
Hop-constrained Subgraph Query and Summarization
on Large Graphs

Yu Liu, Qian Ge, Yue Pang, and Lei Zou

Peking University, Beijing, China
{dokiliu, geqian, michelle.py, zoulei}@pku.edu.cn

Abstract. We study the problem of hop-constrained relation discovery in a graph,
i.e., finding the structural relation between a source node s and a target node t
within k hops. Previously studied s − t graph problems, such as distance query
and path enumeration, fail to reveal the s − t relation as a big picture. In this
paper, we propose the k-hop s − t subgraph query, which returns the subgraph
containing all paths from s to t within k hops. Since the subgraph may be too
large to be well understood by the users, we further present a graph summariza-
tion method to uncover the key structure of the subgraph. Experiments show the
efficiency of our algorithms against the existing path enumeration based method,
and the effectiveness of the summarization.

Keywords: Hop-constrained subgraph query · k-hop s−t subgraph · s−t graph
summarization.

1 Introduction

With the advent of graph data, it has become increasingly important to manage large-
scale graphs in database systems efficiently. Generally, vertices in graphs represent enti-
ties and edges the relations between them. Paths, formed by chaining together multiple
edges that share vertices, can be seen as representing more complex relations between
its source and destination vertices. The fundamental problem of discovering the rela-
tion between two entities has thus given rise to numerous path-finding algorithms, the
majority of which aims at determining whether a relation exists between two vertices
(i.e., reachability) or finding a relation between two vertices that satisfy specific proper-
ties (e.g., shortest path and top-k path enumeration). However, in certain applications,
focusing on one relation (path) at a time is not enough. We list two real-world scenarios
in which the s− t relation is demanded as a big picture.
Motivation 1. Discovery of ownership structure. In an equity network, vertices represent
corporations, an edge points from a corporation to another if the former holds shares of
the latter. An important query would be to discover the ownership structure between two
corporations, characterized by chains of shareholding that may span across the whole
network. The results of such queries can help gain insights into a market’s dynamics,
e.g., how financial risks propagate, and therefore help with risk management.
Motivation 2. Relation discovery in social networks. In a social network, vertices rep-
resent persons and edges their relationships, which may include follower-of, friend-of,
parent-of, etc. A query may aim to obtain the “social group” formed with two persons

2 Yu Liu, Qian Ge, Yue Pang, and Lei Zou

of interest as the source and destination respectively, composed of other persons that act
as intermediates for the former to reach the latter. Results of such queries may benefit
social network analysis (e.g., for advertising) and anomaly detection (e.g., for detecting
crimes and terrorism).

Unfortunately, these applications cannot be appropriately handled by existing path-
finding problems and their solutions, for they call not for single paths, but a subgraph
that merges all relevant relations between the source and the destination. In this paper,
we tackle the problem of efficiently computing a subgraph that represent the relation-
s between a source and a destination vertex. Intuitively, given a hop constraint k, we
compute a subgraph containing the paths from s to t within k hops, which is referred to
as the k-hop s − t subgraph. Specifically, several algorithms based on graph traversal
and pruning techniques are developed to compute the subgraph. Considering the sub-
graph may be too large to be well understood by users (e.g., for visualization) for large
graphs, we further propose a graph summarization technique to only reveal the struc-
tural skeleton of the subgraph. The main contribution of our paper is summarized as
follows.

– We first propose the k-hop s− t graph query, which returns a subgraph containing
all paths from s to t within k hops. Compared to existing queries such as (k-hop)
reachability, s− t distance query and path enumeration, the subgraph query reveals
the s − t relation as a big picture. We also propose a traversal-based algorithm
which is worst-case optimal in answering subgraph queries.

– Based on the result subgraph, we further propose the notion of s− t graph summa-
rization with hop constraint, which contracts the subgraph into a summarized graph
with only a few nodes (controlled by a user-defined parameter). We present an algo-
rithm based on skeleton node selection and local graph clustering, and demonstrate
two skeleton node selection strategies which depend on path frequency and walking
probability, respectively.

– On several large graph datasets we demonstrate the efficiency of our subgraph find-
ing algorithm against the baselines based on path enumeration, as well as the ef-
fectiveness of our algorithms in terms of s − t relation discovery and subgraph
summarization.

The remainder of the paper is organized as follows. Section 2 gives the formal defi-
nitions of our studied problems. We discuss related work in Section 3, including several
baseline methods. In Section 4 and 5, we propose our solutions for the k-hop subgraph
query and hop-constrained s − t graph summarization, respectively. Section 6 reports
the experimental results. We conclude the paper in Section 7.

2 Preliminaries
2.1 Problem Statement

We first give several formal definitions about paths and subgraphs. Then we describe
the two studied problems.
Definition 1 (Path and k-hop path). Given a simple and directed graph G = (V,E),
a path p = (v1 = s, v2, . . . , vl = t) in G is defined as a sequence of edges, i.e.,

Hop-constrained Subgraph Query and Summarization on Large Graphs 3

s t

u v

s t

a

b

s t

a b

c

(a) (b) (c) k = 3

Fig. 1. An illustration of the definition of k-hop s− t subgraph.

(vi, vi+1) ∈ G.E,∀i ∈ [1, l). Note that the length of p is l− 1, and p is referred to as a
(l − 1)-hop path.

We say path p contains a cycle if there exists some 1 ≤ i < j ≤ l such that vi = vj .

Definition 2 (Union of paths). Given a set of paths {p1, . . . , pm}, where each path
pi = (v1i = s, . . . , vli = t) is from s to t. Subgraph Gst = (Vst, Est) is a union of
paths {p1, . . . , pm}, if Vst = ∪i∈[1,m]{v1i∪. . .∪vli}, andEst = ∪i∈[1,m]{(vji , v(j+1)i

), j ∈
[1, l)}. Duplicated edges are removed during the union operation.

Definition 3 (k-hop s − t subgraph). A subgraph Gst (s 6= t) is referred to as k-
hop s − t subgraph if it is the union of all k-hop s − t paths, such that for each path
p = (v1 = s, . . . , vl = t), (1) vi 6= s,∀i ∈ (1, l]; and (2) vj 6= t,∀j ∈ [1, l). We also
refer to Gst as k-hop subgraph, or subgraph when the context is clear.

The definition of subgraph query aims to reveal the k-hop relation between s and t
as a whole, rather than enumerating separate paths. However, we are not interested in
(1) nodes only reachable to t via s (u in Fig. 1(a)), or (2) nodes only reachable from s
via t (v in Fig. 1(a)). Intuitively, u and v do not contribute to the relation between s and
t, therefore we do not take them into consideration.

Nonetheless, we allow certain cycles in the s− t relation. For example, after insert-
ing two 3-hop paths (s, a, b, t) and (s, b, a, t) into the subgraph (Fig. 1(b)), a cycle is
formed between a and b. Such cycle may represent meaningful relations, for instance,
the circulating ownership of stock in financial networks. Also note thatGst may contain
s − t path longer than k ((s, c, a, b, t) in Fig. 1(c)), which is inevitable because of the
union of different paths. We ignore these longer paths in that Gst only focuses on the
close (i.e., k-hop) relation between s and t.

In this paper, we study the problems of k-hop s − t subgraph query and k-hop
subgraph summarization, defined as follows.

Definition 4 (Hop-constrained subgraph query). Given a directed graphG = (V,E),
a source node s, a target node t(t 6= s), and the hop constraint k, return the k-hop s− t
subgraph Gk

st.

For simplicity, we only consider simple directed graphs in this paper. Moreover, the
relation defined above points from s to t and is asymmetric (following out-edges). Note
that the problem setting can be easily extended to other types of graphs (e.g., undirected
or weighted graphs), while the relation can be defined based on a set of paths following
in-edges, or allowing a mixture of outgoing and incoming edges.

4 Yu Liu, Qian Ge, Yue Pang, and Lei Zou

s t

x y

a
b
1

b
2

bk

c

d
…

s t

x y

A C

(a) Subgraph Gst (b) The skeleton graph Gsum
st

Fig. 2. k-hop subgraph and its summarization.

Remarks. As mentioned by previous work [21, 23], posing a constraint on the number
of hops is reasonable, in that the strength of the relation drops dramatically with dis-
tance. Nonetheless, our studied problem is still well-defined when k is set to ∞. Let
GSCC be the directed acyclic graph (DAG) where each node in GSCC corresponds to a
strongly connected component of G. Let Cs (resp. Ct) be the strongly connected com-
ponent containing s (resp. t). To this end, we are essentially extracting the subgraph in
G which corresponds to a subgraph in GSCC composed by all paths from Cs to Ct.

Although the k-hop s − t subgraph provides a way to understand the relation be-
tween s and t, the size of the subgraph can be extremely large, e.g., with hundreds of t-
housands of vertices for a reasonable k (say 6) and a medium-sized graph. This prevents
us from finding the underlying structure of s − t relation. Therefore, we also consider
the problem of subgraph summarization, which summarizes the result subgraph into a
small and succinct one.

We adopt a skeleton node-based summarization method that contains two steps.
First, we find a set of skeleton nodes that play important role in the underlying structure,
where the number of skeleton nodes is a user-defined parameter. Then, we conduct local
graph clustering from these skeleton nodes. Other nodes in the subgraph (except s and
t) is assigned to one of the communities Ci corresponding to some skeleton node vi.
In particular, given a k-hop s-t subgraph Gst and a set of skeleton nodes VS (detailed
later), the skeleton graph Gk,h

st is the summarization graph of Gk
st, where Gk,h

st .V =

VS ∪ {s, t}, and for any u, v ∈ Gk,h
st .V , (u, v) ∈ Gk,h

st .E if some criterion is satisfied,
e.g., there exists an edge (x, y) ∈ Gk

st.E s.t. x ∈ Cu and y ∈ Cv , or the probability of
node u reaching node v in Gk

st is above some threshold.

Definition 5 (Hop-constrained s− t graph summarization). Given a directed graph
G = (V,E), a source node s, a target node t, the hop constraint k, and the number
of skeleton nodes h, return the k-hop s − t summarized graph Gk,h

st , which contains h
super-nodes corresponding to h local communities in the s− t subgraph Gk

st.

Fig.2 demonstrates a skeleton graph of the k-hop subgraph. We set the number
of skeleton nodes as 4. Intuitively, node a, c, and d are more important than b1, . . . , bk
(e.g., shell companies in financial networks) because more paths go through them. Node
a and c are preferred over d because the latter is a hot point (i.e., node of large degree,
shown in dashed edges), but contributes few edges toGst. Therefore, we compress node
a and b1, . . . , bk to a super-nodeA, c and d to a super-nodeC. The summarization graph

Hop-constrained Subgraph Query and Summarization on Large Graphs 5

highlights the structural information in the s − t relation and is easier to visualize. We
will discuss the strategies for finding skeleton nodes in Section 5.2.

3 Existing Work

To the best of our knowledge, there is no existing work that directly considers the prob-
lem of s− t subgraph query or summarization. However, a bunch of works study sim-
ilar problems that are more or less aimed at determining the relation between a pair
of vertices, in which the techniques used can be extended to our problem settings. We
categorize them as follows and discuss their relation to our problems.

3.1 Reachability / k-hop Reachability

The classic reachability problem studies whether there exists a path from a source vertex
to a destination vertex. The majority of existing reachability algorithms [24, 25, 28,
30] are index-based and focus on the directed acyclic graph (DAG) contraction of the
input graph. Some generalized versions of reachability queries have also been proposed,
including the label constrained reachability [16] and the k-hop reachability [7], which
answers reachability with the hop constraint k. They can not be directly applied to our
problem because too few information between s and t is preserved.

3.2 Shortest Path / k-shortest Paths

A plethora of works study the single-pair shortest path problem [3–5, 8, 11, 12, 14], as
well as the k-shortest paths (KSP) problem [6, 10, 15, 18, 29] which returns the top-k
shortest paths between the source and the target. Though the algorithms for KSP can be
used for path enumeration, it has been proved inefficient [13].

3.3 Path Enumeration / Top-k path enumeration

The path enumeration problem aims to find all paths from the source to the target, pos-
sibly with additional constraints (e.g., hop constraint). To answer the subgraph query,
we can first enumerate all (k-hop) paths and then combine them into a subgraph. We
first show that depth-first search (DFS) can be easily applied to answer k-hop subgraph
queries.

The pseudo-code is illustrated in Alg. 1. Given a directed graph G, a source node
s, a target node t, and the hop constraint k, the algorithm first initialize Gk

st as empty
graph (Line 1) and then invoke k-DFS (Line 2). The procedure k-DFS traverses the
graph from s in a depth-first way. Once it reaches t, which means a path from s to t
is found, we insert the path into Gk

st (Lines 6-7); then we stop traversal immediately,
ignore any node only reachable from s via t (Line 8). Note that the traversal is limited
within k-hops from s (Lines 10-12). We have the following theorem.

Theorem 1. Algorithm 1 correctly computes the k-hop subgraph with O(nk) worst
time complexity.

6 Yu Liu, Qian Ge, Yue Pang, and Lei Zou

Algorithm 1 The Baseline Algorithm
Input: Directed graph G = (V,E); Source s; Target t; Hop constraint k
Output: Gk

st, the k-hop s− t subgraph
1: Initialize Gk

st as empty graph and stack S = ∅;
2: k-DFS(G, s, s, t, k,S, Gk

st);
3: return Gk

st;
4: Procedure k-DFS(Graph G, Current node u, Source s, Target t, Hop constraint k, Stack S,

Partial subgraph Gk
st)

5: Push u to S;
6: if u = t then
7: Add p(S) to Gk

st;
8: return ;
9: if k > 0 then

10: for each v ∈ O(u) and v 6= s do
11: k-DFS(G, v, s, t, k − 1,S, Gk

st);

s
… …

t

…

n/k nodes n/k nodes n/k nodes

Fig. 3. Worst case graph for k-DFS.

Proof. The correctness of Alg. 1 can be easily derived by the property of DFS and
the definition of k-hop subgraph. To show the algorithm runs in O(nk) in worst case,
consider the following graph (Fig. 3). Since there are totally

(
n
k

)k
k − hop paths from

s, the time complexity of DFS is O(k ·
(
n
k

)k
) ∼ O(nk).

To improve the practical efficiency of k-DFS, in the theoretical paper [13], they
propose T-DFS, a polynomial delay algorithm which takes O(km) to find one path.
Recent work [23] aims at detecting all simple cycles within k hops after the insertion
of an edge on dynamic graphs, by enumerating all simple paths within k − 1 hops
between the two vertices that the new edge is adjacent to. To speed up query processing,
it employs a hot point index to prevent repetitive traversals from vertices with high
degrees. On the other hand, [21] employs a pruning-based algorithm to speed up k-
hop simple path enumeration. Note that any path enumeration algorithm has at least
Ω(kδ) complexity, where δ is the number of valid paths. Since there can be tremendous
numbers of paths, they are not suitable to answer top-k subgraph queries of which
the answer size is bounded by O(n + m). Besides, current methods do not consider
cycles for simplicity, whereas we include some types of cycles that also represent the
relationship in the subgraph.

Hop-constrained Subgraph Query and Summarization on Large Graphs 7

Other related works, such as graph summarization [9, 17, 22,26, 27], primarily con-
sider summarizing the whole input graph or the subgraph around a given node s while
preserving some properties, and are not specially tailored for the s−t relation discovery.

4 KHSQ: The K-hop Subgraph Query Algorithm

4.1 Rationale

Recall that the baseline algorithm incursO(nk) cost for k-hop subgraph query because
each node v may conduct DFS multiple times. In this section, we propose a simple
yet effective algorithm that accelerates the querying speed by utilizing the distance in-
formation. Intuitively, we first conduct a k-hop breadth first search (BFS) to compute
df (s, v) for each v, which is the distance from s to v. Similarly, we compute the dis-
tance of v to t (denoted by db(v, t)) by a traversal from t following in-edges. Then, the
distance information are used to prune most repeated or unnecessary traversals.

4.2 Algorithm

Our algorithm, denoted as KHSQ (K-Hop Subgraph Query), is demonstrated in Alg. 2.
We first invoke k-BFS both from s and t to compute the distance array (Lines 2-3).
The k-BFS procedure (Lines 7-18) is analogous to the breadth-first search, but only
traverses k levels. Then we invoke DFS-SQ (Line 5), which improves the naive k-DFS
in two aspects:

First, instead of enumerating all k-hop paths and union them together, we check
for each edge (u, v) to see if it is in Gst. To be precise, recall that in the definition
of k-hop subgraph Gst, (u, v) ∈ Est if there exists some k-hop path containing it. If
df (s, u) + 1 + db(v, t) ≤ k, we are sure path p = (p∗(s, u), (u, v), p∗(v, t)) is a k-hop
path, where p∗(s, u) (resp. p∗(v, t)) denotes one shortest path from s to u (resp. from v
to t). Hence, it is sufficient to check each edge only once.

Second, we also guarantee that each node (and its out-edges) is visited only once.
Each node v conducts neighbor traversal only if the path in stack S is a shortest path to
v, and v has not conducted the traversal before. Since our algorithm checks each node
and each edge at most once, the complexity is asymptotically linear of the problem
inputs.

4.3 Analysis

The following theorem states the correctness of KHSQ.

Theorem 2. Algorithm 2 correctly finds the k-hop subgraph.

Proof. It is easy to see that procedure k-BFS correctly computes the distance from
s to v within k-hops, and set the distance of other nodes as∞. This also holds for the
traversal from t onGr, which is in fact traversing in-edges ofG. To show the correctness
of procedure DFS-SQ, note that every edge (u, v) in every k-hop path will be added to
Gst according to our checking condition (Line 27 of Alg. 2). On the other hand, if some
edge (u′, v′) is not contained by any such path, then we have df (s, u)+1+db(v, t) > k
and it will be excluded. Path like v → s→ t (or s→ t→ v) and with less than k-hops

8 Yu Liu, Qian Ge, Yue Pang, and Lei Zou

Algorithm 2 KHSQ
Input: Directed graph G = (V,E); Source s; Target t; Hop constraint k
Output: Gst, the k-hop s− t subgraph
1: Initialize Gst as empty graph and stack S = ∅;
2: df (s, ∗) = k-BFS(G, s, t, k);
3: db(∗, t) = k-BFS(Gr, t, s, k);
4: Initialize dfs(v) = false, ∀v ∈ V ;
5: DFS-SQ(G, s, s, t, k,S, df (s, ∗), db(∗, t), dfs,Gst);
6: return Gst;
7: Procedure k-BFS(Graph G, Source s, Target t, Hop constraint k)
8: Initialize d(s, s) = 0, d(s, v) =∞ for ∀v ∈ V \{s};
9: Initialize queueQ = {s};

10: Initialize lvl = 0, numThisLvl = 1, numNextLvl = 0, visited(s) = true, and
visited(v) = false, ∀v ∈ V \{s};

11: whileQ 6= ∅ do
12: for i = 1 to numThisLvl do
13: u = remove(Q);
14: if u 6= t and lvl < k then
15: for each v ∈ O(u) and v 6= s do
16: if visited(v) = false then
17: Add v to Q, d(s, v) = d(s, u) + 1, visited(v) =

true, numNextLvl ++;
18: lvl ++, numThisLvl = numNextLvl, numNextLvl = 0;
19: Procedure DFS-SQ(Graph G, Current node u, Source s, Target t, Hop constraint k, Stack
S, forward distance df (s, ∗) and backward distance db(∗, t), Label dfs, Partial subgraph
Gst)

20: Push u to S;
21: dfs(u) = true;
22: if u = t then
23: pop(S);
24: return ;
25: for each v ∈ O(u) and v 6= s do
26: if df (s, u) + 1 + db(v, t) ≤ k then
27: Add edge (u, v) to Gst;
28: if |S| = df (s, v) and dfs(v) = false then
29: DFS-SQ(G, v, s, t, k,S, df (s, ∗), db(∗, t), dfs,Gst);
30: pop(S);

is eliminated by setting db(v, t) (or df (s, v)) as∞ in k-BFS. Therefore, the subgraph
returned by KHSQ algorithm is equal to the union of all valid k-hop paths, and the
correctness follows.

We bound the time and space complexity of KHSQ as follows. Since procedure k-
BFS only conducts breath-first search from s and within k hops, its time complexity is
O(n + m). As discussed above, we have demonstrated that procedure DFS-SQ visits
each node and each edge at most once. Therefore, the cost is still bounded by O(n +

Hop-constrained Subgraph Query and Summarization on Large Graphs 9

m). The following theorem states that KHSQ is highly efficient in answering k-hop
subgraph queries.

Theorem 3. The time complexity of KHSQ isO(n+m), which is asymptotically linear
with the problem inputs and worst-case optimal.

Proof. Since KHSQ only invokes k-BFS twice and DFS-SQ from s once, the time
complexity can be easily derived. To see the algorithm is worst-case optimal, consider
the case that |Gst| = Θ(|G|), where |G| = |G.V | + |G.E| = n + m, e.g., Gst = G.
Since each node and edge must be processed with O(1) cost, our claim holds.

5 KHGS: The k-hop s − t Graph Summarization Algorithm

5.1 Problem Overview

Though the k-hop subgraph demonstrates the relation between s and t as a whole, it
suffers from extremely large size for many real-world networks. For example, on a
medium-sized graph, say, with millions of nodes and a reasonable k (e.g., 6), the result
subgraph may contain hundreds of thousand nodes, which prevents us from understand-
ing the underlying structure of the s − t relation. Hence, we propose a skeleton node
based method for subgraph summarization, which relies on a set of skeleton nodes (plus
s and t) while the edges and paths between them are contracted and summarized (Re-
call its definition in Sec. 2.1.). As long as we correctly select the most important nodes
as the skeleton of Gst, the summarized graph reveals the key structure of s− t relation
hidden in a bunch of edges.

Our algorithm framework is shown in Alg. 3. Given a graph G, a source node s,
a target node t, and the hop constraint k, the KHGS (K-Hop Graph Summarization)
algorithm first invokes KHSQ to compute the k-hop subgraph Gk

st. To get the sum-
marization graph, our algorithm contains two steps. We first choose h most important
nodes (referred to as skeleton nodes) from Gk

st, where h is a user-defined parameter.
Then we contract Gk

st into Gk,h
st , which can be simply implemented by h distinct local

traversals (e.g., clustering) from the skeleton nodes. Specifically, we present two im-
portance measures based on path frequency and walking probability, respectively. We
describe the algorithms for skeleton node selection in the following subsection.

Algorithm 3 KHGS
Input: Graph G; Source s; Target t; Hop constraint k; Number of skeleton nodes h
Output: Gk,h

st , the skeleton graph of the s− t subgraph Gst

1: Gk
st = KHSQ(G, s, t, k);

2: VS = FindSkeletonNodes(Gk
st, s, t, k, h);

3: Gk,h
st = SummarizedGraphConstruction(Gk

st, s, t, k, VS);
4: return Gk,h

st ;

10 Yu Liu, Qian Ge, Yue Pang, and Lei Zou

Algorithm 4 FindSkeletonNodes-PathBased
Input: Subgraph Gk

st; Source s; Target t; Hop constraint k; Number of skeleton nodes h
Output: VS , a set of skeleton nodes, where |VS | ≤ h, and the subgraph Gst

1: {Partial(s, v), ∀v ∈ Vst} = PUSH-PATH(Gk
st);

2: {Partial(v, t),∀v ∈ Vst} = PUSH-PATH(r(Gk
st));

3: for each v ∈ Vst do
4: PCnt(v) =

∑
(i,ci)∈Partial(s,v)

∑
(j,cj)∈Partial(v,t)

i+j≤k

cicj

5: Let VS be the top-h nodes in V \{s, t} with largest (and non-zero) PCnt(v);
6: return VS ;
7: Procedure PUSH-PATH(Gk

st)
8: Initialize Partial(s, v) = ∅, ∀v ∈ Vst, Partial0(s, s) = 1, Partial0(s, v) = 0, ∀v ∈

V \{s};
9: for l = 0 to k − 1 do

10: for each edge (u, v) ∈ Est do
11: Partiall+1(s, v)+ = Partiall(s, u);
12: for each v ∈ Vst do
13: Partial(s, v) = ∪k

l=0Partiall(s, v);

5.2 Finding Skeleton Nodes

The Path Frequency Based Method According to the definition of Gk
st, which is the

union of all k-hop paths from s to t, a natural importance measure for a node v ∈ V k
st

is the number of paths that go through v. We denote it as PCnt(v). To be precise, we
have

PCnt(v) =
∑

p:s→t,p∈Gk
st,|p|≤k

I(p goes through v),∀v ∈ Vst, (1)

where I(∗) is an indicator variable. Instead of enumerating and checking all paths,
which incurs the excessive O(nk) cost, we propose an algorithm based on the push
operation which transfers the information from u to v for each edge (u, v) and the ob-
servation that PCnt(v) can be computed by counting the number of paths from s to v
and v to t, respectively.

Our algorithm, denoted by FindSkeletonNodes-PathBased, takes Gk
st, source node

s, target node t, hop constraint k, and skeleton node number h as input. It invokes
procedure PUSH-PATH to compute all paths from s to v (and from v to t) for each
v ∈ V k

st (Lines 1-2). Since every such path is a fragment of some path from s to t,
it is referred to as the partial path. For each node v, Partial(s, v) contains a list of
(step, cnt) pairs, which indicates that there are totally cnt distinct paths from s to v
of length step. Once we have Partial(s, v) and Partial(v, t) for each v, we calculate
PCnt(v) by the following equation:

PCnt(v) ≈
∑

(i,ci)∈Partial(s,v)

∑
(j,cj)∈Partial(v,t)

i+j≤k

cicj ,∀v ∈ V k
st. (2)

Intuitively, Equation 2 says that the number of k-hop paths that pass v can be ap-
proximated by the number of paths from s to v times the number of paths from v to t.

Hop-constrained Subgraph Query and Summarization on Large Graphs 11

s t

v

u

s u t

s u v u v u

s u v u t

t

s u

s u v u

s u v u v u u t

u t

u t

u v

u vu v

(a) Gst (b) All 6-hop paths (c) All partial paths
Fig. 4. Duplicated counting of s− t paths.

Note that we exclude paths longer than k. In fact, the equation gives the exact answer
when Gk

st does not contain cycles. When the subgraph has cycles, Equation 2 computes
an upper bound of PCnt(v). We illustrate it by an example as in Fig. 4. Consider the
subgraph in Fig. 4(a), while we set k = 6. Their are totally three 6-hop paths from s to
t (Fig. 4(b)). Similarly, we can compute all 6-hop paths from s to v and from v to t, as
shown in Fig. 4(c). If we concatenate these partial paths together (and eliminate paths
longer than 6), the second and third path Fig. 4(b) is counted twice and three times,
respectively.

Unfortunately, we are unable to eliminate duplicated counting of paths unless we
can enumerate all s − t paths, which is infeasible for sizable graphs. However, since
k is usually small in practice, which limits the repetitions in a cycle for a k-hop path,
the over estimation of path count only has a minor effect. Therefore, our approximation
achieves a good balance between efficiency and effectiveness.

Now we describe the procedure to compute Partial(s, v) (and Partial(v, t)) for
each node v. Take Partial(s, v) as an example. Denote by Partiall(s, v) the num-
ber of path from s to v of length l, the following lemma holds. The equation for
Partiall(v, t) can be defined analogously.

Lemma 1.

Partiall(s, v) =

1, if v = s and l = 0,
0, if v 6= s and l = 0,∑

u∈I(v) Partiall−1(s, u), otherwise.
(3)

Proof. For any node v 6= s, a path from s to v of length l can be decomposed into the
sub-path from s to u and edge (u, v), where u denotes the predecessor of v in p. The
length of the sub-path is exactly l − 1. Besides, for any u, u′ ∈ I(v) and u 6= u′, the
path to v either comes from u or u′, and our lemma follows.

The implementation of Equation 3 is shown in procedure PUSH-PATH. We initial-
ize Partial(s, v) in Line 8, and then proceed on k iterations. During each iteration l,
we check every edge (u, v) ∈ Est, and push Partiall(s, u) to Partiall+1(s, v) (Lines
9-11). For the computation of Partial(v, t), we invoke PUSH-PATH on the reverse
graph of Gk

st (denoted as r(Gk
st)). Notice that for practical efficiency, in each iteration

l we only record a set of nodes with Partiall(s, v) > 0, and conduct push operation
from these nodes. The following lemma and theorem are easily derived.

Lemma 2. The time and space complexity of procedure PUSH-PATH is O(k(n+m))
and O(kn+m), respectively.

12 Yu Liu, Qian Ge, Yue Pang, and Lei Zou

Proof. Since in each iteration, each node and each edge is processed at most once, so
the complexity is bounded by O(|Gk

st|) = O(|V k
st| + |Ek

st|), and again bounded by
O(n + m) because Gst is a subgraph of G. The algorithm has exactly k iterations,
thus the time complexity is O(k(n + m)). For the space usage of PUSH-PATH, note
that storing Partial(s, v) needs O(k) space. We need extra O(|Gk

st|) space for Gk
st. In

total, the space cost is bounded by O(kn+m).

Theorem 4. The time and space complexity of FindSkeletonNodes is O(k2n + km))
and O(kn+m), respectively.

Proof. Algorithm FindSkeletonNodes invokes PUSH-PATH twice, which costsO(k(n+
m)) time. Since both Partial(s, v) and Partial(v, t) may contain O(k) items, com-
puting PCnt(v) for each v isO(k2). Consequently, the total computation cost is bound-
ed by O(k(n + m)) + O(k2n) = O(k2n + km)). Since each node (resp. each edge)
needs O(k) (resp. O(1)) space cost, the space complexity is O(kn+m).

In practice, we always use small k, e.g., k ≤ 10, and the algorithm has near-linear
time and space complexity.

The Walking Probability Based Method The path frequency based definition of node
importance is intuitive, but suffers from a few deficiencies owing to the graph structure
inside and outside Gk

st. First, the path frequency based measure does not consider the
path length, which is an indication of the closeness of the relation. Second, path fre-
quency is vulnerable to malicious tampering of the graph structure. Take Fig. 2(a) as an
example, by building more shell companies (i.e., bi), more s− t paths go through a and
c. Third, node d is a hot point but contribute few to the s − t relation, indicating that
we should also consider the graph structure of the whole graph when choosing skele-
ton nodes. Lastly, as previously discussed, the path-based measure is also vulnerable to
cycles.

Inspired by the Random Walk with Restart [20] and Personalized PageRank [19], we
propose a walking probability based measure for node importance, which alleviates all
drawbacks above. We only need a few modification of FindSkeletonNodes-PathBased
and PUSH-PATH. Briefly speaking, instead of transfer the information of path frequen-
cy from u to v along each edge (u, v), we transfer probability instead. We first define
the walking probability as follows.

Definition 6 (Random walk). A random walk from u is defined as (1) for each step,
with probability α the walk stops; (2) with 1 − α probability, u randomly chooses an
out-neighbor v and proceeds to it. Here α is a decay factor in (0, 1).

Definition 7 (Walking probability). The probability of node u walks to v, denoted as
Pr(s, v), is defined as Pr(s, v) = ∪kl=0Prl(s, v),∀v ∈ V, where

Prl(s, v) =

1, if v = s and l = 0,
0, if v 6= s and l = 0,∑

u∈I(v) α ·
Prl−1(s,u)
|O(u)| , otherwise.

(4)

Hop-constrained Subgraph Query and Summarization on Large Graphs 13

It can be proved by induction that Pr(s, v) is exactly the probability of a random walk
from s terminating at v. We omit the details for space constraint. By substituting the
path frequency measure by the probability based one, we denote the corresponding
procedures as FindSkeletonNodes-ProbBased and PUSH-PROB, respectively.

5.3 Summarized Graph Construction

After we have determined the skeleton node set VS , we contract Gst accordingly. The
procedure is rather straightforward: for each v ∈ VS , we conduct any off-the-shelf
local clustering algorithm, and contract each cluster to a super-node. Two super-nodes
have connecting edges if some nodes in the corresponding cluster are connected or the
walking probability between the super-nodes is above some threshold. For example, if
we employ personalized PageRank for local clustering and estimate the PPR values via
a limited number of random walks, a good tradeoff between efficiency and effectiveness
can be fulfilled.

Finally, we conclude with the following Theorem, which states the complexity of
KHGS.

Theorem 5. The time and space complexity of KHGS isO(h(k2n+km)) andO(hn+
m), respectively, and is near-linear when k and h can be viewed as constants.

6 Experiments

In this section, we evaluate both the efficiency of our k-hop subgraph algorithm against
the baseline algorithm, as well as the performance of the summarization algorithms.
6.1 Experimental Settings

Dataset Details We employ four large directed dataset, i.e., Web-Google (WG) (n =
875, 713,m = 5, 105, 039), In-2004 (IN) (n = 1, 382, 908,m = 16, 917, 053), Soc-
LiveJournal (LJ) (n = 4, 847, 571,m = 68, 475, 391), and IT-2004 (IT) (n = 41, 291, 594,m =
1, 150, 725, 436). All datasets are obtained from public sources [1, 2].
Methods For the k-hop subgraph queries, we compare the baseline algorithm (Alg. 1)
and KHSQ (Alg.2) in terms of efficiency. For the graph summarization problem, we
report the query time of KHGS (Alg.3), and consider skeleton node selection via both
path frequency based and walking probability based methods.
Environments We randomly generate 1, 000 s − t pairs, and vary k from 3 to 6. We
guarantee that t can be reached from s within k hops. All experiments are conducted on
a machine with a 2.6GHz CPU and 64GB memory.

6.2 Efficiency

Table 1 shows the query time of the baseline algorithm and KHSQ. Since the k-DFS
procedure is extremely slow for large k, we set k = 4. Symbol ’-’ indicates that for some
query the time cost exceeds 1,000 seconds. KHSQ is significantly faster than the base-
line, e.g., nearly an order of magnitude faster on LJ. Moreover, for the largest dataset
IT, the baseline method fails to answer the query even for k = 4. Fig. 5 demonstrate the
query speed of Baseline and KHSQ varying k.

In the following, we compare the result size of path enumeration and subgraph
query, followed by the query time evaluation of our summarization algorithms.

14 Yu Liu, Qian Ge, Yue Pang, and Lei Zou

Table 1. Query time (sec) of Baseline and KHSQ (k = 4).

Method Dataset
WG IN LJ IT

Baseline 0.013 0.52 11.12 -
KHSQ 0.005 0.022 1.59 1.34

3 4 5 6
k

10-4

10-2

100

102

Q
ue

ry
 ti

m
e

Baseline
KHSQ

3 4 5 6
k

10-5

100

105

Q
ue

ry
 ti

m
e

Baseline
KHSQ

3 4 5 6
k

10-1

100

101

102

Q
ue

ry
 ti

m
e

Baseline
KHSQ

3 4 5 6
k

10-1

100

101

102

Q
ue

ry
 ti

m
e

Baseline
KHSQ

(a) WG (b) IN (c) LJ (d) IT

Fig. 5. Query time (sec) of Baseline and KHSQ, varying k

3 4 5 6
k

100

102

104

pa

th
s

/ S
ub

gr
ap

h
si

ze

Number of paths
Subgraph size

3 4 5 6
k

101

102

103

104

pa

th
s

/ S
ub

gr
ap

h
si

ze

Number of paths
Subgraph size

3 4 5 6
k

101

102

103

pa
th

s
/ S

ub
gr

ap
h

si
ze

Number of paths
Subgraph size

3 4 5 6
k

101

102

103

pa

th
s

/ S
ub

gr
ap

h
si

ze

Number of paths
Subgraph size

(a) WG (b) IN (c) LJ (d) IT

Fig. 6. Result size of path enumeration and subgraph query

Table 2. Query time (sec) of KHGS.

Method Dataset
WG IN LJ IT

KHGS (Path-based) 0.43 1.28 76.81 91.26
KHGS (Probability-based) 0.52 1.42 83.57 97.71

Result Size We conduct k-hop path enumeration and subgraph query on four datasets
and very k from 3 to 6. The result is shown in Fig. 6. As k increases, the number of
k-hop paths explodes, whereas the size of k-hop subgraph is still limited.

Query Time of KHGS We also evaluate the query efficiency of our KHGS algorithm.
For all datasets, we fix the number of skeleton nodes h as 8, hop constraint k = 5, and
α = 0.6. Note that the complexity of KHGS is linear in h and quadratic in k. Hence
their values do not have a major effect on the query efficiency. The results are shown in
Table 2.

7 Conclusion
In this paper, we propose the problem of k-hop s − t subgraph query and a traversal-
based algorithm that answers the query in O(n+m) time, which is worst-case optimal.
We further introduce the notion of hop-constrained s − t graph summarization, which

Hop-constrained Subgraph Query and Summarization on Large Graphs 15

computes a skeleton graph of the s − t subgraph and provides a better understanding
of the underlying structure of the s− t relation. Our proposed algorithms are based on
skeleton node selection with various strategies and graph traversal. Extensive experi-
ments demonstrate that our proposed queries better reflect the s − t relation compared
to existing queries, while our algorithms are highly efficient even on massive graphs.

Acknowledgements. This work was supported by The National Key Research and De-
velopment Program of China under grant 2018YFB1003504, NSFC (No. 61932001),
and Peking University Medicine Seed Fund for Interdisciplinary Research supported by
the Fundamental Research Funds for the Central Universities (No. BMU2018MI015).
This work was also supported by Beijing Academy of Artificial Intelligence (BAAI).
Lei Zou is the corresponding author.

References

1. http://konect.uni-koblenz.de/
2. http://law.di.unimi.it/webdata/
3. Abraham, I., Delling, D., Goldberg, A.V., Werneck, R.F.: Hierarchical hub labelings for

shortest paths pp. 24–35 (2012)
4. Bast, H., Funke, S., Sanders, P., Schultes, D.: Fast routing in road networks with transit

nodes. Science 316(5824), 566–566 (2007)
5. Bauer, R., Delling, D., Sanders, P., Schieferdecker, D., Schultes, D., Wagner, D.: Combining

hierarchical and goal-directed speed-up techniques for dijkstra’s algorithm. ACM Journal of
Experimental Algorithmics 15(2.3) (2010)

6. Chang, L., Lin, X., Qin, L., Yu, J.X., Pei, J.: Efficiently computing top-k shortest path join. In:
EDBT 2015-18th International Conference on Extending Database Technology, Proceedings
(2015)

7. Cheng, J., Shang, Z., Cheng, H., Wang, H., Yu, J.X.: K-reach: who is in your small world.
Proceedings of the VLDB Endowment 5(11), 1292–1303 (2012)

8. Delling, D., Goldberg, A.V., Pajor, T., Werneck, R.F.: Robust exact distance queries on mas-
sive networks. Microsoft Research, USA, Tech. Rep 2 (2014)

9. Dunne, C., Shneiderman, B.: Motif simplification: improving network visualization read-
ability with fan, connector, and clique glyphs. In: Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. pp. 3247–3256. ACM (2013)

10. Eppstein, D.: Finding the k shortest paths. SIAM Journal on computing 28(2), 652–673
(1998)

11. Geisberger, R., Sanders, P., Schultes, D., Delling, D.: Contraction hierarchies: Faster and
simpler hierarchical routing in road networks. In: International Workshop on Experimental
and Efficient Algorithms. pp. 319–333. Springer (2008)

12. Goldberg, A.V., Harrelson, C.: Computing the shortest path: A search meets graph theory.
In: Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms. pp.
156–165. Society for Industrial and Applied Mathematics (2005)

13. Grossi, R., Marino, A., Versari, L.: Efficient algorithms for listing k disjoint st -paths in
graphs pp. 544–557 (2018)

14. Jiang, M., Fu, A.W., Wong, R.C., Xu, Y.: Hop doubling label indexing for point-to-point
distance querying on scale-free networks. very large data bases 7(12), 1203–1214 (2014)

15. Jiménez, V.M., Marzal, A.: Computing the k shortest paths: A new algorithm and an ex-
perimental comparison. In: International Workshop on Algorithm Engineering. pp. 15–29.
Springer (1999)

16 Yu Liu, Qian Ge, Yue Pang, and Lei Zou

16. Jin, R., Hong, H., Wang, H., Ruan, N., Xiang, Y.: Computing label-constraint reachability in
graph databases. In: Proceedings of the 2010 ACM SIGMOD International Conference on
Management of data. pp. 123–134. ACM (2010)

17. LeFevre, K., Terzi, E.: Grass: Graph structure summarization. In: Proceedings of the 2010
SIAM International Conference on Data Mining. pp. 454–465. SIAM (2010)

18. Martins, E.Q., Pascoal, M.M.: A new implementation of yens ranking loopless paths algo-
rithm. Quarterly Journal of the Belgian, French and Italian Operations Research Societies
1(2), 121–133 (2003)

19. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: Bringing order
to the web. Tech. rep., Stanford InfoLab (1999)

20. Pan, J.Y., Yang, H.J., Faloutsos, C., Duygulu, P.: Automatic multimedia cross-modal cor-
relation discovery. In: Proceedings of the tenth ACM SIGKDD international conference on
Knowledge discovery and data mining. pp. 653–658. ACM (2004)

21. Peng, Y., Zhang, Y., Lin, X., Zhang, W., Qin, L., Zhou, J.: Hop-constrained st simple path
enumeration: Towards bridging theory and practice. Proc. VLDB Endow. 13(4), 463–476
(2019)

22. Purohit, M., Prakash, B.A., Kang, C., Zhang, Y., Subrahmanian, V.: Fast influence-based
coarsening for large networks. In: Proceedings of the 20th ACM SIGKDD international con-
ference on Knowledge discovery and data mining. pp. 1296–1305. ACM (2014)

23. Qiu, X., Cen, W., Qian, Z., Peng, Y., Zhang, Y., Lin, X., Zhou, J.: Real-time constrained cycle
detection in large dynamic graphs. Proceedings of the VLDB Endowment 11(12), 1876–1888
(2018)

24. Su, J., Zhu, Q., Wei, H., Yu, J.X.: Reachability querying: can it be even faster? IEEE Trans-
actions on Knowledge and Data Engineering 29(3), 683–697 (2016)

25. Tang, X., Chen, Z., Zhang, H., Liu, X., Shi, Y., Shahzadi, A.: An optimized labeling scheme
for reachability queries. Comput Materials Cont 55(2), 267–283 (2018)

26. Tian, Y., Hankins, R.A., Patel, J.M.: Efficient aggregation for graph summarization. In: Pro-
ceedings of the 2008 ACM SIGMOD international conference on Management of data. pp.
567–580. ACM (2008)

27. Toivonen, H., Zhou, F., Hartikainen, A., Hinkka, A.: Compression of weighted graphs. In:
Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery
and data mining. pp. 965–973. ACM (2011)

28. Wei, H., Yu, J.X., Lu, C., Jin, R.: Reachability querying: an independent permutation labeling
approach. The VLDB JournalThe International Journal on Very Large Data Bases 27(1), 1–
26 (2018)

29. Yen, J.Y.: Finding the k shortest loopless paths in a network. management Science 17(11),
712–716 (1971)

30. Zhu, A.D., Lin, W., Wang, S., Xiao, X.: Reachability queries on large dynamic graphs: a
total order approach. In: Proceedings of the 2014 ACM SIGMOD international conference
on Management of data. pp. 1323–1334. ACM (2014)

