibtune:
individualized buffer tuning for large-scale cloud databases.
PVLDB, 12(10):1221–1234, 2019.

[40] D. Teng, L. Guo, R. Lee, F. Chen, S. Ma, Y. Zhang, and
X. Zhang. Lsbm-tree: Re-enabling buffer caching in data
management for mixed reads and writes. In 2017 IEEE
37th International Conference on Distributed Computing
Systems (ICDCS), pages 68–79. IEEE, 2017.

[41] H. D. Thoreau. Probability and random processes with
applications to signal processing - united states edition.
Experimental Cell Research, 139(1):63–70, 2002.

[42] D. Van Aken, A. Pavlo, G. J. Gordon, and B. Zhang.
Automatic database management system tuning through
large-scale machine learning. In Proceedings of the 2017
ACM International Conference on Management of Data,
pages 1009–1024, 2017.

[43] J. Zhang, Y. Liu, K. Zhou, G. Li, Z. Xiao, B. Cheng,
J. Xing, Y. Wang, T. Cheng, L. Liu, et al. An end-to-end
automatic cloud database tuning system using deep
reinforcement learning. In Proceedings of the 2019
International Conference on Management of Data, pages
415–432, 2019.

